用户名: 密码: 验证码:
bFGF基因修饰的MSCs细胞复合β-磷酸三钙修复骨缺损实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:骨缺损畸形是颌面外科、骨科、整形外科临床常见病。颌骨缺损的修复问题一直是口腔颌面外科较难解决的问题,现常规的修复方法很多,但各有其优缺点。组织工程化骨是利用生物组织工程技术将种子细胞与支架材料复合,形成具有与自体骨结构功能相似的骨组织,它弥补了多种单一植骨材料的缺陷,结合了它们各自的优点,具有组织相容性好、骨诱导能力强、取材方便、可快速修复缺损等特性。用组织工程方法构建种子细胞、支架材料和生长因子复合的生物活性人工骨被认为是未来进行骨缺损修复和骨再造最有效的方法之一。通过人碱性成纤维生长因子(basic fibroblant growth factor, bFGF)转染以增加组织细胞bFGF的分泌量,提高bFGF蛋白在生物体骨缺损局部组织中的浓度,达到促进骨愈合的目的。但是,如何提高质粒对于靶组织的转染效率、寻求一种高效、简便的转染手段,如何缩短鉴定转染是否成功的时间,以及在基因转染促进骨愈合的过程中,一直未得到很好的阐明。本研究目的包括以下几个方面:1)建立稳定的、基因序列正确的、检测方便的、和GFP-慢病毒载体,并检测转染293-FT细胞的效率及转染后的生物学活性;2)获得骨髓间充质干细胞(Bone mesenchymal stem cells, BMSCs),bFGF-慢病毒载体转染诱导第3代的犬BMSCs,了解该质粒转染犬骨髓间充质干细胞的效率及转染后的生物学活性;3)体内观察对比bFGF基因修饰rMSCs细胞活性的影响以及诱导异位成骨的情况,为构建更优化的骨组织工程种子细胞和组织工程化骨提供重要的实验基础。方法:1)bFGF基因真核表达载体的构建设计人bFGF基因引物,用Trizol法提取胎盘组织总RNA,用逆转录聚合酶链反应(RT-PCR)的方法扩增bFGF基因,连接至ViraPowerTM慢病毒载体系统,经Xho-Ⅰ, BamH-Ⅰ双酶切和测序并与Genebank中序列进行比较分析。2)bFGF基因遗传修饰的犬骨髓间充质干细胞的建立:①结合Percoll分离液密度梯度离心和差速贴壁传代筛选法相,分离培养犬骨髓间充质干细胞。②在脂质体转染剂Lipofectamine2000的介导下,bFGF-pLenti6/V5-D-TOPO表达质粒同包装质粒pLP1、pLP2、包膜质粒pLP/VSVG共转染293FT细胞株,收集bFGF-慢病毒上清转染诱导后第3代的犬BMSCs, Blasticidin压力筛选稳定表达株。③设计GFP基因引物,以GFP-PMSLV-Plazmid为—1—模板,采用PCR的方法扩增GFP基因,连接至pLenti6/V5-D-TOPO(?)表达质粒,GFP-慢病毒载体的构建及转染BMSCs过程同bFGF-慢病毒。RT-PCR方法检测bFGF mRNA水平的表达。④RT-PCR检测转染组细胞中目的基因mRNA表达情况,Western blot,细胞免疫化学检测各转染组细胞胞浆中目的蛋白表达情况;ELISA检测各各转染组细胞培养上清中目的蛋白的分泌情况。3)bFGF基因转染的rMSCs成骨活性的体内实验研究实验共分为4组进行:A、对照组(空白组);B、p-磷酸三钙组;C、MSCs细胞复合β-磷酸三钙组;D、bFGF基因修饰rMSCs+β-磷酸三钙组;①在体外分别将rMSCs和bFGF基因修饰rMSCs接种于多孔支架材料磷酸三钙上。②将不同组细胞/材料复合物植入犬牙槽骨内。③每组分别于植入3月后取材,石蜡包埋,组织病理学切片,HE染色分析新骨形成情况;④术后4、8和12周进行X光片、4、8周CT摄片观察骨缺损变化、骨皮质及β-磷酸三钙降解情况。结果:1)RT-PCR自脑组织cDNA库中扩增出bFGF基因;成功将bFGF基因克隆入真核表达载体,构建了bFGF-pLenti6/V5-D-TOPO表达质粒,DNA测序证明,所克隆目的基因序列与Genebank收录一致。2)bFGF真核表达质粒转染了犬骨髓间充质干细胞后,经抗生素Blasticidin压力筛选获得了具有抗性的细胞克隆;GFP真核表达质粒转染了犬骨髓间充质干细胞48小时后,倒置荧光显微镜下显示转染后的犬骨髓间充质干细胞内可见绿色荧光蛋白分布于整个细胞,呈胞浆分布。培养第八代,转染的细胞依然存活,绿色荧光蛋白持续表达;RT-PCR结果显示抗性细胞克隆中均有大量目的基因bFGFmRNA转录,ELISA检测培养上清中目的蛋白表达阳性,Western blot结果显示胞浆中有目的蛋白的表达。3)犬牙槽骨缺损异位诱导成骨实验显示:基因修饰MSCs组与单纯MSCs对照组相比,材料降解和替代的速度明显提高,有较多的新骨形成;实验动物牙槽骨骨缺损愈合过程的X线4周、8周、12周观察显示及4、12周的CT扫描,bFGF基因修饰rMSCs+β-磷酸三钙组骨缺损在骨皮质的连续性、p-磷酸三钙的降解速度及骨缺损愈合的大小优于MSCs细胞复合p-磷酸三钙组,p-磷酸三钙组明显优于对照组,bFGF修饰的MSCs组在各阶段均有比其他组更明显的材料替换速度。结论:1)成功构建了携带人bFGF和GFP基因的真核表达载体。2)含有人bFGF基因序列可以通过脂质体介导有效地导入犬MSCs中并得到表达。3)人bFGF基因对犬骨髓间充质干细胞修饰转染并能在骨髓间充质干细胞中翻译、表达产生bFGF基因。4)bFGF能够启动或诱导MSCs成骨方向分化和能够促进新生血管形成,对rMSCs进行修饰后,能够在犬牙槽骨内有效地促进异位骨的形成。
Objective:Elevating the concentration of the bFGF protein at the bone defect site by tranfering the bFGF into the issues around the defect site. But how to improve the efficiency of gene transfection, shorten the verifying time of a plasmid transfection, find a high efficient and easier method to transfer a plasmidis still unclear. We develop this study aim to:1) contruct the stable and easily identified bFGF and GFP.2) Bone mesenchymal stem cells (BMSCs) from the dog.With the promotion of Lipofectamine 2000, bFGF-plentib/V5plasmid and packaging plasmid pLP1, pLP2, plP/vsvG transfected 293FT cell line, bFGF-lentivirus supernatant was collected and infected the passageⅢBMSCs.3) Oberve rMSCs transfected the gene of bFGF and compare the osteogenous capacity in vitro. Methods:1) Construction of expressing carrier by bFGF gene. bFGF gene primers were designed, total RNA was extracted from placental tissue using TRIZOL.The hbFGF gene amplified by RT-RCR, and the PCR product was connected to the Viro Power TM lentivirus carrier system, which compared and analysed with Genebank srquencing by the Xho-Ⅰand Bam H-Ⅰdouble digestion and sequencing.2) The establishment of bone marrow mesenchymal cells modified by bFGF gene.①Dog MSCs were isolated by combination means of the Percoll intensity gradient centrifugation method and passaged screening were cultured in DMEM medium supplemented with 10%fetal bovine serum.②With the promotion of Lipofectamine 2000, bFGF-plentib/V5plasmid and packaging plasmid pLP1, pLP2, plP/vsvG transfected 293FT cell line, bFGF-lentivirus supernatant was collected and infected the passageⅢBMSCs.③The GFP gene is umplified by PCR from GFP-PMSLV-Plazmid, GFP gene was connected to plentib\V5SCs.The bFGF and mRNA was detected by RT-PCR.④The mRNA expression of exogenous gene in rMSCs was detected by RT-PCR; The intron cell target protein expression was detected by Western blot, immunocytichemistry; ELISA was used to analyze the secretion of target protein.3) The study of bioactivity of MSCs modified with bFGF gene. We tested those cells in 2 groups:A MSCs; B MSCs modified with bFGF gene.①MTT method was used to analyze the cell proliferation of different groups.②We tested the alkaline phosphatuse (ALP) activity in endochylema.③The concentration of osteocalin (OCN) which was secreted into cell culture by MSCs modified with different genes was tested by radioimmunity method.4) The investigation of osteogenous capacity of rMSCs modified with bFGF gene in vivo. We divided those cells into 4 groups:A.contrast group; B(3-TCP; C.MSCsβ-TCP; D.rMSCs+β-TCP modified with bFGF gene.①We seeded the different group cells on the (3-TCP scaffold in vitro.②The cells/scaffold composites were implanted into mandible of Beagle.③The samples were taken at 3 methods post-implian.We used pathological and histology to analyze bone and vessel formation. Rsults:We obtained bFGF gene from brain cDNA library. bFGF gene was cloned into Lipofectamine2000. The eukaryotic expression plasmids, bFGF-plentib, VS-D-TOPO, were constructed, and the results of DNA sequencing showed that the gene sequences we have cloned were identical with those in GeneBank. We thrafected MSCs with eukaryotic expression plasmids. After selected with antibrotin Blasticidin, we got some cell clones which can survive in DMED medium supplied with fatal concentration. RT-PCR showed the mass transcription of BMP-2 and bFGF mRNA in tranfected MSCs. Western blot, immunocytochemistry and ELISA confirmed the expression of exogenous gene in tranfected cells and cell culture medium. After to have been transfected with bFGF gene, MSCs got an increased proliferation ability. The in vitro experiment results showed that:the allalire phosphatase (ALP) activity can be downregulated, but the secretion of osteocalcin (OCN) of MSCs can be improved by bFGF gene modified. Ecotopic bone formation experiment:Compared with the control group, the degradation speed of scaffold is more rapid in each of gene. Modified MSCs group, and there are new bone formation in each of gene modified MSCs group. After 1 month of operation, there were a lot of osteoblast like cells and chondrocyte at the edge of scaffold, cell matrix accumulated. Some new born capillary began to form and expand into scaffold. bFGF gene modification group showed a more obvious scaffold substitute speed than the other groups. Most part of scaffold was absorbed at the end of several months after implanta-tion. The relative bone area and capillary density of these two groups are bigger than the other groups. Conclusion:To construct eukaryotic expression plasmids carrying human bFGF gene and GFP gene successfully. Human bFGF gene can be transfected into dMSCs mediated by liposome and be expressed successfully. Human bFGF gene transfected by dog BMSCs shows persistent expression of GFP as a manner of endochylema distribution in the observation of the fluorescencet inverted microscope. MSCs transfected with bone induced and capillary induced gene can improve the ectoptic bone formation ability and improve the vascularization of new bone.
引文
[1]Koka S, Vance JB, Maze GI. Bone Growth Factors:Potential for Use as an Osseointegration. Enhancement technique(OET)[J]. Western Society Periodont, 1995,43(3):97-104.
    [2]陈建钢,曾凯,等.种植体周围骨缺损修复的组织学观察[J].临床口腔医学杂志,2004,11(19):648-650.
    [3]龚振宇,周树夏,曹建广,等.骨痂中碱性成纤维细胞生长因子的免疫组化定位[J].实用口腔医学杂志,1998,14(4):265-267.
    [4]Globus R, Plouet J, Cospodarowecz D. Cultured bovine bone cells synthesized basic fibroblast growth factor and store it in their extracellular matrix[J]. Endocrinology, 1989,124(9):1539-1547.
    [5]Canalis E, Centrella M, McCarthy T. Effects of basic fibroblast growth factor on the bone formation in vitro[J]. J Clin Invest,1988,81:1572-1577.
    [6]Jinggushi S, Scully SP, Joyce ME, et al. Transforming growth factor beta-Ⅰ and flbroblast growth factors in rat growth plate[J]. J Orthop Res,1995,13(5):761-765.
    [7]李晓辉,宋跃明等.碱性成纤维细胞生长因子复合部分脱蛋白骨修复兔股骨头骨缺损的作用机理及相关性分析[J].中国矫形外科杂志2005,7(13):1010-1013.
    [8]Bolauder ME. Regulation of fracture repair by growth factors[J]. Proc Soc Exo Bio Med 1992,200:165.
    [9]Niswander L, Martin Gr. FGF-4 and BMP-2 have opposite effects on limb growth[J]. Nature,1993,361:68.
    [10]Gerhert TH, Such FR, Murota DE, et al. Healing segmontal femoral defacts in sheep using recombinant human bone Morphogenetic protein[J]. Clin Orthop,1993, 293:317.
    [11]焦岩涛,王大章.bFGF、IGF-I、及TGF-β1对人髁突软骨细胞增殖的影响[J].中华口腔医学杂志,2000,35:346-349.
    [12]Leung KS, Slier AH, L am TS, el al. Energy metabo lism in fracture healing:Mea-surement of adeno sine t riplo sphate in callus to monitor progress[J]. J Bone Jo int Surg,1989,71B(4):657
    [13]Zellin G, Linde A. Effects of recombinant human fibroblast growth fator on osteo-genic cell populations during orthopic osteogenesis in vivo[J]. Bone,2000,26:161-168.
    [14]Chan BP, Fu S, et al. Effects of basic fibroblast growth factor(bFGF)on early stages of tendon healing:a rat patellar tendon model[J]. Acta Orthop Scand,2000,71:513-518.
    [15]Chidgey L, Chakkalakal D. B lotcky A, et al. Vascular reorganization and return of rigidity in fracture healing[J]. J Orthop Res,1986,4(2):173.
    [16]Evans CH, Robbins PD. Possible orthopaedic applications of gene therapy[J]. J Bone Joint Surg Am,1995,77(7):1103-14.
    [17]Webber RJ. In vitro culture of meniscal tis sue[J]. CLin Orthop 1990,252(3):114-120.
    [18]Yamazaki K, Tachibana Y. Vascularized synovial flap promoting regeneration of the cryopreserved meniscal allograft:experimental study in rabbits[J]. J Orthop Sci 2003,(8):62-68.
    [19]Lieberman JR, Ghivizzani SC, Evans CH. Gene transfer approaches to the healing of bone and cartilage[J]. Mol Ther,2002,6(2):141-7.
    [20]Calmann MA, Evans JE, Marinus MG. MutS inhibits RecA-mediated strand transfer with methylated DNA substrates[J]. Nucleic Acids Res,2005,33(11):3591-7.
    [21]Oakes DA, Lieberman JR. Osteoinductive applications of regional gene therapy:ex vivo gene transfer[J]. Clin Orthop Relat Res,2000,(379 Suppl):101-12.
    [22]袁泉.骨形态发生蛋白基因在骨组织工程领域的研究进展[J].国外医学生物医学工程分册.2005,28(6):321-324.
    [23]Schek RM, Hollister SJ, Krebsbach PH. Delivery and protection of adenoviruses using biocompatible hydrogels for localized gene therapy[J]. Mol Ther,2004, 9(1):130-8.
    [24]Kafri T, Van PH, Ouyang L. A packaging cell line for lentivirus vectors[J]. J Virol 1999,73:576.
    [25]曹明媚,戚中田.基因治疗载体的研究进展[J].国外医学肿瘤学分册,2004,31(1):22-26.
    [26]Cockrell AS, Kafri T. Gene delivery by lentivirus vectors [J]. Mol Biotechnol,2007, 36(3):184-204.
    [27]Fridenshtein A, Petrakova KV, Kuralesova AI, et al. Precursor cells for osteogenic and hemopoietic tissues. Analysis of heterotopic transplants of bone marrow[J]. Tsitologiia,1968,10(5):557-67.
    [28]Minguell JJ, Erices A, Conget P. Mesenchymal stem cells[J]. Exp Biol Med (Maywood),2001,226(6):507-20.
    [29]Krebsbach PH, Kuznetsov SA, Satomura K, et al. Bone formation in vivo: comparison of osteogenesis by transplanted mouse and human marrow stromal fibroblasts[J]. Transplantation,1997,63(8):1059-69.
    [30]Pecina M, Jelic M, Ivkovic A, Gene therapy applications in orthopaedics[J]. Int Orthop,2006,30(3):215-6.
    [31]Ahn J, Glaser D. Gene therapy and the future of orthopaedics[J]. J Bone Joint Surg Am,2003,85-A(5):965-6.
    [32]Polyzois VD, Papakostas I, Stamatis ED. Current concepts in delayed bone union and non-union[J]. Clin Podiatr Med Surg,2006,23(2):445-53.
    [33]Kim DH, Yoo KH, Choi KS, ey al. Gene expression profile of cytokine and growth factor during differentiation of bone marrow-derived mesenchymal stem cell[J]. Cyto- kine,2005,31(2):119-26.
    [34]Sojo K, Sawaki Y, Hattori H, et al. Immunohistochemical study of vascular endothelial growth factor(VEGF)and bone morphogenetic protein-2,-4(BMP-2,-4)on lengthened rat femurs[J]. J Craniomaxillofac Surg,2005,33(4):238-45.
    [35]Brighton CT. Principles of fracture healing, In,corneli CN, Lane JM. Newest factors in fracture healing[J]. Clin Orthop,1992,277:297-312.
    [36]Folkman J, Klagsbrun M. Angiogenic factors[J]. Science,1987,235:442.
    [37]Khour I RK, Brown DM, Leal Khour I SM, et al. Theeffect of basic fibroblast growth factor on the neovascularisationp rocess:skin flap survival and staged flap transfers[J]. Br J Plast, Surg,1991,44(8):585-588.
    [38]Gruber R, Mayer C, Schulz W, et al. Stimulatory effects of cartilage derived morpho-genetic proteins 1 and 2 on osteogenic differentiation of bone marrow stromal cells[M]. Cytokine,2000,12:319.
    [39]Mastrogiacomo M, Cancedda R, Quarto R, et al. Effect of different growth factors on the chondrogenic potential of human bone marrow stromal cells[J]. Osteoarthritis Cartilage 2001,9(Suppl A):S36-40.
    [40]Kim HJ, Park HD, Kim JH, et al. Establishment and characterization of a stable cell line to evaluate cellular Runx2 activity[J]. J Cell Biochem,2004,91(6):1239-1247.
    [41]Xiao G, Jiang D, Gopalakrishnan R, et al. Fibroblastgrowth factor 2 induction of the osteocalcin gene requires MAPK activity and phosphorylation of the osteoblast transcription factor, Cbfa1/Runx2[J]. J Biol Chem,2002,277(39):36181-36187.
    [42]李春明,杨春艳,王鑫等.bFGF基因修饰的骨髓基质细胞复合多孔矿化Bio-Oss胶原修复下颌骨缺损的实验研究[J].实用口腔医学杂志,2008,24(4): 470-474.
    [43]Grane GM, Lsbaug SL, Mikos AG, et al. Bone tissue engineering[J]. Nature Medicine,1995,1(12):1322-1324.
    [44]Nagai H, Tsukuda R, Mayahara H. Effects of basic fibroblast growth factor(bFGF)on bone formation in growing rats[J]. bone.1995,16(3):367-73.
    [45]Pun S, Dearden RL, Ratkus AM, et al. Decreased bone anabolic effect of basic fibroblast growth factor at fatty marrow sites in ovariectomized rats[J]. Bone.2001 Feb,28(2):220-6.
    [46]李亚非,胡蕴玉,吕荣.成纤维细胞生长因子增强骨形态发生蛋白在小鼠体内骨诱导作用[J].中华骨科杂志,1995,15(12):837.
    [47]Ono I, Noue MI, Kuboki Y. Promotion of osteogenetic activity of recombinant human bone morphogenetic protein by prostaglandin E1[J]. Bone,1996,19(6):581.
    [48]Pri CS, Pitaru S, lokiec F, et al. Basic fibroblast growth factor enhances the growth and expression of the osteogenic phenotype of dexamethasone-treated human bone marrow-derived bone-like cells in culture[J]. Bone,1998,23(2):111.
    [49]Nodam, Vofel RL, Deluca HF, et al. Cross2reactivity of vitamin D response element of osteocalcin gene with fibroblasti growth factor[J]. J Bone Miner Res,1991, 6:676.
    [50]蒋欣泉,潘可风,刘世勋,等.碱性成纤维细胞生长因子促进颌骨缺损修复的研究[J].实用口腔医学杂志.2003,19(2):113-116.
    [51]张磊涛,南欣荣,范亚伟,等.bFGF复合部分脱矿异体骨修复兔下颌骨缺损的实验研究[J].现代口腔医学杂志2005,19(6):627-631.
    [52]Lisignoli G, Fini M, Giavaresi G, et al. Osteogenesis of large segmental radius defe-cts enhanced by basic fibroblast growth factor activated bone marrow stromal cells grown on non-woven hyaluronic acid based polymer scaffold[J]. Biomaterial,2002, 23:1043-1051.
    [53]杨操,杨述华,杜靖远,等.bFGF基因转染促进股骨头坏死修复的实验研究[J].2004,12(16):1236-1239.
    [54]郑启新,郭晓东,刘勇等.bFGF基因修饰的间充质干细胞/多孔p-TCP陶瓷复合移植修复兔节段性骨缺损[J].中国生物医学工程学报,2003,22(2):171.
    [55]Tabata Y, Yamada K, Hong L, et al. Skull bone regeneration in primates in response to basic fibroblast growth factor[J]. J Neurosurg.1999,91(5):851-6.
    [56]刘宏伟,李才良.rhTGF-β1、rhBMP-2和rhbFGF单独或者联合应用对BMSC的ALP活性和钙化能力影响[J].实用口腔医学杂志,2005,21(1):31-34.
    [57]Tuominen T, Jamas T, Tuukkanen J, et al. Bovine bone implant with bovine bone morphogenetic protein In healing a canine ulnar defect[Jj. Int Orthop,2001,25(1): 5-8.
    [58]Eiji Tanaka, Yoshihro Ishino, Akiko Sasaki, et al. Fibroblast growth factor-2 agu-ments recombinant bone morphogenetic protein-2 induced osteoinductive activity[J]. Ann Biomed Eng,2006,34(5):717-725.
    [59]郑磊,王前,魏宽海等.碱性成纤维细胞生长因子对成骨细胞粘附特性影响的实验研究[J].中国修复重建外科杂志,2000,14(5):305-307.
    [60]俞猛,夏仁云,高飙,等.bFGF和地塞米松对骨髓基质干细胞增殖与分化的影响[J].中国康复,2006,21(1):12-15.
    [61]Gruber R, Mayer C, Schulz W, et al. Stimulatory effects of cartilage derived mor2 phogenetic proteins 1 and 2 on osteogenic dif2ferentiation of bone marrow stromal cells[J]. Cytokine,2000,12:319-327.
    [62]徐卫东,吴岳嵩,赵定麟,等.成纤维细胞生长因子对兔关节软骨损伤的修复作用[J].中国矫形外科发志,1999,6:118.
    [63]Gruber R, Mayer C, Schulz W, et al. Stimulatory effects of cartilage-derived mor2 phogenetic proteins 1 and on osteogenic differentiation of bone marrow stromal cells[J]. Cytokine,2000,12:630-638.
    [64]Hunziker EB, Rosenberg LC. Repair of partial 2 thickness defects in articular cartilage.Cell recruitment from the synovial membrance[J]. J Bone Joint Surg(Am), 1996,78:721-733.
    [65]段宏,王光林,裴福兴,等.碱性成纤维细胞生长因子缓释微球对成骨细胞作用的实验研究[J].中华创伤杂志,2004,20(2):89-92.
    [66]段宏,沈彬,何勤,等.缓释bFGF-PLGA微球制备及其体外释药性质和生物活性的研究[J].中国药学杂志,2004,39(3):196-198.
    [67]林小萍,金波等.联合促进牙周骨缺损再生的实验研究[J].上海口腔医学,2007,16(2)196-200.
    [68]胡静,王志国等.成纤维细胞生长因子对兔下颌牵张成骨的影响[J].临床口腔医学杂志2002,18(1)6-7.
    [69]Kawaguchi H, Nakamura K, Tabata Y, et al. Acceleration of fracture healing in nonhuman primates by fibroblast growth factor-2[J]. Clin En-docrinol Metab,2001, 86(2):875-880.
    [70]Clarke S A, Brooks R A, Lee P T, et al. The effect of osteogenic growth factors on bone growth into a ceramic filled defect around an implant[J]. Orthop Res,2004. 2(2):1016-1024.
    [71]Sato Y, Kikuchi, Ohata N, et al. Ehanced cementum formation in experimentally induced cementum defects of the root surface with the application of recombinant basic fibroblast growth factor in collagen gel in vivo[J]. J Periodontol,2004, 75(2):243-248.
    [72]Terada S, Sato M, sevy A-et al. Tissue engineering in the twenty-first century[1]. Yonsei Med J,2000,41:685-691.
    [73]刘宏伟,欧龙,庞劲凡等,自体骨髓基质细胞用于牙周骨缺损移植的动物实验研究[J].牙体牙髓牙周病学杂志2000,10:117-119.
    [74]陈发明,吴织芬,金岩.牙周组织工程研究进展[J].中华口腔医学杂志,2004,39:520-522.
    [75]Kopen G. C., Prockop D. J., Phinney D. G., et al. Marrow stromal cells migrate thr-oughout forebrain and cerebellum, and they differentiate into astrocytes after injec-tion into neonatal mouse brains[J]. Proc. Natl. Acad. Sci. USA,1999,96(19):10711-10716.
    [76]Woodbury D, Schwarz E. J, Prockop. D. J., et al. Adult rat and human bone marrow stromal cells differentiate into neurons[J]. Neurons. Res,2000 61:364-370.
    [77]Chopp M, Zhang XH, Li Y, et al. Spinal cord injury in rat:Treatment with hone marrow stromal cell transplantation[J]. Neuroreport,2000, 11(13):3001.
    [78]Owen M. Marrow stromal stem cells. J Cell Sci,1988,Suppl10:63-76.
    [79]Minguell JJ, Erices A, Conget P. Mesenchymal stem cells[J]. Exp Biol Med(Maywood),2001,226(6):507-20.
    [80]Zuk PA, Zhu M, Mizuno H, et al. Multilineage cells from human adipose tissue: implications for cell-based therapies[J]. Tissue Eng,2001,7(2):211-28.
    [81]Kuznetsov SA, Mankani MH, Gronthos S, et al. Circulating skeletal stem cells[J]. J Cell Biol,2001,153(5):1133-40.
    [82]Chamberlain G, Fox J, Ashton B, et al. Mesenchymal stem cells:Their phenotype, differentiation capacity, immunological features, and potential for homing[J]. Stem Cells,2007,25(11):2739-2749.
    [83]GalinanesM, LoubaniM, Davies J, et al. Autotransp lantation of un manipulated bone marrow into scarred myocardium is safe and enhances cardiac function in humans [J]. Cell Transp lant,2004,13,(1):7-13.
    [84]Silva GV, Litovsky S, Assad JA, et al. Mesenchymal stem cells differentiate into an endothelial phenotype, enhance vascular density, and imp rove heart function in a canine chronic ischemia model[J]. Circulation,2005,111(2):150-156.
    [85]Di Nicola M, CarloStella C, MagniM, et al. Human bone marrow stromal cells suppress T lymphocyte p roliferation induced by cellular or nonspecific mitogenic stimuli[J]. Blood,2002,99(10):3838-3843.
    [86]Ryan JM, Barry FP, Murphy JM, et al. Mesenchymal stem cells avoid allogeneic rejection[J]. J Inflamm(Lond),2005,2:8.
    [87]KramperaM, Glennie S, Dyson J, et al. Bone marrow mesenchymal stem cells inhibit the response of naive and memory antigen-specific T cells to their cognate pep tide[J]. Blood,2003,101(9):37222 3729.
    [88]Puissant B, Barreau C, Bourin P, et al. Immunomodulatory effect of human adipose tissue-derived adult stem cells:comparison with bone marrow mesenchymal stem cells[J]. Br J Haematol,2005,129(1):118-129.
    [89]Djouad F, Plence P, Bony C, et al. Immunosupp ressive effect of mesenchymal stem cells favors tumor growth in allogeneic animals[J]. Blood,2003,102(10):3837-3844.
    [90]Aggarwal S, PittengerMF. Human mesenchymal stem cells modulate allogeneic immune cell responses[J]. Blood,2005,105(4):1815-1822.
    [91]初同伟,王正国.骨折愈合过程中血流量变化与VEGF的相关性研究[J].中国矫形外科杂志,2002,9(6):577-579.
    [92]Bhindi R, Brieger D, Ishii H, et al. Retention of multilineage differentiation potential of mesenchymal cells during proliferation in response to FGF[J]. Biochem Biophys Res Commun,2001,228(2):413-419.
    [93]Sotiropoulou PA, Perez SA, Salagianni M, et al. Characterization of the optimal culture conditions for clinical scale production of human mesenchymal stem cells[J]. Stem Cells,2006,24(2):462-471.
    [94]Alam S, Ueki K, Marukawa K, et al. Expression of bone morphogenetic protein and fibromast growth factor during bone regeneration using different implant materials as an onlay bone graft rabbit mandibles[J]. Oral Surg Oral Med Oral pathol Oral Radiol Radio Endod,2007,103(1):16-26.
    [95]MANDANA MB, KAMRAN A, FATEMEH T, et al. Aging of mesenchymal stem cell in vitro[J]. BMC Cell Biology.2006,6(14):1471-1477.
    [96]孟鹏,李丽.干细胞因子和碱性成纤维细胞生长因子在体外对间充质干细胞的作用[J].山东医学高等专科学校学报,2007,29(1):1-3.
    [97]Yamazaki K, Tachibana Y. Vascularized synovial flap promoting regeneration of the cryopreserved meniscal allograft:experimental s tudy in rabbits[J]. J Orthop Sci, 2003,(8):62-68.
    [98]Martinek V, Usas A, Pelinkovic D, et al. Genetics engineering ofmeniscal allo-grafts[J], Tis sue Eng,2002,8:107-117.
    [99]Kafri T, Van PH, Ouyang L. A packaging cell line for lentivirus vectors[J]. J Virol 1999,73:576.
    [100]曹明媚,戚中田.基因治疗载体的研究进展[J].国外医学肿瘤学分册,2004,31(1):22-26.
    [101]Delenda C. Lentiviral vectors:op timization of packaging, transduction and gene exp ression[J]. J GeneMed,2004,6(Suppl 1):S125-S138.
    [102]刘勇,陈二涛,冯东福,等.人BDNF和GFP基因共表达慢病毒载体的构建及神经干细胞转染[J].上海交通大学学报,2008,28(10):1250-1257.
    [103]DOWD E, MONVILE C, TORRES E M, et al. Lentivector-mediated delivery of GDNF protects complex motor functions relevant to human Parkinsonism[J]. Eur J Neurosci,2005,22(10):2587-2595.
    [104]Chalfie M, Tu Y, Euskirchen G, et al. Green fluorescent protein as a marker for gene expression[J]. Science,1994,263:802-5.
    [105]Cubitt A B, Heim R. Understanding, improving and using gren proteins[J]. Trends Biochem Sci,1995,20:448-455.
    [106]Oreffo RO, Triffitt JT. Futrue Potentials for using osteogenetic stem cells and biomaterials in orthopedics[J]. Bone,1999,25(2suppl):5-9.
    [107]Souyris F, Pellequer C, Payrot C, et al. Coral a new biomaterial material experi-mental and first clinical investigations on madre poraria[J]. Maxillofac Surg,1985, 13(2):64-69.
    [108]Vacanti C A, Bonassar LJ. An overview of tissus engineered bone[J]. Clin Orthop Relat Res,1999,367 suppl:375-381.
    [109]Hutmacher DW, Schantz T, Iein I, et al Mechanical properties and cell cultural response of polycapcolartone scaffolds designed and fabricated via fused deposition modeling[J]. J Biomed Mater Res,2001,55(2):203-216.
    [110]Sugama T, WeberL, Brothers LE. Hot auol resistance of polymer modified calcium aluminate oflyash polg-phosphate cement[J]. Advancesin Cement Research,2000, 12(4):181-191.
    [111]Lu JX, Flautre B. Anselme K. Role of interconnections in porous bioceramiss on bone recolonization in ritro and vivo[J]. J Mater Sci,1999,10(2):110-120.
    [112]Yuan H, Yang Z, De Bruij JD et al. Material dependent bone in duction by calcium- phosphate ceramicsa.5year study in dog[J]. Biomaterials,2001,22(19):2617-2623.
    [113]Zhu L, Cui L, Wang M et al. Experimental study of composite of coral and mesen-chymal stem cells to repaire femoral defect[J]. Chin Orthop,2003,23(8):483-488.
    [114]Chen QZ, Wong CT, Lnb WW, et al. Strengthening mechanisms of bone bonding to crystallinehy droxyapatite in vivo[J]. Biomaterids,2004,25:4243-4254.
    [115]Braye F, Irigaray JL, Kallor E et al. Resorption kinetics of osseous substitute:natural coral and synthetic hydroxyapatite[J]. Biomaterials,1996,17(13):1345-1350.
    [116]Sun JS, Tsuang YH, Yao CH et al. Effects of calcium phosphate bioceramics on skeletal muscle cells[J]. Biomed Mater Res,1997,34(4):227-233.
    [117]Frankenburg EP, Goldstein SA, Bauer TW et al. Biomechanical and histological evaluation of a calcium phosphate cement[J]. JBJS(Am),1998,80(8):1112-1124.
    [118]Lin FH, Liao CJ, Chen KS, et al. Preparation of beta TCP/HAP biphasic ceramics with natural bone structure by heating bovine cancellous bone with the addition of(NH4)NHP04[J]. J Biomed Mater Res 2000,51(2):157.163.
    [119]Joschek S. Nies B. Krotz R. et al. Chemical and physicochemical characterization of porous hydroxyapatite ceramics made of naturalbone[J]. Biomaterials,2000, 21(16):1645.1658.
    [120]Lane JM. Bostrom MP Bone grafting and new composite biosynthetic graft materi-alsv. Intr Course Lect,1998,47:525-534.
    [121]李晓红,朱晓姝,赵献银.荧光标记拔牙创口骨愈合过程中矿化沉积速度的研究[J].中国骨质疏松杂志,2007,7(13)486-489.
    [122]Vacanti C A, Bonassar LJ. An overview of tissus engineered bone[J]. Clin Orthop Relat Res,1999,367 suppl:375-381.
    [123]Karring T, Lindhe J, Cortellini P. Regenerative periodontal[M]. Copenhagen,2002, 599-602.
    [124]Kishimoto M。Kanemaru S. Yamashita M, et al. Cranial boneregeneration using a composite scaffold of Beta-tricalcium phosphate, collagen, and autologous bone fragments[J]. Laryngoscope,2006,116(2):212.216.
    [125]Chazono M. Thaka T, KomaKi H. et al. Bone formation and bioresorption after implantation of iniectable beta, tricalcium phosphate granules. hyaluronate complex in rabbit bone defects[J]. J Biomed Mater Res,200,70(4):542.549
    [126]Ogose A. Hotta T'Kawashima H. et al. Comparison of hydroxyapalitc and beta tri-Icium phosphate as bone substitutes after excision of bone tumors[J]. J Biomed aterRes,2005,72(1):94-101。
    [127]何悦,张志愿,卢建熙等.骨髓基质细胞复合三维支架修复犬下颌骨节段性缺损[J].中国口腔颌面外科杂志.2005,3(4):345-350.
    [128]Bobby KB, Vilsa VP, David SB. Calcium sulfate and calciumphosphate based bone substitutes[J]. Orthopedic Clinics of North America,1999,30(4):615-623.
    [129]Marcus FS, Johm MD, Kenneth DJ. Evaluation of bovine derived bone protein with a natural coral carrier as a bone graft substitute in a canine segmental defect model[J]. Journal of Orthopaedic Research,1997,15(1):844-857.
    [130]Bruder SP, Baltimore KH, Kraus DVM et al. The effect of implants loaded with autologous mesenchymal stem cells on the healing of canine segmental bone defects[J]. JBJS,1998,80A(7):985-999.
    [131]Boyan BD, Hummert TW, Dean DD et al. Role of material surfaces in regulating bone and cartilage cell response[J]. Biomaterials,1996,17(2):137-146.
    [132]戴红莲,李世普,闫玉华.β-磷酸三钙多孔生物陶瓷植入体内后的组成变化[J].硅酸盐学报,2004,7(32):800-807.
    [133]Braye F, Irigaray JL, Kallor E et al. Resorption kinetics of osseous substitute:natural coral and synthetic hydroxyapatite[J]. Biomaterials,1996,17(13):1345-1350.
    [134]Sun JS, Tsuang YH, Yao CH et al. Effects of calcium phosphate bioceramics on skeletal muscle cells[J]. Biomed Mater Res,1997,34(4):227-233.
    [135]Frankenburg EP, Goldstein SA, Bauer TW et al. Biomechanical and histological evaluation of a calcium phosphate cement[J]. JBJS(Am),1998,80(8):1112-1124.
    [136]Hoshino M, Egi T, Terai H, et al. Regenerative Repair of Long Intercalated Rib Defects Using Porous Cylinders of 13-Tricalcium Phosphate:An Experimental Stu-dy in a Canine Model[J]. Plastic Reconstr Sur 2007,19(5):1431. 1439.
    [137]Delecrin J. Takahashi S. Gouin Eet al. A synthetic POrous ceramic a8 a bone graft substitute iu the surgical management of scoliosis:A prospective randomized study [J]. Spine,2000,25(5):563-569.
    [138]Epstein NE..A Preliminary Study of the Efficacy of Beta Tricalcium Phosphate as a Bone Expander for Instrumented Posterolateral Lumbar Fusions[J]. J Spinal Disord 1Kh,2006:19(6):424.429.
    [139]Epstein NE. Efficacy of different bone volume expanders for augmenting lumbar fusions[J]. Surg Neurol,2008,69(1):16-19.
    [140]Araj E, Nakashima H, Tsukushi S, et al. Regenerating the Fibula with Beta-Tricalcium Phosphate Minimizes Morbidity after Fibula Resection[J]. Clin Orthop Relat Res,2005,(431):233-237.
    [141]Lu JX, Clande BM, Vavasseur S, et al. Relationship between bioceramics sintering and miceroparticles-indueed cellular damages[J]. J Mater Sci Mater Med,2004, 15:359-363.
    [142]Toquet J, Rohanizadch R, Guicheux J, et al. Osteogenic potential in vitro of human bone marrow cells cultured on macroporous biphasic calcium phosphate ceramic[J]. Biomed Mater Res,1999,44(1):98-108.
    [143]Kon E. Muraglia A. corsi P, et al. Autologous bone marrow stromal cells loaded onto porous hydroxyapatite ceramic accelerate bone repair in critical-size defects of sheep long bones[J]. J Biomed Mater Res,2000,49:328-337.
    [144]Schmelzeisen R. Schimming R, Sittinger M. Making bone:implant insertion into tissue-engineered bone for maxillary sinus floor augmentation-a preliminary report[J]. J Craniomaxillofac Surg 2003,31(1):34-39.
    [145]Yamada Y, Ueda M, Hibi H, et al. Translational research for injectable tissue-engineered bone regeneration using mesenchymal stem cells and platelet-rich plasma:from basic research to clinical case study Cell[J]. Transplant,2004,13(4): 343-355.
    [146]鲁红,吴织芬,田宇.细胞2支架构建方式的牙周组织工程实验研究[J].中华口腔医学杂志,2004,39:189-192.
    [147]Van Hoof VO, Hoglaerts M F, Geryl H, et al. Age and sex distribution of alkaline phosphatase isoenzymes by agarose electrophoresis[J]. Clin. Chem,1990,36(6):875-878.
    [148]Nishizuka Y. Protein kinase C and lipid signaling for sustained cellular response[J]. FASEB J,1995,9:484-496.
    [149]Zanino tto M, Sech ieic S, Rubin D, et al. Antzcancer Res, Serum bone alkaline phosphatase in the follow-up of skeletal metastases[J]. Anticancer Res.1995, 15(5B)2223-2228.
    [150]Juul A, Pedersen SA, So rensen S, et al. Growth hormone(GH)treatment increases serum insulin-like growth factor binding protein-3, bone isoenzyme alkaline phosphatase and forearm bone mineral content in young adults with GH deficiency of childhood onset[J]. Eur. J. Endocrino,1994,131(1):41-49.
    [151]Lorente JA, Morote J, Raventos C, et al. Clinical efficacy of bone alkaline phospha-tase and prostate specific antigen in the diagnosis of bone metastasis in prostate cancer[J]. J. url.1996,155(4):1348-1351.
    [152]Jarava C, Armas SR, Salgueira M, et al. Bone alkaline phosphatase isoenzyme in renal osteodystrophy[J]. Nephrol Dial Transplant,1996,11(suppl3):43-46.
    [153]Biodine PV, Komm BS. Evidence that conditionally immortalized human osteo-asts express an osteocalcin receptor. Bone,1999,25:535-543.
    [154]Garnero P, Sornay Rendu E, Duboeuf F, et al. Markers of bone turnover predict postmenopausal forearm bone loss over 4 years.The OFELY Study[J]. J Bone Miner Res,1999,14:1614-1621.
    [155]Francucei CM, Pantanetti P, Garrapa GG, et al. Bone metabofiam and mass in women with Cuahing's syndrome and adrenal incidentaloma[J]. Clin Endocrinol (OXf),2002,57:587-593.
    [156]Kato Y, Gospodarowicz D. Effect of extracellular matriceson proeoglycan synthesis by cultured rabbit costal chondrocyte cultures maintained in serurnfree medium[J]. J Cell Physiol,1984,120:354.
    [157]Walsh S, Jefferiss C, Stewart K, et al. Expression of the developmental markers and alkaline phosphatase in cultures of human marrow stromal cells regulation by fibroblast growth factor(FGF)and relationship to the expression of FGF receptors 124[J]. Bone,2000,27(2):185-195.
    [158]Globus R, Plouet J. Gospodarowicz D. Cultured bovine bone cells synthesize fibroblast growth factor and store it in their extracellular matrix[J]. Endocrinology, 1989,124:1539.
    [159]Martin I, Muraglia A, Campanile G, et al. Fibroblast growth factorth factor support ex vivo expansion and maintenance of osteogenic precursors from-human bone marrow[J]. Endocrinology,1997,138(10):4456-4462.
    [160]Locklin RM, Williamson MC, Beresford JN, et al. In vitro effects of growth factors and dexamethasone on rat marrow stromal cells[J]. Clin Orthop,1995,313:27-35.
    [161]Finkemeier, C. G. Bone-grafting and bone-graft substitutes[J]. J. Bone Jt. Surg, Am. 2002,84(3):454-464.
    [162]C. F. Gregory. The current status of bone and joint transplants[J]. Clin. Orthop. Relat. Res.1972,87:156-166.
    [163]W. F. Enneking, E. R. Mindell, Observations on massive retrieved human allografts [J]. Bone Joint Surg.1991,73A:1123-1142.
    [164]杨志明.组织工程[M].北京:化学工业出版社,2002,1-3.
    [165]Botchwey EA, PollackH SR, EI-Amin S, et al, Human esteoblast-like cell in three-dimensional culture with fluid flow[J]. Biorheology,2003,40(1-3):299-306.
    [166]戊诚兴,主编.生物科学基础[M].口腔医学基础理论湖南教育出版社1993, 551-553.
    [167]Ulrich J, Johannes K. Reconstruction of the severely resorbed jaws:routine or excep tion[J]. J Craniomaxillofac Surg,2000,28:1-4.
    [168]Steinberg B, Chiego DJ Jr, Huizinga PJ, et al. Effect of human bone morphogenetic protein 2 implant on tooth eruption in an experimental design[J]. Craniofac Surg, 1999(10):338-341.
    [169]Basdra EK, Mayer T, Komposch G. Guided tissue regeneration precedes tooth movement and crossbite correction[J]. Am Orthod Dentofac Orthop,1995,6(5):307-310.
    [170]Dietmar WH. Scaffolds in tissue engineering bone and cartilage[J]. Biomaterials, 2000,21(9):2529-2543.
    [171]somerman MJ, Ouyang HJ. Berry JE, et al Evolution of periodontal regeneration from the roots point of view[J]. J periodont Res.1999,34:420-424.
    [172]Kubota K, Yoshimura N, Yokota M, et al. Overview of effects of electrieal stimula-tion on osteogenesis and alveolar bone[J]. J Periodontol,1995,66:2-6.
    [173]李佳慧.人类疾病动物模型研究的进展[J].国外医学:遗传学册,1997,20(6):298-301.
    [174]Devlin H, Sloan P. Early bone healing events in the human extraction socket[J]. Int J Oral Maxillofac Surg,2002,31(6):638-641.
    [175]胡骁颖,董福生,张铁军,等.骨质疏松对拔牙创愈合的影响[J].现代口腔医学杂志,2008,22(3):310-312.
    [176]程树军,黄韧,等.阿尔茨海默病非人灵长类模型的研究进展[J].解剖学研究,2002,24(4):301-304.
    [177]PietrokovskiJ, MasslerM. Ridge remodeling after tooth extraction in rats[J]. Dent Res,1967,46(1):218-222.
    [178]Hsieh YD, Devlin H, Roberts C. Early alveolar ridge osteogenesis following tooth extraction in the rat[J]. Arch OralBiol,1994,39(5):420-425.
    [179]Matin K, Nakamura H, Irie K, et al. Impact of recombinant human bone morpho-genetic p rotein22 on residual ridge resorption after tooth extraction:An experiment-tal study in the rat[J]. Int OralMaxillofac Imp lants,2001,16(3):400-408.
    [180]Berglundh. T. Lindhe J. Healing around impants placed in bone defects treated with Bio-oss. An experimental study in the dog[J]. Clin Oral Implants Res.1997 Apr, 8(2):117-124.
    [181]Barboze. E. P, Caula. A. L, Caula. F, et al. Effect of recombinant human bone morphogenetic protein-2 in an absorbable collagen sponge with space-providing biomaterial on the augmentation of chronic alveolar ridge defects[J]. Periodontol, 2004,75:702-708.
    [182]Aronson J. Experimental and clinical eapenencc with distraction osteogenesis[J]. Cleft Palate Craniofca J,1994,31(4):473-481.
    [183]Nesliban Turber, Seleuk Basa, Gurcan Vural. Evaluation of Osseous Regeneration in Alveolar Distraction Osteogenesis with Histological and Raoliological Aspects [J]. Anmrican Association of Ond and Maxillofacial Surgeons J Oral Maxillofae Surg, 2007,65:608-614.
    [184]谢名,胡敏,黄旭明.等.应用钛镍记忆合金牵张成骨增高下颌牙槽嵴的初步研究[J].中华口腔医学杂志2003,38(2):106-108.
    [185]Jeffcoatet Mk, Megulue M, Newnmn MG. Evidence-baded periodontal treatment[J]. JADA,1997,128:713-724.
    [186]余粤海,邓飞龙.GBR技术中屏障膜的应用和研究进展[J].中国口腔种植学杂志,2006,11(3):137-141.
    [187]Roether JA. Boccaccini AR, Hench LL, et al. Development and in vitro characteri-sation of novel bioresorbable and bioactive composite materials based on polylactide foams and bioglass for tissue engineering applications[J]. Biomaterials, 2002,23(6):3871-3878.
    [188]毛天球.骨组织工程的研究[J].中华口腔医学杂志,2001,36:158-160.
    [189]Griffth LG, NanghtonG. Tissue engineering-current challenges and expanding opportunities[J], Science,2002,295:1009-14.
    [190]杨志明,李林,解慧琪,等.生物衍生骨复合成骨细胞体内异位成骨的研究[J].中华创伤,2001,17(8):476-478.
    [191]Breitbast AS, Grande OA, Kessler R, et al. Tissue engineered bone repair of calvarial defects using cultured periosteal cells[J]. Plastic Reconstr Surg,1998, 101(3):576-574.
    [192]Rodond LM, Garcia Cantera JM, Verrier Hernanden A, et al. Effect of particulate porous by droxy afatite on osteo induction of demineralized bone autografts in ex-perimental reconstruction of the rat meandible[J]. Int J oral Maxittofac Surg,1995, 24(6):441.
    [193]Hollister SJ, levg RA, Chu TM, et al:An image-based approach for designing and manufacturing craniofacial scaffolds[J]. Int J oral Mallxillofac Surg,2000,29:67.
    [194]Abukawa H, Shin M, Vacanti J, et al:Fused interconnected scaffold for tissue engineering ation bone. Submitted for presentation at the American Association of Oral and Maxillofacial Surgeons 86th Annual Meeting[J]. San Francisco, CA,2004, 29-32.
    [195]徐俊华,骨组织工程生物支架优化的研究进展[J].中国口腔种植学杂志,2004,9(2):90-93.
    [196]Hutmacher DW, Scaffold design and fabrication technologies for engineering tissue state of the art and future perspectives[J]. J Biomater Sci Polym Ed,2001,12: 107-110.
    [197]Critchley DR, Focal adhesions the cytoskeletal connection[J]. Curr Opin Cell Biol, 2000,12:133-139.
    [198]Koc N, Timucin M, Korkusus F, et al. Fabrication and characterization of porous tricalcium phosphate ceramics[J]. Ceramics International 2004,(30):205-211.
    [199]Robinson BP, Hollinger JO, Szachowicz EH, et al. Calvarial bone repair with porous D, L-polylactide[J]. Otoloryngol Head surg,1995,112:707-717.
    [200]Hollinger JO, Bttistone GC, Biodegradable bone repair materias:synthetic polymers and ceramics[J]. Clin Orthop Rel Res,1986,207:290-305.
    [201]Tsuruga E, Takita H, Iton H, et al. Pore size porous hydroxyapatite as the cell-subs-tratumcontrols BMP-induced osteogenesis[J]. Biochem,1997,121:317-24.
    [202]Grons TP, Cox QG, Jinnah RH. History and current application of bone trans-plantation[J]. Orthopedics,1993,16:859-900.
    [203]Lu JX, Flauture B, Anselme K, et al. Role of interconnections in porous bioceramics on bone recolonization in vitro and in vivo[J]. Materials Science,1999,10(2):111-120.
    [204]Abukawa H, Terai H, Hannuche D, et al:Formation of amandibular condyle in vitro by tissue engineering[J]. J Oral Maxillofac Surg 2003,61:94.
    [205]李宁毅,贾蓉.聚乳酸、rhBMP-2复合体在牙槽骨修复中作用的实验研究[J].现代口腔医学杂志,2006,20(2):161-163.
    [206]Kondo S, Terashima M, Fukuda H, et al. Gene engineering of the adenovirus vector[J]. Uirusu,2007,57(1):37-45.
    [207]Scutt A, Bertram P. Basic fibroblast growth factor in the presence of dexamethasone stimulates colony formation, expansion, and osteoblastic differentiation by rat bone marrow stromal cells[J]. Calcif Tissue Int,1999,64(1):69-77.
    [208]Zellin G, Linde A. Effects of recombinant human fibroblast growth factor-2 on osteogenic cell populations during orthopic osteogenesis in vivo[J]. Bone,2000, 26(2):161-168.
    [209]Libermann TA, Friesel R, Jaye M, et al. Anangiogenic growth factor is expressed in human glioma cells[J]. EMBO J,1987,6(6):1627-1632.
    [210]Saadeh PB, Mehraar BJ, Steinbrech DS, et al. Mechanisms of fibroblast growth factor-2 mdoulation of vascular endothelial growth factor expression by osteoblastic cells[J]. Endocrinology,2000,141(6):2075-2083.
    [211]Carlevaro MY, Cermelli S, Canccdda R, et al. Vascular endothelial growth factor (VEGF)in cartilage neovascularization and chondrocyte differentiation:auto- para-crine role during endochondral bone formation[J]. J Cell Sci,2000,113(1):59-69.
    [212]Cheung C. The future of bone healing[J]. Clin Podiatr Med Surg North Am,2005, 22(4):631-41.
    [213]Deckers MM, Karpefen M, van der Bent C, et al. Expression of vascular endothelial growth factors and their receptors during osteoblast differentiation[J]. Endocrino-logy,2000,141(5):1667-1674.
    [214]Mayr-Wohlfart U, Waltenberger J, Hausser H, et al. Vascular endothelial growth factor stimulates chemotactic migration of primary human osteoblasts[J]. Bone, 2002,30(3):472-477.
    [215]Matsumoto Y, Tanaka K, Hirata G, et al. Possible involvement of the vascular endothelial growth factor-Flt-1-focal adhesion kinase pathway in chemotaxis and the cell proliferation ofosteoclast precursor cells in arthriticjoints[J]. J lmmunol, 2002,168(11):5824-5831.
    [216]Kohno s, Kaku H, Tsutsui K, et al. Expression of vascular endothelial growth factor and the effects on bone remodeling during experimental tooth movement[J]. J Dent Res,2003,82(3):177-182.
    [217]Street J. Bao M, deGuzman L, et al. Vascular endothelial growth factor stimulates bone repair by promoting angiogenesis and bone turnover[J]. Proc Natl Acad Sci USA,2002,99(15):9656-9661. 新疆医科大学医学博士学位论文
    [1]宫苹,班宇,等.即刻种植义齿修复发展现状[J].实用医院临床杂志.2007,2(4),27-29.
    [2]Ulrich J, Johannes K. Reconstruction of the severely resorbed jaws:routine or excep tion[J]. J Craniomaxillofac Surg,2000,28:1-4.
    [3]Pecina M, Jelic M, Ivkovic A, Gene therapy applications in orthopaedics[J]. Int Orthop,2006,30(3):215-6.
    [4]Ahn J, Glaser D. Gene therapy and the future of orthopaedics[J]. J Bone Joint Surg Am,2003,85-A(5):965-6.
    [5]Pilliar RM, Lee JM, Maniatopoulos C1 Observation on the effect ofmovement on bone ingrowth into porous2surfaced imp lants[J] 1 Clinical Orthop,1986,208:108-113.
    [6]欧国敏,宫苹,陈文川,等。即刻种植与即刻修复的临床应用[J].中华口腔医学杂志,2006,41(3):1442-1471.
    [7]Petersen BE, BowenWC, Patrene KD, et al. Bone marrow as a potential source of hepatic oval cells[J]. Science,1999,284(5417):1168-1170.
    [8]Koka S, Vance JB, Maze GI. Bone Growth Factors:Potential for Use as an Osseointe- gration. Enhancement technique(OET)[J]. Western Society Periodont, 1995,43(3):97-104.
    [9]陈建钢,曾凯,等.种植体周围骨缺损修复的组织学观察[J].临床口腔医学杂志,2004,11(19):648-650.
    [10]Suga K, Saitoh M, Kokubo S, et al. Synergism between interleukin-11 and bone morphogenetic protein in the healing of segmental bone defects in a rabbit model[J]. J Interferon Cytokine Res,2004,24(6):343-9.
    [11]van Iterson V, Leidenius M, von Smitten K, et al. VEGF-D in association with VEGFR-3 promotes nodal metastasis in human invasive lobular breast cancer[J]. Am J Clin Pathol,2007,128(5):759-66.
    [12]Zhang Z, Chen J, Jin D. Platelet-derived growth factor(PDGF)-BB stimulates osteo-clastic bone resorption directly:the role of receptor beta[J]. Biochem Biophys Res Com-mun,1998,251(1):190-4.
    [13]Scutt A, Bertram P. Basic fibroblast growth factor in the presence of dexamethasone stimulates colony formation, expansion, and osteoblastic differentiation by rat bone marrow stromal cells[J]. Calcif Tissue Int,1999,64(1):69-77.
    [14]Zellin G, Linde A. Effects of recombinant human fibroblast growth factor on osteogenic cell populations during orthopic osteogenesis in vivo[J]. Bone,2000,26 (2):16.1-168.
    [15]Bikfalvi A, Klein S, Pintucci G, et al. Biological roles of fibroblast growth factor22[J]. Endocr Rev,1997,18(1):26-45.
    [16]Hanisch O, Tatakis DN, Rohrer MD, Wohrle PS, Wozney JM, Wikesjo UM. Bone formation and osseointegration stimulated by rhBMP-2 following subantral augmen- tationprocedures in nonhuman primates[J]. Int J Oral Maxillofac Implants, 1997,12(6):785-792.
    [17]Dirker-Heal CA, Nevins M, Palmer R, Nevins ML, Schelling SH. A new animal model for maxillary sinus floor augmentation:evaluation parameters[J]. Int J Oral-Maxillofac Implants,1997,12:403-411.
    [18]Bikfalvi A, Klein S, Pintucci G, et al. Biological roles of fibroblast growth factor-2[J]. Endocr Rev,1997,18(1):26-45.
    [19]Yeung HY, Lee S-K, Fung KP, et al. Expression of basic fibroblast growth factor during distraction osteogenesis[J]. Clin Orthop,2001,385:219-229.
    [20]Gospodarowicz D. Fibroblast growth factor chemical structure and biologicfunction Clira Orthop Relat Res.1990,257:231.
    [21]Saadeh PB, Mehraar BJ, Steinbrech DS, et al. Mechanisms of fibroblast growth factor-2 mdoulation of vascular endothelial growth factor expression by osteoblastic cells[J]. Endocrinology,2000,141(6):2075-2083.
    [22]Farhadi J, Jaquiery C, Barbero A, et al. Differentiation-dependent up-regulalion of BMP-2, TGF-beta-1, and VEGF expression by FGF-2 in human bone marrow stromal cells[J]. Hast Reconstr Surg,2005,116(5):1379-1386.
    [23]Carlevaro MY, Cermelli S, Canccdda R, et al. Vascular endothelial growth factor (VEGF)in cartilage neovascularization and chondrocyte differentiation:auto-para-crine role during endochondral bone formation[J]. J Cell Sci,2000,113(1):59-69.
    [24]Cheung C. The future of bone healing[J]. Clin Podiatr Med Surg North Am,2005, 22(4):631-41.
    [25]Deckers MM, Karpefen M, van der Bent C, et al. Expression of vascular endothelial growth factors and their receptors during osteoblast differentiation[J]. Endocrino-logy,2000,141(5):1667-1674.
    [26]Mayr-Wohlfart U, Waltenberger J, Hausser H, et al. Vascular endothelial growth factor stimulates chemotactic migration of primary human osteoblasts[J]. Bone, 2002,30(3):472-477.
    [27]Phillips GD, Schilb LA, Fiegel VD, etal. Angiogenic extract form skeletal muscle stimulates monocvte and endothelial cell chemotaxis in vitro[J]. Proc Soc Biol Med. 1991,197:458.
    [28]Globus R, Plouet J, Cospodarowecz D. Cultured bovine bone cells synthesized basic fibroblast growth factor and store it in their extracellular matrix[J]. Endocrinology, 1989,124(9):1539-1547.
    [29]Canalis E, Centrella M, McCarthy T. Effects of basic fibroblast growth factor on the bone formation in vitro[J]. J Clin Invest,1988,81:1572-1577.
    [30]龚振宇周树夏曹建广,等.骨痂中碱性成纤维细胞生长因子的免疫组化定位[J].实用口腔学杂志,1998,14(4):265-267.
    [31]Jinggushi S, Scully SP, Joyce ME, et al. Transforming growth factor beta-Ⅰ and flbroblast growth factors in rat growth plate[J]. J Orthop Res,1995,13(5):761-765.
    [32]李晓辉宋跃明等。碱性成纤维细胞生长因子复合部分脱蛋白骨修复兔股骨头骨缺损的作用机理及相关性分析[J].中国矫形外科杂志,2005,7(13):1010-1013
    [33]Bolauder ME. Regulation of fracture repair by growth factors[J]. Proc Soc Exo Bio Med,1992,200:165.
    [34]Niswander L, Martin Gr. FGF-4 and BMP-2 have opposite effects on limb growth[J]. Nature,1993,361-368.
    [35]Gerhert TH, Such FR, Murota DE, et al. Healing segmontal femoral defacts in sheep using recombinant human bone Morphogenetic protein[J]. Clin Orthop,1993,293-317.
    [36]焦岩涛,王大章,等.bFGF、IGF-I、及TGF-β1对人髁突软骨细胞增殖的影响[J].中华口腔医学杂志,2000,35:346-349
    [37]Wang J S. Basic fibroblast growth factor for stimulation of bone formation in osteoinductive or conductive implants[J]. Acta Orthop Scand Suppl,1996,269(1):1.
    [38]Nagai H, Tsukuda R, Mayahara H. Effects of basic fibroblast growth factor(bFGF)on bone formation in growing rats[J]. bone.1995,16(3):367-73.
    [39]Kawaguchi H, Nakamura K, Tabata Y, et al. Acceleration of fracture healing in nonhuman primates by fibroblast growth factor-2[J]. J Clin Endocrinol Metab,2001, 86:875-880.
    [40]Kato T, Kawaguchi H, Hanada K, Aoyama I, et aal. Single local injection of recombinant fibroblast growth factor-2 stimulates healing of segmental bone defects in rabbits[J]. J Orthop Res,1998,16:654-659.
    [41]Nakamura T, Hara Y et al. Recombinant human basic fibroblast growth factor accelerates fracture healing by enhancing callus remodeling in experimental dog distal tibial fracture[J]. J Bone Miner Res,1998,13:942-949.
    [42]Nakajima F, Ogasawara A, et al. Spatial aand temporal gene expression in chondro-genesis during fracture healing and the effects of basic fibroblast growth factor[J]. J Orthop Res,2001,19:935-944
    [43]Radomsky ML, Aufdemorte TB, et al. Novel formulation of fibroblast growth factor-2 in a hyaluronan gel accelerates fracture healing in nonhuman primates[J]. J Orthop Res,1999,17:607-614.
    [44]Pittenger MF, Mackay AM, Beck SC, et al. Multilineage potential of adult human mesenchymal stem cells[J]. Science,1999, Apr 284:143-147.
    [45]裴国献,金丹.骨组织工程研究进展[J].中华创伤骨科杂志,2004,6:38-42.
    [46]Locklin RM, Williamson MC, Beresford JN, et al. In vitro effects of growth factors and dexamethasone on rat marrow stromal cells[J]. Clin Orthop,1995,313:27-35.
    [47]Nishizuka Y. Protein kinase C and lipid signaling for sustained cellular response[J]. FASEB J,1995,9:484-496.
    [48]Mansukhani A, Bellosta P, Sahni M, et al. Signaling by fibroblast growth factors (FGF) and fibroblsast receptor 2(FGF2)-activating mutations blocks mineralization and induces apoptosis in osteoblasts[J]. J Cell Biol,2000,149:1297-1308.
    [49]Lavallee TM, Prudovsky IA, McMahon GA, et al. Activation of the MAP kinase pathway by FGF-1 correlates with cell proliferation induction while activation of the src pathway correlates with migration[J]. J Cell Biol,1998,141:1647-1658.
    [50]Scutt A, Bertram P. Basic fibroblast growth factor in the presence of dexamethasone stimulates colony formation, expansion, and osteoblastic differentiation by rat bone marrow stromal cells[J]. Calcif Tissue Int,1999,64(1):69-77.
    [51]Walsh S, Jefferiss C, Stewart K, et al. Expression of the developmental markers stro21 and alkaline phosphatase in cultures of human marrow stromal cells:regul-ation by fibroblast growth factor(FGF)22 and relationship to the expression of FGF receptors12 4[J]. Bone,2000,27(2):185-195.
    [52]Kotev-Emeth S, Pitaru S, Pri-Chen S, et al. Establishment of a rat longterm culture expressing the osteogenic phenotype:dependence on dexamethasone and FGF-2[J]. Connect Tissue Res,2002,43:606-612.
    [53]Solchaga LA, Penick K, Porter JD, et al. FGF-2 enhances the mitotic and chondro-genic potentials of human adult bone marrow-derived mesenchymal stem cells[J]. J Cell Physiol,2005,203:398-409.
    [54]俞猛,徐万鹏,等.TGF-p和bFGF对骨髓基质干细胞增殖、分化的影响[J].中国骨肿瘤骨病,2006,6(5):321-325.
    [55]Leung KS, Slier AH, L am TS, el al. Energy metabo lism in fracture healing:Measurement of adeno sine t riplo sphate in callus to monitor progress[J]. J Bone Jo int Surg,1989,71B(4):657.
    [56]Zellin G, Linde A. Effects of recombinant human fibroblast growth fator on osteogenic cell populations during orthopic osteogenesis in vivo[J]. Bone,2000,26: 161-168.
    [57]Chan BP, Fu S, et al. Effects of basic fibroblast growth factor(bFGF)on early stages of tendon healing:a rat patellar tendon model. Acta Orthop Scand,2000,71:513-518.
    [58]Chidgey L, Chakkalakal D. B lotcky A, et al. Vascular reorganization and return of rigidity in fracture healing[J]. J Orthop Res,1986,4(2):173.
    [59]Grane GM, Lsbaug SL, Mikos AG, et al. Bone tissue engineering[J]. Nature Medicine,1995,1(12):1322-1324.
    [60]Pun S, Dearden RL, Ratkus AM, et al. Decreased bone anabolic effect of basic fibroblast growth factor at fatty marrow sites in ovariectomized rats[J]. Bone.2001 Feb,28(2):220-6.
    [61]李亚非,;胡蕴玉,吕荣.成纤维细胞生长因子增强骨形态发生蛋白在小鼠体内骨诱导作用[J].中华骨科杂志,1995,15(12):837.
    [62]Ono I, Noue MI, Kuboki Y. Promotion of osteogenetic activity of recombinant human bone morphogenetic protein by prostaglandin E1[J]. Bone,1996,19(6):581.
    [63]Pri CS, Pitaru S, lokiec F, et al. Basic fibroblast growth factor enhances the growth and expression of the osteogenic phenotype of dexamethasone-treated human bone marrow-derived bone-like cells in culture[J]. Bone,1998,23(2):111.
    [64]Nodam, Vofel RL, Deluca HF, et al. Cross2reactivity of vitamin D response element of osteocalcin gene with fibroblasti growth factor[J]. J Bone Miner Res,1991, 6:676.
    [65]蒋欣泉,潘可风,刘世勋,等.碱性成纤维细胞生长因子促进颌骨缺损修复的研究[J].实用口腔医学杂志,2003,19(2):113-116。
    [66]李亚非,胡蕴玉,吕荣.成纤维细胞生长因子增强骨形态发生蛋白在小鼠体内骨诱导作用.中华骨科杂志,1995,15(12):837
    [67]Lisignoli G, Fini M, Giavaresi G, et al. Osteogenesis of large segmental radius defects enhanced by basic fibroblast growth factor activated bone marrow stromal cells grown on non-woven hyaluronic acid based polymer scaffold[J]. Biomaterial, 2002,23:1043-1051.
    [68]杨操,杨述华,杜靖远,等.bFGF基因转染促进股骨头坏死修复的实验研究[J].临床顾客杂志,2004,12(16):1236-1239.
    [69]郑启新,郭晓东,刘勇,等.bFGF基因修饰的间充质干细胞/多孔β-TCP陶瓷复合移植修复兔节段性骨缺损[J].中国生物医学工程学报,2003,22(2):171.
    [70]Sato Y, Kikuchi, Ohata N, et al. Ehanced cementum formation in experimentally induced cementum defects of the root surface with the application of recombinant basic fibroblast growth factor in collagen gel in vivo[J]. J Periodontol,2004, 75(2):243-248.
    [71]Tabata Y, Yamada K, Hong L, et al. Skull bone regeneration in primates in response to basic fibroblast growth factor[J]. J Neurosurg.1999,91(5):851-6.
    [72]Burg KJ, Porter S, Kellam JF. Biomaterial developments for bone tissue engineering[J]. Biomaterials,2000,21:2347-2359.
    [73]李亚非,姚建华,常红星,等.组织工程方法异体骨复合物修复关节置换时骨缺损[J].中国矫形外科杂志,2003,11:1520-1522.
    [74]2 Tancred DC, Carr AJ, McCormack BA. Development of a new synthetic bone graft[J]. J Mater Sci Mater Med,1998,9(12):819.823.
    [75]kize EM, Hemmerle J, Voegel JC, et al. Characterization and histological analyses of a coral-collagen composite used for bone-replacement graft material:a report of clinical cases[J]. J Mater Sci Mater Med,1999,10(1):47-51.
    [76]White RA, Weber JN, White EW, et al. Replamineform:a newprocess for preparing porous ceramic, metal, and polymer prosthetic materials[J]. Science,1972,176:922-924.
    [77]任高宏,裴国献,故立强,等.成人成骨细胞与珊瑚羟基磷灰石的体外生物相容性[J].第一军医大学报,2002,22:974-978.
    [78]Walsh WR, Chapman-Sheath PJ, Cain S, et al. A resorbable porous ceramic composite bone graft substitute in a rabbit metaphyseal defectmodel[J]. J Orthop Res,2003,21:655-661.
    [79]ZHANG C, WANG J, FENG H, et al. Replacement of segmental bone defects using porous bioceramic cylinders:A biomechanical and X-ray diffraction study[J]. Biomedical Materlals Research,2001,54(3):407-411,
    [80]MARK T, FULMER I, ISON C R, et al. Measurement s of t he solubilities and dissolutionnrates of seneral hydroxyapatites[J]. Biomaterials,2002,23:751-755.
    [81]HABIBOVIC P, YUAN H, CHANTAL M.3D microenvironment as essential element for osteoinduction by biomaterials[J]. Biomaterials,2005,26:3565-3575.
    [82]J IN Q M, TA KITA H, KOHGO T, et al. Effects of geometry of hydroxyapatite as a cell subst ratum in BMP 2 induced ectopic bone formation[J]. Biomed Mater Res, 2000,51:491-493.
    [83]DENG X M, HAO J Y, WANG C S. Preparation and mechanical properties of nanocomposites of poly wit h cadeficient hydroxyapatite nanocrystals[J]. Bioma-terials,2001,22(20):2867-2873.
    [84]LU J X, DESCAMPS M, DEJOU J, et al. The biodegradation mechanism of calcium phosphate biomaterials in bone[J]. Biomed Mater Res,2002,63(4):408-412.
    [85]GRYNPAS M D, PILLIAR R M, KANDEL R A, et al. Porous calcium polyphos-phate scaffolds forbone substitute applications in vivo studies[J]. Biomaterial s, 2002,23:2063-2070.
    [86]PILLIAR R M, FILIAGGI M J, WELLS M D, et al. Porous calcium polyphosphate scaffolds for bone substitute applications in vitro characterization[J]. Biomaterials, 2001,22:963-972.
    [87]PORTER N L, PILLIAR R M, GRYNPAS M D. Fabrication of porous calcium polyphosphate implant s by solid f reform fabrication:a study of processing parameters and in vit ro degradation characteristics[J]. Journal of Biomedical Materi- als Research,2001,56:504-515.
    [88]邱凯,万昌秀,陈馨.不同掺锶聚磷酸钙骨修复材料的抗压强度评价[J].口腔材料器械杂志,2005,2(1):61-63.
    [89]石宗利,戴刚,李重庵.一种新型骨组织工程材料CPP纤维的制备和性能[J].兰州大学学报(自然科学版),2001,4(1):47-51.
    [90]江听,方芳,阎玉华.磷酸钙多孔生物陶瓷的降解机理[J].国外建材科技,2001,22(4):11-12.
    [91]LU J X, FLAUTREB, GALLUR A, et al. Role of interconnections in porous bioceramics on bone recolonization in vitro and in vivo[J]. Mater Sci Mater Med, 1999,82(10):111-120.
    [92]EGGLI P S, MULLER W, SCHENKR K. Porous hydroxyapatite and tricalcium phosphate cylinders with two different pore size ranges implanted in the cancellous bone of rabbits. A comparative histomorphometric and histologic study of bony ingrowth and implant substitution[J]. Clin Orthop,1988,(322):127-138.
    [93]凌翔,陈卫民,王罡.胶原/纳米磷酸三钙复合人工骨骨膜下引导成骨实验研 究[J].华中科技大学学报(医学版),2002,12(31):700-702.
    [94]Rodond LM, Garcia Cantera JM, Verrier Hernanden A, et al. Effect of particulate porous by droxy afatite on osteo induction of demineralized bone autografts in experimental reconstruction of the rat meandible[J]. Int J oral Maxittofac Surg 1995, 24(6):441.
    [95]Hollister SJ, levg RA, Chu TM, et al:An image-based approach for designing and manufacturing craniofacial scaffolds[J]. Int J oral Mallxillofac Surg 2000,29-67.
    [96]Abukawa H, Shin M, Vacanti J, et al:Fused interconnected scaffold for tissue engineering ation bone. Submitted for presentation at the American Association of Oral and Maxillofacial Surgeons 86th Annual Meeting[J]. San Francisco, CA,2004, 29-32.
    [97]徐俊华,骨组织工程生物支架优化的研究进展[J].中国口腔种植学杂志,2004,9(2):90-93.
    [98]Hutmacher DW, Scaffold design and fabrication technologies for engineering tissue state of the art and future perspectives[J]. J Biomater Sci Polym Ed,2001, 12:107-110.
    [99]Critchley DR, Focal adhesions the cytoskeletal connection[J]. Curr Opin Cell Biol, 2000,12:133-139.
    [100]Koc N, Timucin M, Korkusus F, et al. Fabrication and characterization of porous tricalcium phosphate ceramics[J]. Ceramics International 2004,(30):205-211
    [101]Robinson BP, Hollinger JO, Szachowicz EH, et al. Calvarial bone repair with porous D, L-polylactide[J]. Otoloryngol Head surg,1995,112:707-717.
    [102]Hollinger JO, Bttistone GC, Biodegradable bone repair materias:synthetic polymers and ceramics[J]. Clin Orthop Rel Res,1986,207:290-305.
    [103]Tsuruga E, Takita H, Iton H, et al. Pore size porous hydroxyapatite as the cell-substratumcontrols BMP-induced osteogenesis[J]. Biochem,1997,121:317-24.
    [104]Grons TP, Cox QG, Jinnah RH. History and current application of bone transplan-tation[J]. Orthopedics,1993,16:859-900.
    [105]Lu JX, Flauture B, Anselme K, et al. Role of interconnections in porous bioceramics on bone recolonization in vitro and in vivo[J]. Materials Science,1999,10(2):111-120.
    [106]Abukawa H, Terai H, Hannuche D, et al:Formation of amandibular condyle in vitro by tissue engineering[J]. J Oral Maxillofac Surg 2003,61:94.
    [107]陈发明,吴织芬,金岩.牙周组织工程研究进展[J].中华口腔医学杂志,2004, 39:520-522.
    [108]Safford KM, Hicok KC, Safford SD, et al. Neurogenic differentiation of murine and human adipose-derived stromal cells[J]. Biochem Biophys Res Commun,2002, 294(2):371-9.
    [109]Zuk PA, Zhu M, Mizuno H, et al. Multilineage cells from human adipose tissue:im-plications for cell-based therapies[J]. Tissue Eng,2001,7(2):211-28.
    [110]Kuznetsov SA, Mankani MH, Gronthos S, et al. Circulating skeletal stem cells[J]. J Cell Bio,2001,153(5):1133-40.
    [111]Chamberlain G, Fox J, Ashton B, et al. Mesenchymal stem cells:Their phenotype, differentiation capacity, immunological features, and potential for homing[J]. Stem Cells,2007,25(11):2739-2749.
    [112]GalinanesM, LoubaniM, Davies J, et al. Autotransp lantation of unmanipulated bone marrow into scarred myocardium is safe and enhances cardiac function in humans[J]. Cell Transp lant,2004,13(1):72-73.
    [113]Silva GV, Litovsky S, Assad JA, et al. Mesenchymal stem cells differentiate into an endothelial phenotype, enhance vascular density, and imp rove heart function in a canine chronic ischemia model[J]. Circulation,2005,111(2):150-156.
    [114]Di Nicola M, Carlo Stella C, MagniM, et al. Human bone marrow stromal cells supp ress T21ymphocyte p roliferation induced by cellular or nonspecific mitogenic stimuli[J]. Blood,2002,99(10):3838-3843.
    [115]Ryan JM, Barry FP, Murphy JM, et al. Mesenchymal stem cells avoid allogeneic rejection[J]. J Inflamm(Lond),2005,2:72-78.
    [116]李毅,陈槐卿,成敏,等.骨髓基质干细胞BMP22和bFGF基因的联合修饰[J].细胞与分子免疫学杂志,2006,22(2):133-136.
    [117]Afizah H, Yang Z, Hui JH, et al. A comparison between the chondrogenic potential of human bone marrow stem cells(BMSCs)and adipose-derived stem cells (ADSCs) taken from the same donors[J]. Tissue Eng,2007,13(4):659-66.
    [118]Jaiswal N, Haynesworth SE, Caplan Al, et al. Osteogenic differentiation of purified, culture-expanded human mesenchymal stem cells in vitro[J]. J Cell Biochem,1997, 64(2):295-312.
    [119]Kopen GC, Prockop DJ, Phinney DG. Marrow stromal cells migrate throughout forebrain and cerebellum, and they differentiate into astrocytes after injection into neonatal mouse brains[J]. Proc Natl Acad Sci U S A,1999,96(19):107-116.
    [120]Krebsbach PH, Kuznetsov SA, Satomura K, et al. Bone formation in vivo: comparison of osteogenesis by transplanted mouse and human marrow stromal fibro- blasts[J]. Transplantation,1997,63(8):1059-1069.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700