用户名: 密码: 验证码:
平面型大环共轭配合物的制备及其光学生物敏感特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
光纤生物传感器对于生命科学的发展起到了非常重要的作用,其性能的好坏主要取决于敏感材料性能的优劣。高性能敏感材料的研制是获得高性能光纤生物传感器的关键技术之一,通过对敏感材料的结构调控和性能优化可以达到优化其生物敏感性能的目的。由于其特殊的物理、化学性质,平面型大环共轭配合物已被广泛用于各种生物敏感材料。平面型大环共轭配合物是指由平面型多环芳香配体所形成的金属配合物,一般都具有稳定的结构。大部分平面型大环共轭配合物都具有发光性质,通常在一定波长光的激发下会发出相应频率的荧光和磷光。它们不仅结构特殊而且性质优异,在物理、化学、材料学、生物学和医学等众多领域都有着重要的应用。本学位论文针对光纤生物传感器和临床医学检测现存的主要问题,制备并优化了生物敏感材料,构建了荧光猝灭型光纤肾上腺素(AD)传感器和荧光型光纤DNA传感器,采用锁相放大技术,实现了AD和小牛胸腺DNA(ctDNA)浓度的检测。
     本学位论文在以下几个方面进行了系统的研究:1、合成了5种金属酞菁作仿生酶用于儿茶酚胺(CAs)的催化氧化,研究了催化时间、催化温度、溶液pH值和仿生酶用量等对催化效率的影响;2、以FePc为催化剂构建了基于仿生酶催化的光纤AD传感器,研究了传感器的性能;3、合成并表征了3种平面型大环共轭配合物,采用电子吸收光谱法、荧光法和粘度法等手段研究了配合物与ctDNA的相互作用;4、以钌(Ⅱ)多吡啶配合物为指示剂,制备了光学DNA敏感膜,采用锁相放大技术构建了荧光型光纤DNA传感器,研究了传感器的性能。主要研究结论如下:
     1、金属酞菁仿生酶催化CAs氧化的性质研究
     (1)以二甲苯作溶剂合成了5种金属酞菁(MPc,M=Mn~(2+),Fe~(2+),Co~(2+),Ni~(2+),Cu~(2+))仿生酶,采用电子吸收光谱法研究了其催化儿茶酚胺氧化的性质。在磷酸缓冲溶液(PBS)中,5种仿生酶均能有效地催化CAs的氧化,AD的氧化过程与去甲肾上腺素(NA)的氧化过程相同,而与多巴胺(DA)的氧化过程不同,其相应的氧化产物分别为肾上腺素红、去甲肾上腺素红和黑色素。
     5种仿生酶催化AD和NA氧化的最佳条件为:pH=8.0,T=55℃,[MPc]=1.00 mg/mL,[AD]/[NA]=5.0×10~(-4) mol/L;其催化效率有如下顺序ηMnPc>ηFePc>ηNiPc>ηCuPc>ηCoPc。在最佳pH 8.0的条件下,虽然MnPc的催化活性最好,但在低pH值下,FePc的催化活性都好于MnPc。探讨了其催化机理,以配体场理论为依据,从配合物结构的角度解释了催化效率的顺序。
     仿生酶催化DA氧化的最佳催化反应条件为pH=8.0,[MPc]=1.00 mg/mL,[AD]=5.6×10~(-4)mol/L,最佳温度因仿生酶种类不同而不同。在55℃,催化效率为:ηMnPc>ηFePc>ηCoPc≈ηCuPc>ηNiPc。
     (2)以FePc为催化剂采用锁相放大技术构建了基于MPc催化的荧光猝灭型光纤AD传感器,研究了传感器的性能。以pH 7.4 PBS缓冲溶液为介质,在2.0×10~(-6)~9.0×10~(-5)mol/L范围,AD的浓度与光学氧敏感膜的相对滞后相移△φ有较好的线性关系;检测下限为4.0×10~(-7)mol/L;响应时间为10 min,该传感器具有良好的重复性和稳定性。
     2、有机磺酸配合物与ctDNA键合性质的研究
     (1)以金属盐、双齿螯合配体与氨基萘磺酸盐为原料合成了两个新型有机磺酸配合物{一水合[二(1,10-邻菲啰啉)二(4-氨基萘磺酸根)合镉(Ⅱ)],[Cd(phen)_2(ans)_2]·H_2O 1}和{一水合[二(1,10-邻菲啰啉)二(4-氨基萘磺酸根)合铅(Ⅱ)],[Pb(phen)_2(ans)_2]·H_2O 2},对其结构进行了表征:两配合物分属不同的晶系,但其不对称独立单元的构成却是相同的,都是包含一个中性配合物分子和一个结晶水分子,中心离子Cd(Ⅱ)和Pb(Ⅱ)的配位环境相同,均为六配位变形八面体构型MN_4O_2。
     (2)采用电子吸收光谱法、荧光法和粘度法等研究了配合物1和2与ctDNA的相互作用。实验结果表明两配合物与DNA之间都存在较强的作用,作用模式均为静电结合和插入方式,静电作用为N-H…O氢键,插入配体为phen,与DNA的相互作用,1大于2,其键合常数K_b为分别为1.82×10~5和4.96×10~4 L/mol。
     3、钌(Ⅱ)多吡啶配合物与ctDNA键合性质的研究
     (1)以1,10-邻菲啰啉和对硝基苯肼为原料合成了一个新的席夫碱4,5-二氮杂芴-9-对硝基苯腙(DAFND)作主配体,以2,2′-联吡啶(bipy)为辅助配体,与RuCl_3反应合成得到一种新型钌(Ⅱ)多吡啶配合物{高氯酸[二(2,2′-联吡啶)(4,5-二氮杂芴-9-对硝基苯腙)]合钌(Ⅱ),[Ru(bipy)_2DAFND](ClO_4)_2},采用红外、核磁、质谱和X-射线单晶衍射等手段对所合成的配体和配合物进行了表征。
     (2)通过研究配合物与ctDNA的相互作用,发现配合物以插入模式与ctDNA发生作用,插入配体为DAFND,其键合常数K_b为8.91×10~5L/mol。
     (3)以钌(Ⅱ)多吡啶配合物[Ru(bipy)_2DAFND](ClO_4)_2为荧光指示剂,制备了光学DNA敏感材料,采用锁相放大技术构建了荧光型光纤DNA传感器,研究了传感器的性能。以pH 7.1 Tris缓冲溶液为介质,在3.6×10~(-7)~1.56×10~(-6)mol/L范围,ctDNA浓度与光学DNA敏感膜的相对滞后相移△φ有较好的线性关系,检测下限为8.4×10~(-8)mol/L;响应时间为70 s,该传感系统具有较好的重复性和稳定性。
The fiber optic biosensor plays an important role in the development of life science. As a key technique,the preparation of the opitc sensing material is vital to the fiber optic biosensor with high performance.The biosensitivity can be optimized by the structural adjusting and performance optimizing of the sensing material.Due to their characteristic structure and perporties,the planar ring-conjugated complexes are extensively applied to the sensitive materials.The planar ring-conjugated complex is referred to the complex constructed by the planar ligands with some aromatic rings. Generally,these complexes have stable structures and excellent physical and chemical properties especially luminescence,and have been extensively applied to chemistry,physics,material science,biology,medicine,etc.
     In order to solve the existing problems in clinical medicine detection and the fiber optic biosensor,in this thesis,the optimized sensing materials are used to the fiber optic biosensors based on fluorescence change.Two biosensors were designed and constructed,and have successfully been used to detect the concentrations of adrenalin (AD)and calf thymus DNA(ctDNA).
     In this thesis,the systematic studies have been done as following:Firstly, metallophthalocyanines(MPc,M=Mn~(2+),Fe~(2+),Co~(2+),Ni~(2+),Cu~(2+))were synthesized and used to catalyze the oxidation of catecholamines(CAs).The influence factors of catalytic efficiency,such as catalytic time and temperature,the pH value of solution and the amount of MPc,have been investigated,and the catalytic mechanism was proposed.Secondly,a novel fiber optic AD biosensor was designed and constructed using FePc as catalyzer.Thirdly,three novel planar ring-conjugated complexes were synthesized and characterized.Interactions of the complexes with ctDNA were explored by UV-Vis spectra,luminescence spectra and viscosity measurements. Fourthly,a fiber optic biosensor for DNA detection based on fluorescence change of [Ru(bipy)_2DAFND]~(2+)was fabricated and studied.
     The main conclusions of this thesis include the following three parts:
     1.The oxidation of catecholamines catalyzed by MPc
     (1)MPc were synthesized using dimethylbenzene as solvent.In phosphate buffer solution(PBS),MPc could effectively catalyze three kinds of CAs,namely AD, noradrenalin(NA)and dopamine(DA),to the corresponding oxidation products of adrenochrome,noradrenchrome and melanin.The reaction processes of AD and NA oxidized by MPc were similar,which was different from the oxidation of DA.The catalytic mechanism was proposed,and the order of catalytic efficiency was interpreted based on the electronic structure of the complexes.
     For the oxidation reaction of AD and NA,the optimal catalytic conditions were determined:pH=8.0,T=55℃,[MPc]=1.00 mg/mL and[AD]/[NA]=5.0×10~(-4) mol/L.MPc had the catalytic activity order ofη_(MnPc)>η_(FePc)>η_(nipc)>η_(CuPc)>η_(CoPc)at the optimal catalytic conditions,while MnPc showed worse activity than FePc in low pH environment,indicating that FePc could be used in larger pH range. cAs for the oxidation of DA,the product was melanin,which is different from the oxidation of AD and NA.The optimal conditions are pH 8.0,[MPc]=1.00 mg/mL [DA]=5.6×10~(-4)mol/L,the temperatures are different for different MPc.At 55℃,the order of catalytic efficiency isη_(MnPc)>η_(FePc)>η_(CoPc)≈η_(CuPc)>ηf_(NiPc).
     (2)A novel fiber optic AD biosensor based on the oxidation of AD by O_2 was designed and fabricated using FePc as catalyzer.The performance of the biosensor was investigated.The dissolved oxygen and AD content were evaluated by relative phase delay△(?).In PBS with pH 7.4,a linear relationship between△(?)and AD concentration was observed in the range of 2.0×10~(-6)~9.0×10~(-5)mol/L,and the detection limit is 4.0×10~(-7)mol/L.The biosensor has good stability and repeatability, and its response time is 10 min.
     2.DNA-binding properties of two complexes containing organosulfonate ligand (1)Two novel organosulfonate complexes,[M(phen)_2(ans)_2]·H_2O(M=Cd 1,M= Pb 2),were obtained from the reaction of 1,10-phenanthroline(phen),sodium 4-aminonaphthalene-1-sulfonate(Naans)and Cd(OAc)_2·2H_2O or Pb(NO_3)_2 in a mixed solvent of water and methanol at room temperature.The compounds were characterized by elemental analysis,IR,and single crystal X-ray diffraction method. In spite of the different cell systems,the asymmetric units of the complexes were identical,namely one neutral compound and one water molecule.The coordination geometries of the central atom were the same within two complexes,showing a distorted octahedral environment with MN_4O_2.
     (2)Interactions of the complexes with ctDNA were studied by UV/Vis spectra, luminescence titrations,steady-state emission quenching by[Fe(CN)_6]~(4-),DNA competitive binding with ethidium bromide(EB)and viscosity measurements.The results indicated that there were two interactions between the complexes and DNA, namely the electrostatic interaction and intercalation,with the binding constants of 1.82×l0~5 L/mol for 1 and 4.96×10~4 L/mol for 2 in buffer of 50 mmol/L NaCl and 5 mmol/L Tris-HCl(pH 7.1,Tris buffer).
     3.DNA-binding properties of the polypyridyl Ru(Ⅱ)complex
     (1)A new Schiff base of 4,5-diazafluorene-9-p-nitrophenylhydrazone(DAFND) was synthesized using 1,10-phenanthroline and p-nitrophenylhydrazine as raw materials.DAFND and 2,2'-bipyridyl(bipy)acting as the main and auxiliary ligands, a polypyridyl complex of[Ru(bipy)_2DAFND](ClO_4)_2 was obtained.The synthesized compounds were characterized by IR,~1H NMR,elemental analysis,ES-MS and single crystal X-ray diffraction method.
     (2)Interaction of the complex with ctDNA was explored by UV/Vis absorption spectra,luminescence spectra and viscosity measurements,illustrating that the complex interacted with ctDNA via intercalation,with the binding constant of 8.91×10~5 L/mol in Tris buffer.
     (3)A fiber optic biosensor for DNA detection based on fluorescence change was fabricated,using[Ru(bipy)_2DAFND]~(2+)embedded in CA as indicator for the optic sensing membrane.The performance of the biosensor was studied and it has the analytical range of 3.6×10~(-7)~1.56×10~(-6)mol/L,response time of 70 s and detection limit of 8.4xl0~(-8)mol/L in Tris buffer(pH 7.1).The biosensor showed excellent reproducibility and stability and its working temperature was below 40℃.
引文
[1]De Haas,R.R,Gijlswijk,R.P.M.,Tol,E.B.,et al.Platinum porphyrins as phosphorescent label for time-resolved microscopy.J Histochem Cytochem.,1997,45:1279-1292
    [2]Hendrix,J.L.,Porphyrins and chlorophylls as probes for fluoroimmunoassays.Clin.Chem.,1983,29:1003-1007
    [3]De Hass,R.R.,Gijlswijk,R.P.M.Phosphorescent platinum/palladium coproporphyrins for time-resolved luminescence microscopy.J.Histochem.Cytochem.,1999,47(2):183-196
    [4]侯长军,郝燕,霍丹群.卟啉及其衍生物抗癌活性机理研究进展.生物医学工程,2007,26(1):97-100
    [5]Polo,L.,Valduga,G.Low-density lipoproteinreceptors in the uptake of tumour photo-sensitizers by human and rat transformed fibroblasts.J.Biochem.Cell Biol.,2002,34:10 ~ 23
    [6]McCleverty,J.A.,Meyer,T.J.Metal Complexes for Photodynamic Therapy,Oxford:Elsevier Pergamon,2004,945-1005
    [7]Nyman,E.S.,Hynninen,P.H.Research advances in the use of tetrapyrrolic photosensitizers for photodynamic therapy.J.Photochem Photobiol B,2004,73(1-2):1-28
    [8]黄焱.新型生物靶向光敏剂酞菁锌介导的光动力疗法治疗CNV体内外实验研究:[博士学位论文].济南:山东大学,2007
    [9]吴永忠,田禾,陈孔常.酞菁在光动力学疗法中的应用.染料工业,1998,35(5):31-34
    [10]黄剑东.用于光动力学治疗的酞菁配合物的最新研究进展.中国激光医学杂志,2005,14(4):264-265
    [11]李改茹,晋卫军.金属钯/铂卟啉室温磷光探针在生物医学领域的应用研究.分析化学,2002.12:1515-1520
    [12]Rawling,T.,McDonagh,A.Ruthenium phthalocyanine and naphthalocyanine complexes:Synthesis,properties and applications.Coord.Chem.Rev.,2007,251:1128-1157
    [13]刘云军,梅文杰,王睿杰等.钌(Ⅱ)多吡啶配合物的合成、表征及其与DNA作用研究.中国科技论文在线,2006,1(1):73-75
    [14]Diza-Garcia,M.E.,Roza-Fernandez,M.Room temperature phosphorescent sensing probe for detection of DNA.Proc.SPIE-Int.Soc.Opt.Eng.,1995,2631:29-36
    [15]Montserrat,R.F.,Maria,J.V.G.,Marta,D.G.Room-temperature phosphorescent palladium-porphine probe for DNA determination.Anal.Chem.,1997,69:2406-2410
    [16]袁雯,晋卫军,董川.水介质钯卟啉室温磷光探针与小牛胸腺DNA作用的光谱特性.高等学校化学学报,2001,22(6):922-924.
    [17]Duezl, P., Hanocq, M., Dubois, J. Photodynamic DNA damage mediated by δ-aminolevulinic acid-induced porphyrins. Carcinogenesis, 2001, 22: 771 - 778
    [18]Rawling, T., McDonagh, A. Ruthenium phthalocyanine and naphthalocyanine complexes: Synthesis, properties and applications. Coord. Chem. Rev., 2007, 251: 1128 - 1157
    [19]Steinreiber, J., Ward, T.R. Artificial metalloenzymes as selective catalysts in aqueous media. Coord. Chem. Rev., 2008, 252: 751 - 766
    [20]Shaabani, A., Rezayan, A.H., Heidary, M., et al. Aerobic oxidative deprotection of silyl ethers to carbonyl compounds with cobalt(Ⅱ) tetrasulfophthalcyanine as a catalyst in ionic liquid. Catal. Comm., 2008,10(2): 129-131
    [21]De Irazu, S., Unceta, N., Sampedro, M.C., et al. Multimembrane carbon fiber microelectrodes for amperometric determination of serotonin in human urine. Analyst, 2001, 126:495 - 500
    [22]Sueta, GF., Ram(?)rez, L.R., Radi, R. Ternary copper complexes and manganese(Ⅲ) tetrakis (4-benzoic acid)porphyrin catalyze peroxynitrite-dependent nitration of aromatics. Chem. Res. Toxicol., 1997, 10:1338-1344
    [23]陈荣,韩万书,王夔.无机化合物药用研究前景.化学进展, 2000,120): 114-115
    [24]Sun, Y.T., Liu, X.J., Fan, C.H., et al. Electrochemical investigation of the chloride effect on hemoglobin. Bioelectrochemistry, 2004, 64(1): 23 - 27
    [25]Luo, H.X., Du, Y.Z., Guo, X. Electrochemical of N-n-undecyl-N'-(sodium-p-amino- benzenesulfonate) thiourea and its interaction with bovine serum albumin. Bioelectrochemistry, 2009, 74(2): 232 - 235
    [26]Withey, GD., Kim, J.H., Xu, J. DNA-programmable multiplexing for scalable, renewable redox protein bio-nanoelectronics. Bioelectrochemistry, 2008, 74(1): 111-117
    [27]Wu, C.C., Liu, H.M. Determination of gallium in human urine by supercritical carbon dioxide extraction and graphite furnace atomic absorption spectrometry. J. Hazar. Mater., 2009, 163(2-3): 1239-1245
    [28]Nakase, I., Gallis, B., Takatani, T., et al. Transferrin receptor-dependent cytotoxicity of artemisinin-transferrin conjugates on prostate cancer cells and induction of apoptosis. Cancer Letters, 2009, 274(2): 290 - 298
    [29]Dixon, D.W., Gill, A.F., Giribabu, L., et al., Sulfonated naphthyl porphyrins as agents against HIV-I. J. Inorg. Biochem., 2005, 99: 813 - 821
    [30]Song, R., Robert, A., Bernadou, J., et al. Bernard meunier sulfonated and acetamido- sulfonylyated tetraarylporphyrins as biomimetic oxidation catalysts under aqueous conditions. Inorg. Chim. Acta, 1998, 272: 228 - 234
    [31]Rosenzweig, Z., Kopelman, R. Analytical properties and sensor size effects of a micrometer- sized optical fiber glucose biosensor. Anal. Chem. 1996,68: 1408 - 1413
    [32]Jiang, D.S., Liu, E., Huang, J., et al. Design and properties study on fiber optic glucose biosensor.Chin.Opt.lett.,2003.1(2):107-109
    [33]张德庆.多功能光纤生物传感材料的制备与应用:[硕士学位论文].武汉:武汉理工大学,2008
    [34]Li,X.P.,Rosenzweig Z.,A fiber optic sensor for rapid analysis of bilirubin in serum.Anal.Chim.Acta,1997,353:263-273
    [35]Marazuela,M.D.,Cuesta,B.,Moreno,B.M.C.,et al.,Free cholesterol fiber-optical biosensor for serum samples with simplex optimization.Biosens.Bioelectr.,1997,12(3):233-240
    [36]Ignatov,S.G.,Ferguson,J.A.,Walt,D.R.A fiber-optic lactate sensor based on bacterial cytoplasmic membranes.Biosens.Bioelectr.,2001,16:109-113
    [37]Barton,J.K.,Danishefsky,A.T.Tris(phenanthroline)ruthenium(Ⅱ):steroselectibity in binding to DNA.J.Am.Chem.Soc.,1984,106:2172-2174
    [38]Satyanarayana,S.,Dabrowiak,J.C.Tris(phenanthroline)Ru(Ⅱ)enantiomer interactions with DNA:mode and specificity of binding.Biochemistry,1993,32:2573-2584
    [39]Dupureur,C.M.,Barton,J.K.Structural Studies of ∧-and Δ-[Ru(phen)_2dppz]~(2+)Bound to d(GTCGAC)_2:Characterization of enantioselective intercalation.Inorg.Chem.,1997,36:33-43
    [40]Xiong,Y.,Ji,L.N.Synthesis,DNA-binding and DNA-mediated luminescence quenching of Ru(Ⅱ)polypyridine complexes.Coord.Chem.Rev.,1999,185-186:711-733
    [41]Turro,N.J.,Barton,J.K.,Tomalia,D.A.Molecular recognition and chemistry in restricted reaction spaces.Photophysics and photoinduced electron transfer on the surfaces of micelles,polyelectrolytes,dendrimers and DNA.Acc.Chem.Res.,1991,24:332-336
    [42]Wang,J.,Cai,X.H.,Rivas,M.,et al.DNA electrochemical biosensor for the detection of short DNA sequences related to the human immunodeficiency virus.Anal.Chem.,1996,68(5):2629-2634
    [43]Erdem,A.,Meric,B.,Kerman,K.,et ai.Detection of interaction between metal complex indicator and DNA by using electrochemical biosensor.Electroanal.,1999,11:1372-1376
    [44]Coates,J.,Sammes,P.G.,Yagliou,G.,et al.A new homogeneous identification method for DNA.Chem.Commun.,1994,2311-232
    [45]Sammes,P.G.,Shek,L.,Watmore,D.A new reagent for duplex DNA detection.Chem.Commun.,2000,1625-1626
    [46]Spiridonova,V.A.,Kopylov,A.M.DNA Aptamers as radically new recognition elements for biosensors.Biochemistry(Moscow),2002,67(6):706-709
    [47]Fan,C.H.,Li,G..X.,Zhu,J.Q.,et al.A reagentless nitric oxide biosensor based on hemoglobin-DNA films.Anal.Chim.Acta,2000,428:95-100
    [48]Fan,C.H.,Pang,J.T.Nitric oxide biosensor based on Hb/phosphatidylcholine films.Anal.Sci.,2002,18:129-132.
    [49]Grynkiewicz,G.,Poenie,M.,Tsien,R.Y.A new generation of Ca~(2+)indicators with greatly improved fluorescence properties.J.Biol.Chem.,1985,260:3440-3450
    [50]De Silva,A.P.,Dixon,I.M.,Gunaratne,H.Q.,et al.integration of logic functions and sequential operation of gates at the molecular-scale.J.Am.Chem.Soc.,1999,121:1393-1394
    [Sl]Zhang,J.,Campbell,R.E.,Ting,A.Y.,et al.Creating new fluorescent probes for cell biology.Nature Reviews Molecular Cell.Biology,2002,3:906-918
    [52]Minta,A.The enzyme and its coding gene.J.Biol.Chem.,1989,264:19449-19457
    [53]Meuwis,K.,Boens,N.,De Schryver,EC.,et al.Photophysics of the fluorescent K~+ indicator PBFI.Biophys.J.,1995,68:2469-2473
    [54]Raju,B.,Murphy,E.,Levy,L.A.,et al.A fluorescent indicator for measuring cytosolic free magnesium.Am.J.Physiol.Cell Physiol.,1989,256,C540-548
    [55]Gee,K.R.,Zhou,Z.L.,Sensi,S.L.,et al.Measuring zinc in living cells,a new generation of sensitive and selective fluorescent probes.Cell Calcium,2002,31:245-251
    [56]Brian,E.化学传感器与生物传感器(罗瑞贤).北京:化学工业出版社,2005.7-23
    [57]张先恩.生物传感技术与原理.吉林:吉林科学技术出版社,1990.171-185
    [58]张先恩.生物传感器.北京:化学工业出版社,2006.190-213
    [59]Li,Y.B.,Tung,S.,Varshney,M.,et al.Microfluidics based chemiluminescent fiber optical biosensor for rapid detection of Escherichia coli O157:H7 and Salmonella Typhimurium in food samples.Annual Report,Division of Agriculture,University of Arkansas,2006,37
    [60]Hiavay,J.Fiber optic biosensor for hypoxanthine and xanthine based on a chemiluminescense reaction.Biosens.Bioelectr.,1994,9(3):189-195
    [61]Cattaneo,M.V.A chemiluminescence fiber optic biosensor system for the determination of glutamine in mammalian cell cultures.Biosens.Bioelectr.,1992,7(8):569-574
    [62]Vidal,M.M.Study of an enzyme coupled system for the development of fiber optical bilirubin sensors.Biosens.Bioelectr.,1996,11(4):347-354
    [63]Xavier,M.P.Fiber optic monitoring of carbamate pesticides using porous glass with covalently bound chlorophenol red.Biosens.Bioelectr.,2000,14:895-905
    [64]Choi,J.W.Fiber optic biosensor for the detection of organophosphorus compounds using ACNE-immobilized viologen LB films.Thin Solid Film,1998,327-329:676-680
    [65]邹国林,朱汝璠.酶学.武汉:武汉大学出版社,1997.1-29
    [66]Parton,R.E,Bezoukhanova,C.P.,Thibault,S.E,et al.Catalytic properties of VP1-5 encaged Iron phthalocyanines.Stud.Surf.Sci.Catal.,1994,84:813-820
    [67]Thibault,S.F.,Parton,R.F.,Jacobs,P.A.Oxidation of cyclohexanone and cyclohexane to adipic acid by Iron-phthalocyanine on zeolite Y.Stud.Surf.Sci.Catal.,1994,84:1419-1424
    [68]Kenneth,J.B.,Mona E.,Rosario,L.,Oxidation of alkanes catalyzed by zeolite-encapsulated perfluorinated ruthenium phthalocyanines.J.Am.Chem.Soc.,1995,117:10753-10754
    [69]胡希明,皮宗新等.层状嵌接式酞菁材料对烷烃的非均相氧化催化作用.化学通报,1998,6:29-30
    [70]Capobianchi,A.,Paoletti,A.M.,Penesi,G.,et al.Ruthenium phthalocyanine:Structure,magnetism,electrical conductivity properties,and role in dioxygen activation and oxygen atom transfer to 1-Octene.Inorg.Chem.,1994,33:4635-4640
    [71]Liu,H.,Wang,Y.,et al.Cyclopropanation of alkenes catalyzed by metallophthalocyanines.J.Mol.Catal.A:Chemical,2006,246:49-52
    [72]Chen,X.L.,Wei,L.,Yang,H.H.,et al.Exploitation of reversed micelles as a medium in mimetic peroxidase-catalyzed fluorogenic reaction between hydrogen peroxide and L-tyrosine.Talanta,2002,57(3):453-460
    [73]Pasternack,R.F.,Bustamante,C.,Collings P.J.,et al.Porphyrin assemblies on DNA as studied by a resonance light-scattering technique.J.Am.Chem.Soc.,1993,115:5393-5399
    [74]Wei,S.H.,Zhou,J.H.,Huang,D.Y.,et al.Synthesis and Typel/Typell photosensitizing properties of a novel amphiphilic zinc phthalocyanine.Dyes and Pigments,2006,71(1):61-67
    [75]Zhua,C.Q.,Zhuo S.J.,Chen J.L.,et al.A kinetic fluorometric method for the determination of nucleic acids using a ternary equilibrium system of nucleic acids-iron(Ⅲ) tetracarboxy phthalocyanine-poly-lysine coupled with the oxidation reaction between hydrogen peroxide and DL-tyrosine.Anal.Chim.Acta,2004,514(2):247-252
    [76]Graham,D.G.Oxidative pathways for catecholamines in the genesis of neuromelanin and cytotoxic quinones.Mol Pharmacol.,1978,14:633-643
    [77]许金钩,王尊本,荧光分析法.北京:科学出版社,2006.65
    [78]Palop,S.G.,Romero,A.M.,Calatayud,J.M.Oxidation of adrenaline and noradrenaline by solved molecular oxygen in a FIA assembly.J.Pharm.Biomed.Anal.,2002,27:1017-1025
    [79]Nohta,H.,Ohkura,Y.Aroamtic glycinonitrles and methylamines as pre-column fluorescence derivatization reagents for catecholamines.Anal.Chim.Acta,1997,344:233-240
    [80]Zhang,D.M.,Fu,M.,Ma,W.Y.,et al.Fluorescent determination of noradrenaline and dopamine derivatized with Cy5 in capillary electrophoresis.Aanl.Sci.,2001,17:1331-1332
    [81]Nagaraja,P.,Vasantha,R.A.,Sunitha,K.R.A new sensitive and selective spectrophotometric method for the determination of catechol derivatives and its pharmaceutical preparations.J.Pharm.Biomed.Anal.,2001,25:417-424
    [82]Loay,K.A,Anas,M.A.,Mayada,H.A.Flow injection-spectrophotometeric determination of some catecholamine drugs in pharmaceutical preparations via oxidative coupling reaction with p-toluidine and sodium periodate.Anal.Chim.Acta,2005,538:331-335
    [83]熊忠.组织中去甲肾上腺素的荧光测定法.光谱学与光谱分析,1999,19:106-107
    [84]高继玲,林伊梅,高沛等.高效液相色谱法检测糖尿病肾病尿儿茶酚胺含量.新疆医科大学学报,2005,28:42-44
    [85]邢艳霞,余卫平,任慕兰等.HPLC-FD法检测尿儿茶酚胺.东南大学学报(医学版),2004,23(3):188-192
    [86]Fotopoulou,M.A.,Ioannou,P.C.Post-column terbium complexation and sensitized fluorescence detection for the determination of norepinephrine,epinephrine and dopamine using high-performance liquid chromatography.Anal.Chim.Acta,2002,462:179-185
    [87]靳桂英,张玉忠,杨周生.聚吖啶红修饰玻碳电极在抗坏血酸共存时测定肾上腺素.分析试验室,2004,23(4):1-4
    [88]胥达,吴淑庆,王新兴等.高压液相电化学法测定血浆肾上腺素和去甲肾上腺素.解放军预防医学学杂志,2005,23(5):341-343
    [89]Hernàndez,P.,Sànchez,I.,Patn,F.,et al.Cyclic voltammetry determination of epinephrine with a carbon fiber ultramicroelectrode.Talanta,1998,46:985-991
    [90]Jin,G.P.,Peng,X.,Ding,Y.F.The electrochemical modification of clenbuterol for biosensors of dopamine,norepinephrine,adrenalin,ascorbic acid and uric acid at paraffin-impregnated graphite electrode.Biosens.Bioelectr.,2008,24:1037-1041
    [91]Li,G.S.,Cao,J.N.,Simultaneous determination of catecholamines and polyamines in PC-12cell extracts by micellar electrokinetic capillary chromatography with ultraviolet absorbance detection.J.Chromat.B,2004,805:281-288
    [92]Zhou,T.S.,Qin,H.,Hui,Y.,et al.Separation and determination of β-agonists in serum by capillary zone electrophoresis with amperometric detection.Anal.Chim.Acta,2001,441:23-28
    [93]Zhou,G.J.,Zhu,G.F.,et al.Development of integrated chemiluminescence flow sensor for the determination of adrenaline and isoprenaline.Anal.Chim.Acta,2002,463:257-263
    [94]Ragab,G.H.,Nothtah,Z.K.Chemiluminescence determination of catecholamines in human blood plasma using 1,2-bis(3-chlorophenyl)ethylenediamine as pre-column dedvatizing reagent for liquid chromatography.Anal.Chim.Acta,2000,403:155-160
    [95]Chernyshov,D.V.,Shvedene,N.V.,Pletnev,I.V.,et al.Ionic liquid-based miniature electrochemical sensors for the voltammetric determination of catecholamines.Anal.Chim.Acta,2008,621:178-184
    [96]Leite,O.D.Determination of catecholamines in pharmaceutical formulations using a biosensor modified with a crude extract of fungi laccase.J.Braz.Chem.Soc.,2003,14:195-200
    [97]Toshio,Y.,Ho,C.O.Analytical evaluation of catecholamine biosensors based on tyrosinase from mushroom and mushroom tissue.Bunseki Kagaku,2002,51(6):469-472
    [98]Zhou,G.J.,Zhang,G.F.Development of integrated chemiluminescence flow sensor for the determination of adrenaline and isoprenaline.Anal.Chim.Acta,2002,463:257-263
    [99]Huang,J.,Fang,H.,Liu,C.,et al.A novel fiber optic biosensor for the determination of adrenaline based on immobilized Laccase catalysis.Anal.Lett.,2008,41:1430-1442
    [100]肖海燕.四氨基金属酞菁-Fe_3O_4纳米复合粒子固定化漆酶及其在光纤肾上腺素传感器中的应用.[博士学位论文].武汉:武汉理工大学,2006
    [101]Kleinjung,F.,Bier,F.,Warsilnke,A.Fibre-optic genosensor for specific determination of femtomolar DNA oligomers.Anal.Chim.Acta,1997,350:51-58
    [102]Piunno,P.E.A.,Krull,U.J.,Hudson,R.H.E.,et al.Fiber optic biosensoor for fluorinmetric detection of DNA hybridization.Anal.Chim.Acta,1994,288:205-211
    [103]Epstein,J.R.,Lee,M.,Walt,D.R.High-density fiber-optic genosensor microsphere array capable of zeptomole detection limits.Anal.Chem.,2002,74:1836-1840
    [104]贺全国,聂立波,刘正春等.纳米金末端修饰的时间分辨荧光组装.中国稀土学报,2005,23:281-285
    [105]Liu,J.W.,Tan.W.H.A fiber optic evanescent wave DNA biosensor based on novel molecular beacons.Anal.Chem.,1999,71:5054-5059
    [106]Perlette,J.,Tan,W.H.Real-time monitoring of intracellular mRNA hybridization onside single living cells.Anal.Chem.,2001,73:5544-5550
    [107]Robelek,R.,Niu,L.F.,Schmid,E.L.,et al.Multiplexed hybridization detection of quantum dot conjugated DNA sequences using surface plasmon enhanced fluorescence microscopy and spectrometry.Anal.Chem.,2004,76:6160-6165
    [108]Zhang,C.Y.,Johnson,L.Homogenous rapid detection of nucleic acids using two-color quantum dots.Analyst,2006,131:484-488
    [109]Zhu,C.,Zhao,K.[Ru(bipy)_3]~(2+)-doped silica nanoparticle DNA probe the electrogenerated chemiluminescence detection of DNA hybridization.Electrochim.Acta,2006,52:575-580
    [110]Zhang,G.J.,Zhou,Y.K.,Yuan,J.W.A chemiluminescence fiber-optic biosensor for detection of DNA hybridization.Anal.Lett.,1999,32:2725-2736
    [111]Taton,T.A.,Lu,G.,Mirkin,C.A.Two-color labeling of oligonucleotide arrays via size-selective scattering of nanoparticle probes.J.Am.Chem.Soc.,2001,123:5164-5165
    [112]Taton,T.A.,Mirkin,C.A.,Letsinger,R.L.Scanometric DNA array detection with nanoparticle probes.Science,2000,289:1757-1760
    [113]Goodrich,T.T.,Lee,H.J.Direct detection of genomic DNA by enzymatically amplified SPR imaging measurements of RNA microarrays.J.Am.Chem.Soc.,2004,126:4086-4087
    [114]Niu,S.Y.,Wang,S.J.,Shi,C.,et al.Studies on the fluorescence fiber-Optic DNA biosensor using p-hydroxyphenylimidazo[f]1,10-phenanthroline ferrum(Ⅲ) as Indicator.J.Fluoresc.,2008,18:227-235
    [115]Piunno,RA.,Krull,U.J.,Hudson,R.H.,et al.Fiber optic biosensor for fluorometric detection of DNA hybridition.Anal.Chim.Acta,1994,288(3):205-214
    [116]Piunno P.A.,Krull,U.J.,Hudson,R.H.,et al.Fiber optic DNA biosensor for flurometric nucleic acid determination.Aanl.Chem.,1995,67:2635-2643
    [117]Zhang,G.J.,Yuan,J.W.,Ren,S.,et al.A chemilumincscene fiber optic biosensor for detection of DNA hybridization.Anal.Lett.,1999,32:2725-2736
    [118]Rogers,K.R.,Apostol,A.,Madsenb,S.J.,et al.Fiber optic biosensor for detection of DNA damage.Anal.Chim.Acta,2001,444:51-60
    [119]Gramham,C.R.,Leslie,D.,Sqirrell,D.J.Gene probe assays on a fiber-optic evanescent wave biosensor.Biosens.Bioelectr.,1992,7(7):487-493
    [120]Liu,X.J.,Schuster,S.,Jan,W.H.Molecular beacons for DNA biosensors with micrometer to submicrometer dimensions.Anal.Biochem.,2000,283:56-63
    [121]Ferguson,J.A.,Boles,T.C.A fiber-optic DNA biosensor microarray for the analysis of gene expression.Nat.Biotech.,1996,14(13):1681-1684
    [122]Abel,A.P.,Weller,M.G.Duveneck,G.L.,et al.Fiber-optic evanescent wave biosensor for the detection of oligonucleotides.Anal.Chem.,1996,68:2905-2912
    [123]Olofsson,L.,Rindzevicius,T.,Pfeiffer,I.,et al.Surface-based gold-nanoparticle sensor for specific and quantitative DNA hybridization detection.Langmuir,2003,19:10414-10419
    [124]Cao,Y.C.,Jin,R.,Mirkin,C.A.Nanoparticles with Raman spectroscopic fingerprints for DNA and RNA detection.Science,2002,297:1536-1540
    [125]Byrne,A.,Linstead,R.P.The preparation of phthalocyanine and some metallic derivatives from o-cyanobenzamide and phthalimide.J.Chem.Soc.,1934,1017-1019.
    [126]Kobayashi,N.,Lam,H.Synthesis,spectroscopy,electrochemistry,spectroeletro-chemistry,Langmuir-Blodgett of planar binuclear phthalocyanines.J.Am.Chem.Soc.,1994,116:879-890
    [127]Kirner,J.K.,Dow,W.Molecular stereochemistry of two intermediate-spin complexes.Iron(Ⅱ)phthalocyanine and manganese(Ⅱ)phthalocyanine,Inorg.Chem.,1976,7:1685-1690
    [128]卢涌泉,邓振华,实用红外光谱分析.北京:电子工业出版社,1989
    [129]黄俊,官建国,袁润章.酞菁铜-Fe_3O_4纳米复合粒子复合机理及其性能的研究.硅酸盐学报,2000,128(5):432-435
    [130]Barreto,W.J.,Ponzoni,S.,Sassi,P.Raman and UV-Vis study of catecholamines oxidized with Mn(Ⅲ).Spectrochim.Acta Part A,1999,55:65-72
    [131]Yang,J.H.,Zhang,G.L.,Wua,X.,et al.Fluorimetric determination of epinephrine with o-phenylenediamine.Anal.Chim.Acta,1998,363:105-110
    [132]狄俊伟,屠一锋,张峰.Cu(Ⅱ)离子对多巴色素作用的紫外-可见光谱研究.光谱学与光谱分析,2004,24(7):834-836
    [133]Cherqui,A.,Duvic,B.,Reibel,C.,et al.Cooperation of dopachrome conversion factor with phenoloxidase in the eumelanin pathway in haemolymph of Locusta migratoria.Insect.Biochem.Mol.Biol.,1998,28:839-848
    [134]陈彬,杜锡光,杨树卿等.双核金属酞菁类化合物催化脱硫机理研究Ⅳ-中心金属离子对MPc-PcM催化活性都影响.分子科学学报,1996,12(3):211-217
    [135]Hernàndez,P.,Sànchez,I.,Patn,F.,et al.Cyclic voltammetry determination of epinephrine with a carbon fiber ultramicroelectrode.Talanta,1998,46:985-991
    [136]Herlinger,E.,Jameson,R.F.,Linert,W.Spontaneous autoxidation of dopamine.J.Chem.Soc.Perkin Trans.,1995,2:259-264
    [137]Heacock,R.A.The aminochromes.Advan.Heterocycl.Chem.,1965,5:205-290
    [138]Kagedal,B.,Konradsson,P.,Shibata,T.,et al.High-performance liquid-chromatographic analysis of dopachrome and dihydroxyphenlalanine.Anal.Biochem.,1995,225:264-269
    [139]Valente,A.A.,Vital,J.Oxidation of pinane to 2-pinane hydroperoxide over encaged metal phthalocyanines in Y zeolites.Mechanism and kineticmodelling.J.Mol.Catal.A Chem.,2000,156:163-166
    [140]弗格森,J.E.无机立体化学与化学键(刘举正).北京:高等教育出版社,1984.121-129
    [141]陈慧兰,余宝源.理论无机化学.北京:高等教育出版社,1989.101-119
    [142]Li,P.J.,Ohtsuki,C.,Kokubo,T.,et al.A patite formation iduced by silica gel in a simulated body fluid.J.Am.Ceram.Soc.,1992,75:2094-2097
    [143]Sheldrick,G.M.SANIT,SHELXS97 and SHELXL97.University of G(o|¨)ttingen,Germany.1997.
    [144]Spek,A.L.Methods of Analysis,Computing and Graphics.Acta Crys.Sect.A46,1990,C34
    [145]Reichmann,M.E.,Rice,S.A.,Thomas,C.A.,et al.A further examination of the molecular weight and size of deoxypentose nucleic acid.J.Am.Chem.Soc.,1954,76:3047-3053
    [146]Chen,C.H,Cai,J.W.,Liao,C.Z.,et al.Variation in the coordination mode of arenedisulfonates:syntheses and structural characterization of mononuclear and dinuclear cadmium(Ⅱ)arenedisulfonate complexes with two-to zero-dimensional architectures.Inorg.Chem.,2002,41:4967-4974
    [147]Geary,W.J.The use of conductivity measurements in organic solvents for the characterization of coordination compounds.Coord.Chem.Rev.,1971,7:81-122
    [148]Yam,V.W.W.,Pui,Y.L.,Cheung,K.K.Synthesis,photophysics,and electrochemistry of dinuclear cadmium(Ⅱ)diimine complexes with bridging chalcogenolate ligands.X-Ray crystal structures of[(phen)_2Cd(μ-SC_6H_4CH_3-p)]_2(PF_6)_2 and[(phen)_2Cd(μ-SeC_6H_5)]_2(PF_6)_2.New J.Chem.,1999,23:1163-1169
    [149]Cui,Z.N.,Guo,J.H.,Yang,E.C.Synthesis and crystal structure of a 1-D coordination polymer[Pb(ANS)_2(phen)]_n.Chin.J.Struct.Chem.,2007,6:717-720
    [150]Deng,H.Cai,J.W.,Xu,H.Ruthenium(Ⅱ)complexes containing asymmetric ligands:synthesis,characterization,crystal structure and DNA-binding.Dalton Trans.,2003,325-330
    [151]Kielkopf,C.L.,Erkkila,K.E.,Hudson,B.P.,et al.Structure of a photoactive rhodium complex intercalated into DNA.Nat Struct Biol.,2000,7:117-121
    [152]Kumar,C.V.Barton,J.K.,Turro,N.J.Photophysics of ruthenium complexes bound to double helical DNA.J.Am.Chem.Soc.,1985,107:5518-5523
    [153]Jenkins,Y.,Friedman,A.E.,Barton,J.K.Characterization of dipyridophenazine complexes of ruthenium(Ⅱ):the light switch effect as a function of nucleic acid sequence and conformation.Biochemisiry,1992,31:10809-10816
    [154]Pyle,A.M.,Rehmann,J.P.,Meshoyrer,R.,et al.Mixed-ligand complexes of ruthenium(Ⅱ):factors governing binding to DNA.J.Am.Chem.Soc.,1989,111:3051-3058
    [155]Haq,I.H.,Lincoln,P.,Suh,D.,et al.Interaction of Δ-and A-[Ru(phen)_2DPPZ]~(2+)with DNA:a calorimetric and equilibrium binding study.J.Am.Chem.Soc.,1995,117:4788-4796
    [156]Almes,F.J.M.,Porschke,D.Mechanism of intercalation into the DNA double helix by ethidium.Biochemistry,1993,32:4246-4253
    [157]杨周生,于俊生,陈洪渊.邻二氮菲-Cd~(2+)与DNA的相互作用研究.无机化学学报,2002,18(4):373-377
    [158]Herzyk,P.,Neidle,S.,Goodfellow,J.M.Conformation and dynamics of Drug-DNA intercalation.J.Biomol.Struct.Dyn.A,1992,10:97-140
    [159]Friedman,R.A.,Manning,G.S.Polyelectrolyte effects on site-binding equilibria with application to the intercalation of drugs into DNA.Biopolymers,1984,23:2671-2714
    [160]Fang,Y.Y.,Ray,B.D.Ni(Ⅱ).Arg-Gly-His-DNA interactions:investigation into the basis for minor-groove binding and recognition.J.Am.Chem.Soc.,2004,126:5403-5412
    [161]Kelly,J.M.,Tossi,A.B.,McConnell,D.J.,et al.A study of the interactions of some poly-pyridylruthenium(Ⅱ)complexes with DNA using fluorescence spectroscopy,topoisomerisation and thermal denaturation.Nucl.Acids Res.,1985,13:6017-6034
    [162]Han,M.J.,Gao,L.H.Wang,K.Z.Ruthenium(Ⅱ)complex of Hbopip:synthesis,characterization,pH-Induced luminescence“off-on-off”switch,and avid binding to DNA.J.Phys.Chem.B,2006,110:2364-2371
    [163]Nair,R.B.,Teng,E.S.,Kirkland,S.L.Synthesis and DNA-binding properties of [Ru(NH_3)_4dppz]~(2+).Inorg.Chem.,1998,37:139-141
    [164]Satyanarayana,S.,Dabrowiak,J.C.,Chaires,J.B.Neither Δ-nor ∧-tris(phenanthroline)ruthenium(Ⅱ)binds to DNA by classical intercalation.Biochemistry,1992,31:9319-9324
    [165]Henderson,L.J.,Fronczek,J.F.R.Selective perturbation of ligand field excited states in polypyridine ruthenium(Ⅱ)complexes.J.Am.Chem.Soc.,1984,106:5876-5879
    [166]李明田,黄俊,周璇.新型苯腙席夫碱的合成、表征及性质研究.武汉理工大学报,2009,31(5):38-41
    [167]Sullivan,B.P.,Salmon,D.J.,Meyer,T.J.Mixed phosphine 2,2'-bipyridine complexes of ruthenium.Inorg.Chem.,1978,17:3334-3341
    [168]Xu,H.Zheng,K.Z.,Chen,Y.,et al.Effects of ligand planarity on the interaction of polypyridyl Ru(Ⅱ)complexes with DNA.Dalton Trans.,2003,2260-2268
    [169]Plater,M.J.,Kemp,S.,Lattmann,E.Heterocyclic free radicals.Part 1.4,5-Diazafluorene derivatives of Koelsch's free radical:an EPR and metal-ion complexation study.J.Chem.Soc.,Perkin Trans.1,2000,971-979
    [170]Hartshorn,R.M.,Barton,J.K.Novel dipyridophenazine complexes of ruthenium(Ⅱ):exploring luminescent reporters of DNA.J.Am.Chem.Soc.,1992,114:5919-5925
    [171]Demeunynck,M.,Bailly,C.,Wilson,W.D.DNA and RNA binders.Weinheim:Wiley-VCH,2002.1-33
    [172]Ulyanov,N.B.,James,T.L.Statistical analysis of DNA duplex structural features.Methods Enzymol.,1995,261:90-120
    [173]蒋尚达,王科志,刘芙蓉等.双核钌(Ⅱ)多吡啶配合物与酵母RNA的相互作用研究.化学学报,2005,63(8):783-786
    [174]Xu,H.,Deng,H.,Zhang,Q.L.,et al.Synthesis and spectroscopic RNA binding studies of [Ru(phen)_2MHPIP]~(2+).Inorg.Chem.Commun.,2003,6:766-768

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700