用户名: 密码: 验证码:
注射用白藜芦醇生物可降解缓释微球的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在缓控释制剂中,高分子材料作为药物的载体具有极其重要的作用。尤其是聚酯类高分子材料聚乳酸羟基乙酸[poly (D,L-lactide-co-glycolide), PLGA],因其具有其他材料无可比拟的优点,如生物可降解性,良好的生物相容性,使用安全以及可通过改变LA和GA单体比例和聚合条件来调节PLGA在体内的降解速度等优点,已成为缓释微球制剂的优良载体材料。
     本文以白藜芦醇为模型药物,以PLGA为载体,研究制备了注射用生物可降解缓释微球,并对微球的体内外释药行为进行了较深入地探讨,研究了微球的粒径和PLGA分子量对微球体内外释药行为的影响。
     本研究采用高效液相色谱法(HPLC)测定微球中药物含量以及药物从微球中的体内外释放量。采用乳化溶剂挥发法制备了白藜芦醇PLGA缓释微球,以微球的包封率、载药量和突释作为质量评价指标,通过单因素考察试验筛选微球的最优处方和制备工艺。单因素考察结果表明,分散相/连续相体积比、PLGA浓度、理论载药量、搅拌速度、PVA浓度等均是影响微球性质的关键因素。
     在微球的体外释药研究中,以0.5%十二烷基硫酸钠(SDS)作为释放介质,采用直接释药法对目标粒径为20μm的微球进行体外释药行为的研究。结果表明PLGA浓度、理论载药量、搅拌速度、PVA浓度是影响微球中药物释放的关键因素,药物从载药微球中的释放主要以Fick扩散机制为主。
     采用小鼠皮下注射方式给药后定时测定药物在体内残留量的方法,深入研究了微球粒径和聚合物分子量对白藜芦醇微球体内外释药行为的影响,并进行了体内外相关性(IVIVC)评价。结果显示,粒径为5μm和20μm的低分子量载药微球,当以0.5%的十二烷基硫酸钠水溶液作为释放介质进行体外直接释药时,可以建立良好的体内外相关性(51μm:y=14.519x0·4147,R=0.96;20μm:y=-0.0513x2+8.1116x-212,R=0.97)。固定微球的粒径为20μm,研究了PLGA的分子量对微球体内降解行为的影响,结果表明,由高分子量PLGA制备的微球的体内释放明显快于低分子量的PLGA微球,原因有待于进一步阐明。
Polyester polymers have been widely used as drug carriers. Among them, poly(lactide-co-glycolide)(PLGA) has attracted much attention due to its biodegradability and biocompatibility. In addition, the degradation behavior of PLGA could be controlled by adjusting the ratio of LA and GA. In this paper, using resveratrol as a hydrophobic model drug, PLGA microspheres(MS) were prepared using oil-in-water (o/w) emulsification solvent evaporation method. In vitro drug release behavior and release mechanism from PLGA microspheres prepared under different conditions were studied in detail. Influence of particle size and polymer molecular weight on the in vivo release of resveratrol from the microspheres were investigated in mice and in vitro-in vivo correlation was studied.
     High-performance liquid chromatography (HPLC) method was used to measure drug content in resveratrol loaded microspheres and the release of drug from the microspheres. Using entrapment efficiency, drug loading and burst release as the criteria, influence of process parameters on the characteristics of the microspheres were investigated. It was found that the DP/CP ratio, PLGA concentration, theoretical drug loading, PVA concentration and homogenization speed had a significant influence on the properties of resveratrol loaded PLGA microspheres.
     In vitro release study was performed in 0.5%SDS aqueous solution and stirred at 30 rpm at 37℃. The results show that PLGA concentration, theoretical drug loading, PVA concentration and homogenization speed had a significant influence on the release of resveratrol from PLGA microspheres. The drug release kinetics from the microspheres can be described with Fick diffusion model.
     In vivo release of resveratrol from PLGA microspheres was studied by determining the amount of drug remained in the microspheres at the injection site after subcutaneous injection to five mice. It was demonstrated that in vivo release of resveratrol from PLGA microspheres was influenced by particle size of the microspheres and polymer molecular weight. The correlation between in vitro release and in vivo release was studied. An exponential relationship was established (y=14.519x04147 r=0.96) for 5μm microspheres. In contrast, a polynomial relationship between in vitro and in vivo data was established (y=-0.0513x2+8.1116x-212, r=0.97) for 20μm microspheres. The microspheres prepared with high molecular weight PLGA had a higher in vivo release rate compared to the one with the same particle size but low PLGA molecular weight.
引文
[1]崔福德.药剂学,第五版.北京:人民卫生出版社,2003,363-364.
    [2]陈建海.《药用高分子材料与现代药剂》北京:科学出版社,2003.
    [3]GITEAU A, VENIER-JULIENNE M C, MARCHAL S. Reversible protein precipitation to ensure stability during encapsulation within PLGA microspheres[J]. European journal of pharmaceutics and biopharmaceutics,2008,70(1):127-36.
    [4]PARK W, NA K. Polyelectrolyte complex of chondroitin sulfate and peptide with lower pI value in poly(lactide-co-glycolide) microsphere for stability and controlled release[J]. Colloids and Surfaces B:Biointerfaces, In press.
    [5]HIND K D, CAMPBELL K M, HOLLAND K M. PEGylated insulin in PLGA microparticles. In vivo and in vitro analysis[J]. Journal of Controlled Release,2005,104:447-460.
    [6]YANG Q, OWUSU A G. Biodegradable Progesterone Microsphere Delivery System for Osteoporosis Therapy [J]. Drug Development and Industrial Pharmacy,2000,26(1):61-70.
    [7]贾伟,高文远,邱明丰.《药物控释新剂型》北京:化学工业出版社,2005.
    [8]HE Jintian, SU Huabo, LI Guoping, et al. Stabilization and encapsulation of astaphylokinase variant (K35R) into poly(lactic-co-glycolic acid) microspheres [J]. International Journal of Pharmaceutics, 2006,309:101-108.
    [9]WAECKERLE-MEN Y, ALLMEN E U, GANDER B, et al. Encapsulation of proteins and peptides into biodegradable poly(d,l-lactide-co-glycolide) microspheres prolongs and enhances antigen presentation by human dendritic cells [J]. Vaccine,2006,24:1847-1857
    [10]LEE M, CHEN T T, TRUELA-ARISPE M L, et al. Modulation of protein delivery from modular polymer scaffolds [J]. Biomaterials,2007,28:1862-1870.
    [11]LAGARCE F, GARCION E, FAISANT N, et al. Development and characterization of interleukin-18-loaded biodegradable microspheres[J]. International Journal of Pharmaceutics,2006,314: 179-188.
    [12]NARAHARISETTI P K, ONG B Y, XIE JINWEI, et al. In vivo performance of implantable biodegradable preparations delivering Paclitaxel and Etanidazole for the treatment of glioma[J]. Biomaterials,2007,28:886-894.
    [13]SCHMIDT C. WENZ R,BIES B, et al. antibiotic in vivo/in vitro release, histocompatibility and biode gradation of gentamicin implants based on lactic acid polymer and copolymer[J]. Journal of cor trolled release,1995,37:83-94.
    [14]JANORIA K G, MITRA A K. Effect of lactide/glycolide ratio on the in vitro release of ganciclovir and its lipophilic prodrug (GCV-monobutyrate) from PLGA microspheres [J]. International Journal of Pharmaceutics,2007,339:133-141.
    [15]WU Xueshen, WANG Nuo. Synthesis, characterization, biodegradation, and drug delivery application of biodegradable lactic/glycolic acid polymers. Part II:Biodegradation[J]. The Journal of Biomaterials Science, Polymer Edition,2001,12(1):21-34.
    [16]ROTHEN-WEINHOLD A, BESSEGHIR K, CURNY R. Analysis of the influence of polymer characteristics and core loading on the in vivo release of a somatostatin analogue[J]. European Journal of Pharmaceutical Sciences,1997,5:303-313.
    [17]SIEPMANN J, GOPFERICH A. Mathematical modeling of bioerodible, polymeric drug delivery Syste ns[J]. Advanced Drug Delivery Reviews,2001,48:229-247.
    [18]ZHAC Feng, GAO Yongliang. The advances in research of the biodegradation and biocompatibility of PLA and PLGA microspheres[J]. Chinese Journal of New Drugs,2002,1(1):67-71.
    [19]PARK T G, LEE H Y,NAM Y S,et al. A new preparation method for protein loaded poly(D,L-lactic-co glycolic acid) microspheres and protein release mechanism study [J]. Journal of ControlledRelease 1998,55:181-191.
    [20]ITO F, FUJIMORI H, MAKINO K. Incorporation of water-soluble drugs in PLGA microspheres [J]. Colloids and Surfaces B:Biointerfaces,2007,54:173-178.
    [21]AUBERT-POUESSEL A, VENIER-JULINENNE M C, CLAVREUL A,et al. In vitro study of GDNF release from biodegradable PLGA microspheres [J]. Journal of Controlled Release,2004, 95:463-475.
    [22]O'DONNELL P B, MCGINITY J W. Preparation of microspheres by the solvent evaporation technique[J]. Advanced Drug Delivery Reviews,1997,28:25-42.
    [23]ROWLANDS A S, LIM S A, MARTIN D, et al. Polyurethane/poly(lactic-co-glycolic) acid composite scaffolds fabricated by thermally induced phase separation[J]. Biomaterials,2007, 28:2109-2121.
    [24]SHIN K C, LIM B S, KIM J H, et al. A facile preparation of highly interconnected macroporous scaffolds by liquid-liquid phase separation II[J]. Polymer,2005,46:3801-3808.
    [25]CHUN K W, CHO K C, KIM S H, et al. Controlled release of plasmid DNA from biodegradable scaffolds fabricated using a thermally-induced phase-separation method[J]. Journal of Biomaterials Science, Polymer Edition,2004,15(11):1341-1353.
    [26]NIWA T, TAKEUCHI H, HINO T, et al. Biodegradable submicron carriers for peptide drugs: Preparition of DL-lactide/glycolide copolymer (PLGA) nanospheres with nafarelin acetate by a novel emulsion-phase separation method in an oil system[J]. International Journal of Pharmaceutics, 1995,21:45-54.
    [27]FREIT AS S, MERKLE H P, GANDER B, et al. Ultrasonic atomisation into reduced pressure Atmosphere-envisaging aseptic spray-drying for microencapsulation[J]. Journal of Controlled Release,2004,95:185-195.
    [28]TAKASHIMA Y, SAITO R, NAKAJIMA A, et al. Spray-drying preparation of microparticles containing cationic PLGA nanospheres as gene carriers for avoiding aggregation of nanospheres[J]. Internal ional Journal of Pharmaceutics,2007,343:262-269.
    [29]ITO F, FUJIMORI H, MAKINO K. Factors affecting the loading efficiency of water-soluble drugs in PLGA microspheres[J]. Colloids and Surfaces B:Biointerfaces,2008,61:25-29.
    [30]JACKSON J K, HUNG T, LETCHFORD K, et al.The characterization of paclitaxel-loaded microspheres manufactured from blends of poly(lactic-co-glycolic acid) (PLGA) and low molecular weight diblock copolymers[J]. International Journal of Pharmaceutics,2007,342:6-17.
    [31]RUAN G, FENG S S, LI Q T. Effects of material hydrophobicity on physical properties of polymeric microspheres formed by double emulsion process[J]. Journal of Controlled Release,2002, 84:151-160.
    [32]GRIZZH, GARREAU H, LI S, et al. Hydrolytic degradation of devices based on poly(DL-lactic acid):size-dependence[J].Biomaterials,1995,16:305-311.
    [33]GOMES A, LUNARDI C H, LUNARDI L O, et al. Identification of psoralen loaded PLGA microspheres in rat skin by light microscopy [J]. Micron,2008,39:40-44.
    [34]FREIBE RG S, ZHU X X. Polymer microspheres for controlled drug release[J]. International Journal of Pharmaceutics,2004,282:1-18.
    [35]赵霞.白藜芦醇的化学药理研究进展[J].中草药,1998,29(12).
    [36]JANG M, CAI L, UDEANI G, et al. Cancer chemopreventive activity of resveratrol a natural product derived from grapes [J]. Science,1997,275 (5297):218-220.
    [37]LUCIE P. Biological Effects of Resveratrol [J]. Life Sciences,2000,66 (8):663-673.
    [38]SUN Xilan, PENG Bin, YAN Weidong. Measurement and correlation of solubility oftrans-Resveratrol inll solvents at T=(278.2,288.2,298.2,308.2, and 318.2) K [J]. Chemical Thermodynamics,2008,40:735-738.
    [39]刘志杰.白黎芦醇的分离分析及其在制剂学研究中的应用.天津大学硕士研究生论文,2004,12.
    [40]WALLE T, HSIEH F, DELEGGE M H, OATIS J E. High absorption but very low bioavailability of oral resveratrol in humans [J]. Drug Metabolism and Disposition,2004,32:1377-1382.
    [41]VITRAC X, DESMOULIERE A, BROUILLAUD B, et al. Distribution of [14C]-trans-resveratrol, a cancer chemopreventive polyphenol, in mouse tissues after oral administration [J]. Life Sciences, 2003,72:2219-223.
    [42]ASEN SI M, MEDINA I,ORTEGA A, et al. Inhibition of cancer growth by resveratrol is relared to its low bioavaility [J]. Free Radical Biology and Medicine,2002,33 (3):387-398.
    [43]HE H, CHEN Xijing, WANG Guangji, et al. High-performance liquid chromatography spectrometric analysis of trans-resveratrol in rat plasma [J]. Chromatogr. B,2006,832:177-180.
    [44]ZHUYongxin, HUANG T, CREGOR M, et al. Liquid chromatography with multichannel electrochemical detection for the determination of trans-resveratrol in rat blood utilizing an automated blood sampling device [J]. Chromatogr. B,2000,740:129-133.
    [45]BOOCOCK D J, PATEL K R, FAUST G E, et al. Quantitation of trans-resveratrol and detection of its metabolites in human plasma and urine by high performance liquid chromatography [J]. Chromatogr. B 2007,848:182-187.
    [46]WANG Donggeng, HANG Taijun, WU Chunyong, et al. Identification of the major metabolites of resveratrol in rat urine by HPLC-MS/MS [J].Chromatogr. B,2005,829:97-106.
    [47]舒友秦.陈敏,何计国等.固相萃取-高效液相色谱法测定葡萄酒中白藜芦醇及其糖苷异构体[J].色谱,2005,23(1):88-91.
    [48]BLACHE D, RUSTAN I, DURAND P, et al. Gas chromatographic analysis of resveratrol in plasma,lipoproteins and cells after in vitro incubations [J]. Chromatogr.B,1997,702:103-110.
    [49]王莉,周红.反相高效液相色谱法测定小鼠血清及脏器中白藜芦醇浓度[J].中国药房,2006,17(17).
    [50]夏玉宇.《化学实验室手册》.化学工业出版社.2004:593.
    [51]GRANERO G E, RAMACHANDRAN C, AMIDON G L. Dissolution and Solubility Behavior of Fenofibrite in Sodium LaurylSulfate Solutions[J]. Drug Development and Industrial Pharmacy, 2005,31:917-922.
    [52]中华人民共和国药典 2005版2部 附录ⅩⅤ D
    [53]MAO Shirui, SHI Yi, LI LUK, et al. Effects of process and formulation parameters oncharacteristics and internal morphology of poly(D,L-lactide-co-glycolide) microspheres formed by the solvent evaporation method [J]. European Journal of Pharmaceutics and Biopharmaceutics,2008,68:214-223.
    [54]TEIXEIRA M, ALONSO M, PINTO M M, et al.Development and characterization of PLGA nanospheres and nanocapsules containing xanthone and 3-methoxyxanthone [J]. European Journal of Pharmaceutics and Biopharmaceutics,2005,59:491-500.
    [55]PANFENG, CHEN QINGHUA, ZHU DAYUAN.Characteristic comparative studies of huperzine A-PLGA microspheres prepared by two different emulsion methods[C]. Novel brug delivery systems:Research and application.Shanghai,2007,10:19-21.
    [56]SHEN DEROVA A, BURKE T G, SCHWENDEMAN S P. The acidic microclimate inpoly(lactide-co-glycolide) microspheres stabilizes camptothecins[J].Pharmaceutical research,1999,16 (2):241-248.
    [57]SHENDEROVA A, BURKE T G, SCHWENDEMAN S P. Stabilization of 10-hydroxycamptothecin in poly((lactide-co-glycolide) microspheres belicery vehicles[J].Pharmaceutical research,1997,14 (10):1406-1414.
    [58]JEONG T L, SONG J L, KANG S S, et al. Preparation of poly(dl-lactide-co-glycolide) microspheres encapsulating all-trans retinoic acid [J]. International Journal of Pharmaceutics,2003,259:79-91.
    [59]JEONG T, CHEON J B, KIM S H, et al. Clonazepam release from core-shell type nanoparticles in vitro [J]. Journal of Controlled Release,1998,51:169-178.
    [60]POLAKOVIC M, GORNER T, GREF R, et al. Lidocaine loaded biodegradable nanospheresⅡ. Modelling of drug release [J]. Journal of Controlled Release,1999,60:169-177.
    [61]PAINBENIT, VENIER-JULIENNE M C, BENOIT J P, et al. Internal morphology of Poly (D,L-lactide-co-glycolide) BCNU-loaded microspheres. Influence on drug stability [J]. European Journal of Pharmaceutics and Biopharmaceutics,1998,45:31-39.
    [62]MAO Shirui, XU Jing, CAI Cuifang, et al. Effect of W/O/W process parameters on morphology and burst release of FITC-dextran loaded PLGA microspheres[J]. International Journal of Pharmaceutics,2007,334:137-148.
    [63]YANC YiYan, CHUNG T S, NG N P. Morphology, drug distribution, and in vitro release profiles of biodegradable polymeric microspheres containing protein fabricated by double-emulsion solvent extraction/evaporation method[J]. Biomaterials,2001,22:231-241.
    [64]王辰允.紫杉醇长效缓释注射微球的研究.军事医学科学院博士学位论文.2006年11月.
    [65]陈幼亭.溶出度试验数学模型级计算机程序[J].医药工业,1998,19(2):66-72.
    [66]王佳苗.尼群地平胃漂浮缓释微球的研究.沈阳药科大学硕士学位论文,2008年5月.
    [67]RITGER R L, PEPPAS N A. A simple equation for decription of solute release I Fickian and non-Fckian release from non-swellable devices in the form of slabs,spheres, cylinders or discs[J].
    Journal of control releasse,1987,5(1):23-26.
    [68]BLANCO-PRIETO M J, BESSEGHIR K, ZERBE O,et al. In vitro and in vivo evaluation of a somatostatin analogue released from PLGA Microspheres[J]. Journal of Controlled Release, 2000,67:19-28.
    [69]ABA ZINGE M, JACKSON T, YANG Q, et al. In vitro and in vivo characterization of biodegradable enoxacin microspheres[J]. European Journal of Pharmaceutics and Biopharmaceutics,2000,49:191-194.
    [70]ZOL NIK B S, BURGESS D J. Evaluation of in vivo-in vitro release of dexamethasone from PLGA microspheres[J]. Journal of Controlled Release,2008,127:137-145.
    [71]BHARDWAJ R, BLANCHARD J. In vitro characterization and in vivo release profile of a pol(?)(D,L-lactide-co-glycolide)-based implant delivery system for the a-MSH analog, melanotan-I [J]. International Journal of Pharmaceutics,1998,170:109-117.
    [72]LI Y, ZHU K J, ZHANG J X, et al. In vitro and in vivo studies of cyclosporin A-loaded mictospheres based on copolymers of lactide and ε-caprolactone:Comparison with conventional PLGA microspheres[J]. International Journal of Pharmaceutics,2005,295:67-76.
    [73]CHU D F, FU X Q, LIU W H,et al. Pharmacokinetics and in vitro and in vivo correlation of huperzine A loaded poly(lactic-co-glycolic acid) microspheres in dogs[J]. International Journal of Pharmaceutics,2006,325:116-123.
    [74]SANDOR M, HARRIS J,MATHIOWITZ E.A novel polyethylene depot device for the study of PLGA and P(FASA) microspheres in vitro and in vivo[J]. Biomaterials,2002,23:4413-4423.
    [75]US Pharmacopoera30-NF252007, May,1.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700