用户名: 密码: 验证码:
日本血吸虫病免疫传感技术检测方法的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究背景:
     日本血吸虫病是一种危害严重的人兽共患寄生虫病,主要流行在发展中国家,目前,在我国湖区5省和山区2省仍在流行。血吸虫病的快速诊断的研究对于传染源的监测,疫情的控制将起到积极作用。一般认为,血吸虫病现场应用的理想诊断、筛查方法应具备以下特点:特异、敏感、价廉、简便、稳定和快速。但是,我国血吸虫病的现场查病方法仍然以粪检(kato-katz法)和IHA、ELISA等方法为主。由于粪检费时费力,阳性检出率较低,尤其在轻度流行区漏检率高,已不适宜于大面积疫区人群的筛查。常规ELISA方法操作复杂、现场难以推广应用。因此,研究快速、灵敏、准确、成本较低、简便易行的新型诊断技术和方法,已成为当前血吸虫病诊断迫切需要解决的问题。
     研究目的:
     将免疫方法和传感技术相结合,研究免疫传感技术检测日本血吸虫病的不同测试体系,为研制灵敏、简便、自动、定量分析的免疫传感检测装置奠定基础。
     研究方法:
     (1)利用巯基混合自组装单层膜(mixed SAMs)技术,以金硫键将巯基丙酸(MPA)和巯基乙醇(ME)混合物自组装在石英晶振表面,通过偶联试剂将日本血吸虫成熟虫卵可溶性抗原(SEA)交联到晶振上,从而开发了一种新的压电免疫传感器,用于血清中日本血吸虫抗体(SjAb)的直接检测。
     (2)采用自组装膜技术在石英晶振表面制备巯基丙酸(MPA)和巯基乙醇(ME)混合基底膜,通过偶联剂活化膜上羧基用于日本血吸虫抗原(SjAg)的高效共价固定。通过夹心式免疫反应引入辣根过氧化酶(HRP)标记二抗,利用HRP催化H_2O_2氧化底物4-氯-1-萘酚,在晶振表面形成不溶性沉积物,使免疫检测信号得以显著放大,提高检测的灵敏度。
     (3)采用印刷电极开发便携式、一次性的电化学生物传感器。将碳浆和银浆印刷在PET板,做成二电极的试条,工作电极为碳电极,在工作电极上以不同的方法固定SEA,参比电极为银和氯化银电极,通过循环伏安法(CV法)和示差脉冲伏安法(DPV法)来检测抗体的效价,比较几种不同固定方法的检测效果。
     (4)采用磁性颗粒为载体固定日本血吸虫抗原的方法,将日本血吸虫抗原通过共价吸附到核壳结构的磁性颗粒表面,与待测抗体反应后,再与酶标二抗夹心反应,最后以3,3',5,5'-四甲基联苯胺(TMB)为底物,通过测定酶催化下荧光强度的变化来检测抗体的浓度。
     (5)利用双抗原夹心法,采用日本血吸虫可溶性虫卵抗原(SEA)包被硝酸纤维素膜(NC膜)作为捕获剂,日本血吸虫抗体(SjAb)包被NC膜作对照线,以胶体碳标记SEA作为显色剂,建立快速检测血清中血吸虫抗体的胶体碳试条法,并用灰度传感技术检测测试带灰度来完成半定量分析。
     研究结果:
     (1)与传统采用单一自组装单层膜固定化方法相比,发现基于混合自组装单层膜固化SjAg具有更高的免疫反应活性。在优化的实验条件下,该传感器检测血清稀释范围为1:1 500-1:60,比较了不同SiAb浓度的IRS实际样本,与经典ELISA法相比,相关系数达0.960。
     (2)开发了一种基于酶生物催化沉积信号放大的日本血吸虫压电免疫传感器。酶催化底物反应生成不溶物沉积显著放大免疫检测信号,提高了方法的检测灵敏度,传感器检测血清稀释范围为1:10000-1:200。
     (3)探索了四种不同的血吸虫抗原固定方法,并研制了四种血吸虫印刷电极免疫传感器:戊二醛交联(GA)传感器、壳聚糖-戊二醛(Chit-GA)交联法传感器、溶胶-凝胶法(Sol-gel)传感器、碳纳米管修饰的溶胶-凝胶法(Sol-gel)传感器。采用阳性兔血清测试戊二醛交联(GA)传感器的检测血清稀释范围为:1:1 000-1:400;壳聚糖-戊二醛(Chit-GA)交联法传感器的检测范围为:1:1 000-1:500;溶胶-凝胶法(Sol-gel)传感器的检测范围为:1:1 000-1:500;碳纳米管修饰的溶胶-凝胶法(Sol-gel)传感器检测范围为:1:2 000-1:100。
     (4)首次采用荧光免疫传感分析方法,检测了兔血清中日本血吸虫抗体的浓度,抗体稀释度在1:2×10~5-1:10~4范围内荧光强度响应呈良好的线性关系。
     (5)建立了一种快速检测血清中日本血吸虫抗体的胶体碳试纸条免疫诊断方法,引入灰度传感以得出检测带(T带)的灰度,而T带灰度与血清效价具有较好曲线关系,因而可以根据曲线对待测血清作出半定量分析。检测137份血清,与间接血凝法(indirecthaemagglutination assay,IHA)检测结果一致性为98.54%。以IHA试剂盒为参照,该方法的检测敏感性为98.99%,特异性为97.37%。
     结论:
     (1)基于巯基混合自组装单层膜的压电免疫传感器,检测方法灵敏、简便,在实际样品的检测中,取得了满意结果。且检测能力与经典ELISA法相接近,经进一步优化可望用于日本血吸虫病的诊断。
     (2)基于巯基化合物混合自组装膜的免疫材料固定化程序可实现SjAg在压电晶振表面的高效固定化,引入的酶催化底物反应生成不溶物步骤可显著放大免疫检测信号,从而提高了检测灵敏度(SjAb浓度稀释比达1:10 000),与常规免疫测定方法相比,该压电免疫传感技术具有灵敏度较高、线性范围较宽、成本低廉等优点,可望用于日本血吸虫病的检测分析。
     (3)基于不同的血吸虫抗原固定方法,研制了四种血吸虫印刷电极免疫传感器。四种方法比较,碳纳米管修饰的溶胶-凝胶法(Sol-gel)传感器灵敏度高,线性范围宽,生物材料抗原的使用量少,成本低,为发展成一次性电极快速测试条奠定了基础。
     (4)建立了一种荧光免疫传感分析方法并用于日本血吸虫抗体的检测,方法简单实用且具有良好的选择性和重现性,为光学传感检测的研究探索了新的途径。
     (5)首次将灰度传感技术应用于日本血吸虫病的诊断,结合胶体碳试纸条,建立一种可实现日本血吸虫抗体半定量检测的方法,该法操作简便,快速,具有较高的敏感性和特异性,适合作血吸虫病的现场诊断,也为免疫传感技术的应用开辟了新的方向。
     (6)表1为本文中研究的几种免疫传感器性能比较,免疫荧光检测方法和酶催化沉积放大的压电免疫传感器的灵敏度高,但存在测试时间相对较长,操作复杂的弊端;混合自组装单层膜压电免疫传感器操作简单,检测的灵敏度可以满足血吸虫检测的需要,但存在传感器和测试仪器成本较高,仪器抗干扰性差的问题;基于印刷电极的碳纳米管修饰的溶胶-凝胶传感器检测时间短,仪器和传感器成本低,检测的灵敏度可以满足血吸虫病检测的需要,但目前传感器的重现性与实际应用还存在一定差距;纳米碳颗粒标记的层析免疫试条使用方便,测试时间短,检测的灵敏度可以满足血吸虫筛查的需要,具有一定的实用性,但目前的研究成果尚限于半定量的检测。
Background
     Schistosomiasis japonicum remains to be a serious zoonosis and mostly prevalent in developing country. In our country it mainly locates in 5 provinces around lake and 2 provinces at mountain area. Researches of rapid diagnosis on schistosomiasis are significant for monitoring the source of infection and epidemic control. It is generally believed that the ideal diagnostic methods on spot should be specific, sensitive, cheap, convenient, stable and rapid. Nowadays the diagnostic methods are Kato-Katz, IHA and ELISA yet. Kato-Kotz is time costing and labor consuming with a poor positive recall rate which is easy to show false-negative in lightly epidemic areas, so it is not suitable for screening in a large area. Normal ELISA is hard to generalize for its relatively complicate manipulation of the equipment. Therefore, establishing new, fast, accurate, low-costing and convenient techniques or methods comes to be the key concerns in schistosomiasis diagnosis.
     Objective
     In this research, we aimed to combine electrochemical sensor with immune method to explore some different testing systems of schistosomiasis japonicum diagnosis, which would lay the foundation for the development of a sensitive, convenient, automatic and quantitative immunosense equipment.
     Methods
     (1) To develope a new piezoelectric immunosensor that detects the Schistosoma japonicum antibodies (SjAb) of serum directly. According to the technology of mixed self-assembled monolayer membrane (mixed SAMs), the mix of mercaptopropionic acid (MPA) and mercaptoethanol (ME) was self assembled on the surface of quartz crystal by gold- sulphur-bond, and soluble egg antigen(SEA) of Schistosoma japonicum (Sj) was cross link to the quartz crystal through special coupling agent.
     (2) Prepare composite basal membrane of mercaptopropionic acid (MPA) and mercaptoethanol (ME) on the surface of quartz crystal according to self-assembled monolayer membrane technique, then activate the carboxy group on the membrane through coupling agent to covalently immobilize target Schistosoma japonicum antigens (SjAg) with high efficiency. After the presentation of horseradish peroxidase (HRP)-labeled goat-anti-rabbit secondary antibodies in immune reaction, which HRP catalyze the reaction that H_2O_2 oxidize its substrate 4-chloro-1-naphthol into insoluble deposit on the quartz crystal surface, the immune detection signal of the SjAg-SjAb reaction was significantly amplified, which the detection sensitivity was also improved.
     (3) Using printed electrode to developed a portable and disposable electrochemical biosensor. The carbon inks and silver/silver chloride inks were printed on the PET board to make a two electrode's test strip, carbon was working electrode and SEA was fixed on working electrode by different methods, silver/ silver chloride electrode was used as control. We tested the valency of the antibody by cyclic voltammetry and differential pulse voltammetry in the electrochemistry workstation, and conducted comparison of the effects of several different methods.
     (4) The SjAg was bound covalently on the surface of magnetic particles of core-shell structure reacted with the SjAb, and then the SjAg-SjAb complex was bound with the HRP-Ab by a sandwich reaction. Using 3,3',5,5'-tetramethyl benzidine(TMB) as a fluorescent substrate, the concentration of antibodies was detected indirectly by determining the variance in fluorescent intensity resulting from the catalytic oxidation of TMB.
     (5) Developed a rapid colloid carbon dipstick method to detect SjAb based on double antigen sandwich method. SEA was conjugated with colloidal carbon, and the conjugated antigen could react with the antibodies in the patients' sera of schistosomiasis, then the carbon-antigen-antibodies complex would be captured by SEA which had been absorbed on nitrocellulose membrane and show a gray band as a result. And we realized a semi-quantitative analysis by detecting the gray of the test band with gray sensing technology.
     Results
     (1) Compared with the traditional immobilization method by single self-assembled monolayers, the SjAg immobilization based on mixed self-assembled monolayers has a much better immunoreactivity. Under the optimal experimental conditions, its detection range is 1:1 500 to 1:60 (infected rabbit serum dilution ratios), we compared several practical samples of infected rabbit serum with varying SjAb concentration, and then made a correlation analysis that compared with classic ELISA, the correlation coefficients reached to 0.960.
     (2) Explored a high sensitive piezoelectric immunosensor based on enzyme-biocatalyzed precipitation amplification for the determination of SjAb. Insoluble products precipitate generated by enzyme catalysis substrate can significantly magnify the signal of immunity detection, and improve the detection sensitivity. Its detection range is 1:10 000 to 1:200.
     (3) Developed four immobilization print electrode immunosensors based on different methods to fix SjAg: glutaraldehyde cross-linking transducer, chitosan-glutaraldehyde cross-linking transducer, Sol-gel method transducer, and carbon nano-tube modified Sol-gel method transducer. Detection ranges of glutaraldehyde cross-linking immunosensors is 1:1 000 to 1:400; chitosan-glutaraldehyde cross-linking immunosensors is 1:1 000 to 1:500; Sol-gel immunosensors is 1:1 000 to 1:500; carbon nano-tube modified Sol-gel immunosensors is 1:2.000 to 1:100.
     (4) Developed a fluoroimmunosensing assay to detected SjAb concentration for the first time. The method was applied to the determination of SjAb in rabbit serum. This transducer exhibits a good linear relationship to the dilution 1: 2×10~5 to 1:10~4 of SjAb in infected rabbit serum.
     (5) Established a rapid colloidal-carbon dipstick immunoassay for detecting antibodies of Sj in the serum. Gray sensing of the testing band (T band), which has a good curvilinear relationship with the sera valence was applied to make a semi-quantitative analysis. 137 sera were tested and the consistency of the results to IHA is 98.54%. Taking detection results of the sera by IHA as a reference standard, the sensitivity of colloidal carbon dipstick assay was 98.99% while the specificity was 97.37%.
     Conclusion
     (1) Piezoelectricity immunosensor based on hydrosulfide group mixed self-assembly monolayer membrane is sensitive and convenient. The technique has satisfaction results in practical detection. And it is capable of the ELISA. It would be used in the diagnosis of schistosomiasis after grading-up.
     (2) The SjAg can be efficiently immobilized by immobilization procedure of immune material based on mixed self-assembled layers of mercapto, and the insoluble products precipitate generated by enzyme catalysis substrate can significantly magnify the signal of immunity detection (even at the SjAb dilution ratio of 1:10 000). Compared with the conventional immunoassays, this method has many advantages, just as higher sensitivity, wider linear range and lower cost. It is hoped to be used in the diagnosis of the Schistosomiasis japonicum.
     (3) Based on different methods to fix SjAg, we have developed four immobilization print electrode immunosensors. Comparing four methods, carbon nano-tube modified sol-gel method transducer is more sensitive, high detection range, less biomaterials using, and lay a foundation for developing a rapid electrode test trip.
     (4) A fluoroimmunosensing assay of SjAb detection based on magnetic nanoparticle immobilization was developed. This assay is sensitive, simple and with high selectivity and reproducibility, and explored a new way of the study on optical sensing detection.
     (5) Connected gray sensor technology with colloidal carbon dipstick for the first time, a feasible semi-quantitative detection method of schistosomiasis japonicum has been established. This method is simple, rapid, and high selectivity and specificity, it is suitable for schisto-somiasis field diagnosis and open up the direction for the immunosensing technology.
     (6) We compared the different immunosensors in chart 1. Magnetic nanoparticle immobilization fluoroimmunosense and enzyme-catalyzed depositing enlargement piezoelectric immunosensor have high sensitivity, but both of them need long assay time and complex to operation; Self-assembled monolayers piezoelectric immunosensor is easy to operate and the sensitivity meets the need of diagnostic of schistosomiasis japonicum, but the cost of immunosensors and equipment is high and the equipment is easy to interference; Carbon nano-tube modified Sol-gel immunosensor is convenient to operate and the sensitivity meets the need of diagnostic of schistosomiasis japonicum, the cost of immunosensors and equipment is low, but the repeatability doesn't satisfy the application of clinical. Colloidal-carbon dipstick is convenient and rapid to operate, and the sensitivity meets the need of diagnostic of schistosomiasis japonicum, but it is confined to semi-quantivity detection. chart 1: Comparison of different immunosensors
引文
[1] Chitsulo L, Loverde R, Engels D, et al. Schistosomiasis. Nature reviews microbiology, 2004,2(1):12-13
    [2] Engels D, Chitsulo L, Montresor A, et al. The global epidemiological situation of schistosomiasis and new approaches to control and research. Acta Tropica, 2002,82(2): 139-46
    [3] Chitsulo L, Engels D, Montresor A, et al. The global status of schistosomiasis and its control. Acta Tropica, 2000,77:44-51
    [4] Michaud CM, Murray CJL, Bloom BR. Burden of disease Implications for future research[J]. Jama-journal of the American Medical Association, 2001,285(5):535-539
    [5] WHO Expert Committee. Prevention and control of schistosomiasis and soil-transmitted helminthiasis. World Health Organ Tech Rep Ser, 2002,912:Ⅰ-vi,1-57
    [6] Gift TL, Pate, MS, Hook EW, et al. The rapid test paradox: when fewer cases detected lead to more cases treated-A decision analysis of tests for Chlamydia trachomatis. Sesually Transmitted Diseases, 1999,26(2):232-240
    [7] 温志立,汪世平,沈国励.免疫传感器的发展概述.生物医学工程学杂志.2001,18(4):642-646
    [8] 汪世平,温志立,吴朝阳,等.压电免疫传感器检测日本血吸虫循环抗原的研究.中国人兽共患病杂志,2002,18(4):47-51
    [9] Elisabeth B, Michele S, chantal C. Anti-rabbit immunoglobulin G detection in complex medium by PM-RAIRS and QCM: influence of the antibody immobilization method. Biosensors and Bioelectronics, 2007, 22(12): 2884-2890
    [10] Vivian C H, Chen S H, Lin C S. Real-time detection of Escherichia coli O157:H7 sequences using a circulating-flow system of quartz crystal microbalance. Biosensors and Bioelectronics, 2007,22(12):2967-2975
    [11] Monica A, Mohammed Z, Alberto E. Supported liquid membrane-modified piezoelectric flow sensor with molecularly imprinted polymer for the determination of vanillin in food samples. Talanta, 2007,72(4): 1362-1369
    [12] Shen G Y, Wang H, Shen G L, et al. Au nanopartical network-type thin films formed via mixed assembling and cross-linking route for biosensor application: quartz crystal microbalance stude. Analytical Biochemistry, 2007,365(1):1-6
    [13] W H King. Piezoelectric sorption detector. Ana Chem,1964,36,1735-1739
    [14] Shons A, Dorman F, and Najarian J. An immunospecific microbalance. J Biomed Mater Res, 1972,6,565
    [15] 吴朝阳,何春萍,汪世平,等.基于巯基自组装单层膜的日本血吸虫石英晶体微天平免疫传感器.高等学校化学学报,2001,22(4):542-546
    [16] 陈泽忠,王柯敏,陈永康等.压电免疫传感器用于乙肝表面抗原的测定.高等学校化学学报.2002,23(6):1044-1046
    [17] Muratsugu M , Fumihiko O, Yoshihiro M. Quartz crystal microbalance for the detection of microgram quantities of human serum album in: relationship between the frequency change and the mass of protein adsorbed. Anal Chem, 1993,65:2933-2937
    [18] Niikura K, Matsuno H, Okahata Y. Direct monitoring of DNA polymerase reactions on a quartz-crystal microbalances. J Am Chem Soc, 1998,120:8537
    [19] 刘明华.压电基因传感器阵列的实验和临床应用研究:[博士研究生论文].重庆:第三军医大学.2001,39-63
    [20] Konig B, Gratzel M. A piezoelectric immunosensor for hepatitis viruses. Anal ChimActa, 1995, 309(1): 19-25
    [21] Bain C D, Whitesides G M. Formation of monolayers by the co-adsorption of thiols on gold-variation in the length of the alkyl chain. J Am Chem Soc,1989,111(18):7164-7175
    [22] Satjapipat M, Sanedrin R, Zhou F M. Selective Desorption of Alkanethiols in Mixed Self-Assembled Monolayers for Subsequent Oligonucleotide Attachment and DNA Hybridization. Langmuir, 2001,17:7637-7644
    [23] Chapman R G, Ostuni E, Yan L, et al. Preparation of Mixed Self-Assembled Monolayers (SAMs) That Resist Adsorption of Proteins Using the Reaction of Amines with a SAM That Presents Interchain Carboxylic Anhydride Groups. Langmuir, 2000,16:6927-6936
    [24] Frederix F, Bonroy K, Laureyn W, et al. Enhanced Performance of an Affinity Biosensor Interface Based on Mixed Self-Assembled Monolayers of Thiols on Gold. Langmuir, 2003,19:4351-4357
    [25] Dubrovsky T B, Hou Z, Stroeve P, et al. Self-Assembled Monolayers Formed on Electroless Gold Deposited on Silica Gel: A Potential Stationary Phase for Biological Assays. Anal Chem, 1999,71:327-332
    [26] 汪世平,曾宪芳,易新元.日本血吸虫31/32kDa抗原纯化及诊断应用的研究.中国寄生虫学与寄生虫病杂志,1995,13(1):25-30
    [27] Su X D, Robelek R, Wu Y J, et al. Detection of point mutation and insertion mutations in DNA using a quartz crystal microbalance and MutS, a mismatch binding protein. Anal Chem, 2004,76:489-494
    [28] Jung L S, Nelson K E, Stayton P S, et al. Binding and Dissociation Kinetics of Wild-Type and Mutant Streptavidins on Mixed Biotin-Containing Alkylthiolate Monolayers. Langmuir, 2000,16:9421-9432
    [29] 王桦,吴朝阳,沈国励,等.一种新的转铁蛋白压电免疫传感器的研究.高等学校化学学报,2001,22(8):1305-1309
    [30] Atassi M Z, van Oss C J, Absolom D R, et al. Molecular immunology, New York: Marcel Dekker Press, 1984, Chapter 16-18
    [31] Ghourchian H O, Kamo N, Hosokawa T, et al. Improvement of latex piezoelectric immunossay detection of rheumatoid factor. Talanta, 1994, 41:401-406
    [32] Wu Z Y, Shen G L, Yu R Q, Wang S P, Zeng X F. Piezoelectric immunosensor based on the agglutination of PEG for determination of S-japonicum antibody. Chem J Chin Univ, 1997,18 (11),1774-1778
    [33] Shen G X, Zhou R L. Modern experiment technology in immunology, Shijiazhuang: Hubei Science Press, 1998:133-136
    [34] Steegborn C, Skladal P. Construction and characterization of the direct piezoelectic immunosensor for atrazine operating in solution. Biosensors and Bioelectronics, 1997,12 (1):19-27
    [35] Lu HC, Chen H M, Lin Y S, et al. A Reusable and Specific Protein A-Coated Piezoelectric Biosensor for Flow Injection Immunoassay. Biotechnol Prog, 2000,16(1):16-24
    [36] Lin L, Zhao H, Li J, et al. Study on colloidal Au-enhanced DNA sensing by quartz crystal microbalance. Biochem Biophys Res Commun, 2000,274(3):817-820
    [37] Harteveld J L N, Nieuwenhuizen M S, Wils E R J, et al. Detection of Staphylococcal Enterotoxin B employing a piezoelectric crystal immunosensor. Biosensors and Bioelectronics, 1997,12(7):661 -667
    [38] 高志贤,晁福寰,王红勇,等.亲和素-生物素间接偶联的压电DNA传感器研究.生物化学与生物物理进展,2002,29(3):454-459
    [39] Si S H, Ren F L, Cheng W, et al. Preparation of a piezoelectric immunosensor for the detection of Salmonella paratyphi A by immobilization of antibodies on electropolymerized films. Fresenius Journal of Analytical Chemistry, 1997,357(8):1101-1105
    [40] Pal A, Dhar T K. An analytical device for on-site immunoassay, demonstration of its applicability in semiquantitative detection of aflatoxin B1 in a batch of samples with ultrahigh sensitivity. Anal Chem, 2004,76(14):98-104
    [41] 李继山,吴朝阳,等.基于邻苯二胺电聚合膜的抗体固定化方法研究.高等学校化学学报,2003,24(4):624-626
    [42] 丁克祥,吴朝阳,等.hTK1质量放大压电石英晶体免疫传感器研究.中国老年学杂志,2005,25(9):1064-1067
    [43] Alfonta L, Willner I, Throckmorton DJ, et al. Electrochemical and quartz crystal microbalance detection of the cholera toxin employing horseradish peroxidase and GMl-functionalized liposomes. Anal Chem, 2001,73:5287-5295
    [44] Hart J P, Wring S A. Screen-printed voltammetric and amperometric electrochemical sensors for decentralized testing. Electroanalysis, 1994(6):617-624
    [45] Hart J P, Wring S A. Recently developments in the design and application of screen-printed electrochemical sensors for biomedical, environmental and industrial analyses. Trends in Analytical Chemistry, 1997(16):89-103
    [46] Honeychurch K C, Hart J P. Voltammetric behaviour of p-Nitrophenol and Its trace Determination in Human Urine by Liquid Chromatography with a Dual reductive Mode Electrochemical Detection System. Electroanalysis, 2007(19):2176-2184
    [47] Honeychurch K C, Smith G C, Hart J P. Voltammetric Behaviour of Nitrazepam and its Determination in Serum using Liquid Chromatography with Redox Mode Dual Electrode Detection, Anal Chem, 2006(78):416-423
    [48] Pemberton R M, Pittson R, Biddle N, et al. Studies towards the development of a screen-printed carbon electrochemical immunosensor array for mycotoxins: A sensor for Aflatoxin B1. Analytical Letters, 2006(39):1573-1586
    [49] Hart J P, Serban S, Jones L J, Biddle N & R. Pittson, G A. Drago. Selective and rapid biosensor integrated into a commercial hand-held instrument for the measurement of ammonium ion in sewage effluent. Analytical letters, 2006(39):1657-1667
    [50] Matthews D R, Brown E, Watson A, Holman R R. Pen-sized digital 30-second blood glucose meter. Lancet 1987(1):778-779
    [51] Li Y G, Zhou Y X, Feng J L, et al. Immobilization of enzyme on screeb-printed electrode by exposure to glutaraldehyde vapour for the construction of amperometric acetylcholinesterase electrodes. Anal Chim Acta, 1999(382):277-282
    [52] Qiu Q, Ducheyne P, Ayyaswamy P. New bioactive, degradable composite microspheres as tissue engineering substrates. Journal of Biomedical Matrerials Research, 2000,52:66-76
    [53] Merkovich E A, Carruette M L, Babak V G et al. Kinetics of the Initial Stage of Gelation in Chitosan Solutions Containing Glutaric Aldehyde: Viscometric Study. Colloid Journal, 2001,63(3): 350-354
    [54] Vogelsberger W, Seidel A, Fuchs R. Contribution to the Determination of Kinetic Parameters of the Sol-Gel Transformation by Rheological Measurements. Journal of Colloid and Interface Science, 2000,230:268-271
    [55] 王红军,马建标,王亦农.何炳林.交联聚丙烯酰胺负载的氧化β-环糊精的合成及其对尿素的吸附性能.离子交换与吸附,1996,12(5):438-442
    [56] Masahiko N, Tomaya T, Norio N, et al. Beta-Cyclodextrin-Linked Chitosan Beads: Preparation and Application to Removal of Bisphenol A from Water. Carbohydr Lett, 2000,4(1):61-67
    [57] 应太林,孙康,刘海英,等.用Nafion膜固定的N-甲基吩嗪为介体的过氧化氢生物传感器.上海大学学报(自然科学版),1997,3(2):188-193
    [58] Ivanov A N,Evtugyn G A,Gyurcsanyi R E,et al.Comparative investigation of electrochemical cholinesterase biosensors for pesticide determination. Annalytica Chimica Acta, 2000,404:55-65
    [59] Mustan N, Hall E A H. Examination of an immunoglobulin modified methacrylate copolymer for ampermetric immunoassay. Anaytical Chimica Acta, 1999,396(2-3):171-180
    [60] Wu J, Suls J, Sansen W. Amperometric glucose sensor with enzyme covalently immobilized by Sol-gel technology. Analytical Sciences, 1999,15(10):1029-1032
    [61] 宫志龙,章竹君,张海.基于固定酶的流动袄光法测定血清中的葡萄糖.分析化学,1996,25(9):998-1001
    [62] Z S Wu, J S Li, R Q Yu,et al.A novel capacitive immunosensor based on gold colloid monolayers associated with a sol-gelm atrix. Anal Chim Acta, 2005,528(2):235-242
    [63] S S Zhang, K Jiao, M Wang, et al. Detection of ferritin in human serum with a MAP-H_2O_2-HRP voltammetric enzyme-linked immunoassay system. Talanta,1999,50(1):95-101
    [64] Y K Ye, J H Zhao, H X Ju, et al. Electrochemical behavior and detection of hepatitis Bvirus DNA PCR production at gold electrode. Biosensors and Bioelectronics,2003,18(12):1501-1508
    [65] G F Yan,H X Ju,Z C Liang,et al.Technical and clinical comparison of two fully automated methods for the immunoassay of CA 125 in serum. J Immunol Methods, 1999,225(1):1-8
    [66] H Y Chen, H X Ju, Y G Xun. Methylene Blue/Perfluorosulfonated Ionomer Modified Microcylinder Carbon Fiber Electrode and Its Application for the Determination of Hemoglobin. Anal.Chem, 1994,66(24):453-542
    [67] J Li, L T Xiao, R Q Yu, et al. A renewable amperometric immunosensor for phytohormone P-indoleacetic acid assay. Anal Chim Acta, 2003,494(1-2),177-185
    [68] G.D. Liu, T.S. Zhong, R.Q. Yu, et al. Renewable amperometric immunosensor for complement C3 assay b sed on the sol-gel technique. J Anal Chem,2001,370(8), 1029-1034
    [69] 赵强,庞小峰.磁性纳米生物材料研究进展及其应用.原子与分子物理学报,2005,22(2):222-225
    [70] 陈功,殷珺.磁性纳米材料在生物医学领域的应用.中国医学装备,2006,3(8):30-32
    [71] Qi H L, Zhang C X, Simultaneous determination of hydroquinone and catechol at a glassy carbon electrode modified with multiwall carbon nanotubes, Electroanalysis,2004,17(10):832-838
    [72] 常文保,张柏林,慈云祥.药物免疫分析及其进展.分析化学,1994,22(11):1167-1175
    [73] 张振亚,梅兴国.现代荧光免疫分析技术应用及其新发展.生物技术通讯,2006,17(4):677-680
    [74] 刘树庭,林朝晖,沈国励,俞汝勤.醋酸纤维膜固定过氧化氢酶电极的研究.分析化学,1994,22(10):998-1001
    [75] McManus DP. Improved diagnosis as an aid to better surveillance of Taenia Solium cysticercosis, a potential public health threat to Papua New Guinea. PNG Med J, 1995,38(4):287
    [76] Bergquist N R. Present aspects of immunodiagnosis of schistosomiasis. Mem Inst Oswaldo Cruz, 1992,87:29-38
    [77] 石佑恩.血吸虫病防治工作中的困扰与展望.公共卫生与预防医学,2005,16(1):1-3
    [78] 何伟,朱荫昌,华万全,等.血吸虫病快速免疫诊断——胶体染料试纸条法的研究.中国血吸虫病防治杂志,2000,12(1):18-20
    [79] Van Dam G J, Wichers J H, Ferreira T M, et al. Diagnosis of schistosomiasis by reagent strip test for detection of circulating cathodic antigen. Clin Microbiol, 2004,42(12):5458-5461
    [80] 喻鑫玲,何永康,杨瑞清,等.胶体金SPA双联抗体检测试纸条法诊断日本血吸虫病的初步研究.实用预防医学,2006,13(3):521-523
    [81] Zhu Yin-chang, He Wei, Liang You-sheng, et al. Development Of a rapid, simple dipstick dye immunoassay for schistosomiasis diagnosis. Journal of Immunological Methods, 2002,266(1-2): 1-5
    [82] 肖祥,汪天平.血吸虫病快速免疫诊断——胶体染料免疫渗滤法的初步研究.安徽医学,2001,22(3):57-58
    [83] 曾小军,陈红根,袁建华,等.快速胶体金免疫层析法的建立及其对血吸虫病的诊断效果.中国血吸虫病防治杂志,2005,17(1):24-27
    [84] 华万全,朱荫昌,何伟,等.血吸虫病快速早期诊断试纸条的研究.中国血吸虫病防治杂志,2004,16(3):189-192
    [85] 彭运潮,胡述光,刘增再,等.免疫胶体金技术诊断日本血吸虫病的研究进展.动物医学进展,2005,26(10):23-27
    [86] Hirata H, Huang X H, Xuan X N, et al. Rapid immunochromatographic test using recombinant SAG2 for detection of antibodies against Toxoplasma gondii in cats. Journal of Clincal Microbiology, 2004,25:351-353
    [87] 葛琴娟,巢秀琴,吴霄,等.胶体染料试条法在血吸虫病诊断中的应用价值.实用预防医学,2006,13(3):763-764
    [88] 陆正贤,夏超明.日本血吸虫病免疫诊断研究进展.中国血吸虫病防治杂志,2006,18(4):318-320
    [89] Amerongen V A, Loon V D, Berendsen L B, et al. Quantitative computer image analysis of a human chorionic gonadotropin colloidal carbon dipstick assay. Clin Chim Acta, 1994,229(1-2):67-75
    [90] van Amerongen A, Wichers J H, Berendsen L B, et al. Colloidal carbon particles as a new label for rapid immunochemical test methods: quantitative computer image analysis of results. J Biotechnol, 1993,30(2): 185-95
    [91] Bcggs M, Sampedro N M. A self perfoming chromatographic immunoassay for the pualitative determination of human chroinic gonadrotrophin(HCG) in urine and serum. Chn Chem, 1990,361:1084-1086
    [92] 高艳春,李爱菊,范小林,等.血吸虫的检测与血吸虫病的诊断.赣南师范学院学报,2005,3:7-11
    [93] 朱荫昌.胶体染料试纸条法诊断血吸虫病.嘉兴医学,2003,19(5):273-276
    [94] Yokoyama K, Iekbuuro K, Tamiya E, et al. Highly sensitive quartz crystal immunosensors for multisample detection of herbicides. Analytica Chimica Acta, 1995,304(2):139-145
    [95] Chu X, Lin Z H, Shen G L, et al. Piezoelectric immunosensor for the detection of immunoglobulin M. Analyst, 1995,120(12):2829-2832
    [96] Muramatsu H, Kajiwara K, Tamiya E, et al. Piezoelectric immunosensor for the detection of candidan albicans microbes. Analytica Chimica Acta, 1986,188(1):257-261
    [97] Ebersole R C, Ward M D. Amplified mass immunosorbent assay with a quartz crystal microbalance. Journal of the American Chemical Society, 1988, 110(26): 8623-8628
    [98] Alfonta L, Singh A K, Willner I. Liposomes labeled with biotin and horseradish peroxidase a probe for the enhanced amplification of antigen-antibody or oligonucleotide-DNA sensing processes by the precipitation of an insoluble product on electrodes. Anal Chem, 2001,73(21):91-102
    [99] Hu T, Wang H, Shen G-L, et al. An Amplified Piezoelecric Immunosensor Based on Amplification of Enzyme-catalyzed Precipitation Mass. Chemical journal of Chinese universities, 2006,27(6):1032-1035
    [100] Kurosawa S, Tawara E, Kamo N, et al. Latex piezoelectric immunoassay detection of agglutination of antibody-bearing latex using a piezoelectric quartz crystal. Chemical and Pharmaceutical Bulletin, 1990,38(5):1117-1120
    [101] Ebersole R C, Ward M D. Amplified mass immunosorbent assay with a quartz crystal microbalance. Journal of the American Chemical Society, 1988, 110(26):8623-8628
    [102] Muratsugu M, Ohta F, Miya Y, et al. Quartz crystal microbalance for the detection of microgram quantities of human serum albumin: relationship between the frequency change and the mass of protein absorbed. Anal Chem, 1993,65(20):2933-2937
    [103] Minunni M, Skladal P, Mascini M. A piezoelectric quartz crystal biosensor as a direct affinity sensor. Analytical Letters, 1994,27(8): 1475-1487
    [104] Fawcett N C, Evans J A, Chien L C, et al. Nuelic-acid hybridization detected by piezoelectric resonance. Analytical Letters, 1988,21(7):1099-1114
    [105] Konig B, Gratzel M. Detection of human T-lymphocytes with a piezoelectric immunosensor. Analytica Chimica Acta, 1993,281(1):13-18
    [106] Konig B, Gratzel M. Detection of viruses and bacteria with piezoimmunosensor. Analytical Letters, 1993,26(8): 1567-1585
    [107] Wink T, Zuilen S J, Bult A, et al. Self-assembled Monolayers for Biosensors. Analyst, 1997,122:43R-50R
    [108] Sagiv J. Organized monolayers by Adsorption.1.Formation and structure of oleophobic mixed monolayers on solid surfaces. J Am Chem Soc, 1980,102(1):92-98
    [109] Troughton E B, Bain C D, Whitesides G M, et al. Monolayer films prepared by the spontaneous self-assembly of symmetrical and unsymmetrical dialkyl sulfides from solution onto gold substrates:structure, properties, and reactivity of constituent functional groups. Langmuir,1988,4(2):365-385
    [110] Porter M D, Bright T B, Allara D L, et al. Spontaneously organized molecular assembliesAStructural characterization of nalkyl thiol monolayers on gold by optical ellipsmetry, infrared spectroscopy and electrochemistry. J Am Chem Soc, 1987,109(12):3559-3568
    [111] McCarley R L, Dunaway D J, Willicut R J. Mobility of the alkanethiol-gold(111)interface studied by scanning probe microscopy. Langmuir, 1993,9(11):2775-2777
    [112] Steinem C, Janshoff A, Wegner J, et al. Impedance and shear wave resonance analysis of ligand-receptor interactions at functionalized surfaces and of cell monolayers. Biosensors and Bioelectronics, 1997,12(8):787-808
    [113] Okahata Y, Matsuura K,Ito K, et al. Gas-Phase selective Adsorption on Functional Monolayers Immobilized on a Highly Sensitive Quartz-Crystal Microbalance. Langmuir, 1996,12(4):1023-1026
    [114] Weissbaar D E, Lamp B D, Porter M D. Thermodynamically controlled electrochemical formation of thiolate monolayers at goidxharacterization and comparison to self-assembled analogs. J Am Chem Soc, 1992,114(4):5860-5862
    [115] Qingwen L, Hong G, Timing W, et al. Studies on self-assembly monolayers of cysteine on gold by XPS, QCM, and electrochemical techniques. Electroanalysis, 2001,13(16):1342-1346
    [116] Ulman A. Formation and Structure of self-Assembled Monolayers. Chem Rev, 1996,96(4): 1533-1554
    [117] Song S, Clark R A, Boweden E F, et al. Characterization of cytochromec alkanethiolate structures prepared by self-assembly on gold. J Phys Chem, 1993,97(24):6564-6572
    [118] Fung Y S. Wong Y Y. Self-assembled monolayers as the coating in a quartz piezoelectric crystal immunosensor to detect Salmonella ia aqueous solution. Anal Chem, 2001,73(21):5302-5309
    [119] 李丹.基于分子膜自组装技术的压电免疫传感器的研究:[湖南大学分析化学硕士学位论文].长沙:湖南大学化学化工学院,2001
    [120] Storri S, Santoni T, Minunni M, et al. Surface modifications for the development of piezoimmunosensors. Biosensors and Bioelectronics, 1998.13(3-4):347-357
    [121] Ebara Y, Okahata Y. In situ surface-detecting technique by using a quartzcrystal microbalance. Interaction behaviors of proteins onto a phospholipids monolayer at the air-water interface. Langmuir, 1993,9(2):574-576
    [122] Ebato H, Gentry C A, Herron J N, et al. Investigation OF specific binding of Antifouorescyl Antibody and Fab to F;uorescein Lipids in Langmuir-Blodgentt Deposited Films Using quartz Crystal Microbalance Methodology. Anal Chem,1994,66(10):1683-1689
    [1] Chitsulo L, Loverde R, Engels D, et al. Schistosomiasis. Nature reviews microbiology, 2004,2(1): 12-13
    [2] Engels D, Chitsulo L, Montresor A, et al. The global epidemiological situation of schistosomiasis and new approaches to control and research. Acta Tropica, 2002,82(2): 139-46
    [3] Chitsulo L, Engels D, Montresor A, et al. The global status of schistosomiasis and its control. Acta Tropica, 2000,77:44-51
    [4] Michaud CM, Murray CJL, Bloom BR. Burden of disease Implications for future research. Jama-journal of the American Medical Association, 2001,285(5):535-539
    [5] WHO Expert Committee. Prevention and control of schistosomiasis and soil-transmitted helminthiasis. World Health Organ Tech Rep Ser, 2002,912:Ⅰ-vi,1-57
    [6] Jiang QW, Wang LY, Guo JG, et al. Morbidity control of schistosomiasis in China. Acta Tropica, 2002,82(2):115-125
    [7] Chen XY, Wang LY, Cai JM, et al. Schistosomiasis control in China: the impact of a 10-year World Bank Loan Project (1992-2001). Bulletin of the World Health Organization, 2005,83(1):43-48
    [8] 周晓农,汪天平,王立英,等.中国血吸虫病流行现状分析.中华流行病学杂志,2004,25(7):555-558
    [9] 赵根明,王立英,赵琦,等.2000-2003年全国血吸虫病疫情监测结果分析.中国血吸虫病防治杂志,2004,16(6):405-410
    [10] 肖东楼,余晴,党辉,郭家钢,王立英.2003年全国血吸虫病疫情通报.中国血吸虫病防治杂志,2004,16(6):401-404
    [11] Mott KE, Desjeux P, Moncayo A, et al. Parasitic diseases and urban development. Bulletin of the World Health Organization, 1990,68(6):691-698
    [12] 操治国,汪天平.我国城市血吸虫病的流行现状和防治对策.中国血吸虫病防治杂志,2007,19(4):315
    [13] 林丹丹,吴海玮,吴观陵,等.中国血吸虫病防治策略优化组合的回顾与评估.中国血吸虫病防治杂志,2007,19(3):234
    [14] Wu GL. A historical perspective on the immunodiagnosis of schistosomiasis in China. Acta Tropica, 2002,82:193-198
    [15] Doenhoff MJ, Chiodini PL, Hamilton JV. Specific and sensitive diagnosis of schistosome infection: can it be done with antibodies? Trends in Parasitology, 2004,20(1):35-39
    [16] Gift TL, Pate, MS, Hook EW, et al. The rapid test paradox: when fewer cases detected lead to more cases treated-A decision analysis of tests for Chlamydia trachomatis. Sesually Transmitted Diseases, 1999,26(2):232-240
    [17] Mabey D, Peeling RW, Ustianowski A, et al. Diagnostics for the developing world. Nature reviews microbiology, 2004,m2(3):231-240
    [18] Lengeler C, Utzinger J, Tanner M. Questionnaires for rapid screening of schistosorniasis in sub-Saharan Africa. Bulletin of the World Health Organization, 2002,80(3):235-242
    [19] Mafe MA. The diagnostic potential of three indirect tests for urinary schistosomiasis in Nigeria. Acta Tropica, 1997,68(3):277-284
    [20] Barreto, ML. Questionnaire approach to diagnosis in developing countries. Lancet, 1998,352(9135):1164-1165
    [21] Yu J, De Vlas SJ, Yuan HC, et al. Variations in fecal Schistosoma japonicum egg counts. American Journal of Tropical Medicine and Hygiene, 1998,59(3):370-375
    [22] Kongs A, Marks G, Verle P, et al. The unreliability of the Kato-Katz technique limits its usefulness for evaluating S-mansoni infections. Tropical Medicine&International Health, 2001,6(3):163-169
    [23] Utzinger J, Booth M, N'Goran EK, et al. Relative contribution of day-to-day and intra-specimen variation in faecal egg counts of Schistosoma mansoni before and after treatment with praziquantel. Parasitology, 2001,122:537-544
    [24] Pontes LA, Oliveira MC, Katz N, et al. Comparison of a polymerase chain reaction and the Kato-Katz technique for diagnosing infection with Schistosoma mansoni. American Journal of Tropical Medicine and Hygiene, 2003,68(6):652-656
    [25] Ismail M, Botros S, Metwally A, et al.Resistance to praziquantel: direct evidence from Schistosoma mansoni isolated from Egyptian villagers. American Journal of Tropical Medicine and Hygiene, 1999,60(6):932-935
    [26] Cioli D, Pica-Mattoccia L Praziquantel. Parasitology Reseach, 2003,90,Suppl:S3-S9
    [27] Lawn SD, Lucas SB, Chiodini PL. Case report: Schistosoma mansoni infection: failure of standard treatment with praziquantel in a returned traveller. Transactions of the Royal Society of Tropical Medicine and Hygiene, 2003,97(1):100-101
    [28] 林泉,宋文强,彭承琳.生物传感器及其在生物医学中的应用研究.医疗卫生装备,2007,28(8):27-28
    [29] Clark LC, Lyons C. Electrode Systems for Continuous Monitoring in Cardiovascular Surgery. Annals of the NEW YORK Academy of Sciences, 1962,102(1):29-&
    [30] Updike SJ, Hicks GP. Enzyme electrode. Nature, 1967,214(5092) :986-&
    [31] Janata J. An immunoelectrode. J Am Chem Soc, 1975,97(10):2914-2916
    [32] Divies C. Remarks on ethanol oxidation by an "Acetobacter xylinum" microbial electrode. Annales De Microbialogie, 1975,126(2): 175-186
    [33] Rechmitz GA, Kobos RK, Riechel SJ, Gebauer CR. A bio-selective membrane electrode prepared with living bacterial cells. Anal Chim Atca, 1977,94,357-365
    [34] Rechmitz G. Biosensor using lettuce-seed meal for L-glutamine. Chem Eng News, 1978,56(41):16
    [35] Aizawa M ,Wada M ,Kato S, Suzuki S, et al. Article Immobilized mitochondrial electron transport particle for NADH determination. Biotechnology and Bioengineering, 1983,22(9):1769-1783
    [36] 温志立,汪世平,沈国励.免疫传感器的发展概述.生物医学工程学杂志.2001,18(4):642-646
    [37] Toppozada AR, Wright J, Eldefrawi AT, Eldeftawi ME. Evaluation of a fiber optic immunosensor for quantitating cocaine in coca leaf extracts. Biosensors and Bioelectronics, 1997,12 (2): 113-124
    [38] Plowman TE, Reichert WM, Peters CR, et al. Femtomolar sensitivity using a channel-etched thin film waveguide fluoroimmunosensor. Biosensors and Bioelectronics, 1996,11(1-2):149-160
    [39] Pulido-Tofino P, Barrero-Moreno JM, Perez-Conde MC. Sol-gel glass doped with isoproturon antibody as selective support for the development of a flow-through fluoroimmunosensor. Anal Chim Acta, 2001,429(2):337-345
    [40] Rico CM, Mdel Pilar, Fernandez, et al. Development of a flow fluoroimmunosensor for determination of theophylline. Analyst, 1995,120(10):2589-2591
    [41] Vodlnh T, Alarie JP, Johnson RW, Sepaniak MJ, et al. Evaluation of the the fiber-optic antibody-based fluoroimmunosensor for DNA adducts in human placenta samples. Clin Chem, 1991,Apr,37(4):532-535
    [42] Aoyagi S, Miyasaka T, Yoshimi Y, et al. A new reagentless immunosensor for measuring IgG concentration in human Plasma based on fluorescence-enhancement immunoassay. Journal of Artificial Organs, 2002,5(1):60-63
    [43] Huang ZJ, Olson NA, You WM, etal. A sensitive competitive ELISA for 2,4-dinitrophenol using 3,6-fluorescein diphosphate as a fluorogenic substrate. Journal of Immunol Ogical Methods, 1992,149(2):261-266
    [44] Cai YX, Qin Y, Chang WB, et al. Fluorimetric mimetic enzyme immunoassay of methotrexate Fresenius. J Anal Chem, 1994,349(4):317-319
    [45] Li QG, Xu JG, Huang Xz, et al. The effects of media propcrties on horseradish peroxidase-catalyzed fluorogenic reaction. Talanta, 1994,41(12):2049-2054
    [46] Tuuminen T, Palomaki P, Rakkolainen A, et al. 3-Para-hydroxyphenyl propionic acid-a sensitive fluorogenic substrate for automated fluorometric enzyme immunoassays. Journal of Immunoassay, 1991,12(1):29 -46
    [47] Petrea R, Sepaniak MJ, VoDinh T. Fiberoptics-based time-resolved fluorimetry for immunoassays. Talanta, 1988,35(1):139-144
    [48] Meyer J, Karst U. Enzyme-linked immunosorbent assays based on peroxidase labels and enzyme-amplified lanthanide luminescence detection. Analyst, 2001,126(2):175-178
    [49] 冯旭,刘方平,骆英.压电生物传感器的原理及其在生物医学检验中的应用.江苏大学学报(医学版),2005,15(6):545-547
    [50] Saber R, Mutlu S, Piskin E. Glow-dicharge treated piezoelectric guartz crystal immunosensors for has detection. Biosensor and Bioelectronics, 2002,17: 727-734
    [51] 司士辉,张郁葱,陈昕,等.抗体固载于TiO_2多孔膜的压电免疫型细菌传感器.分析试验室,2004,23(5):37-40
    [52] 张波,府伟灵,蒋天伦,等.压电石英晶体传感器检测血浆凝血酶原时间及其初步应用.第三军医大学学报,2002,24(11):35-38
    [53] 高志贤,张清敏,姜永强,等.巯基自组装的压电DNA传感器技术研究.南开大学学报(自然科学),2002,35(9):111-117
    [54] Tombelli S, Mascini M, Turner A P E Improved procedures for immobilization of oligonucleotides on gold-coated piezoelectric quartz crystals. Biosensors and Bioelectronics, 2002,17:929-936
    [55] 王存嫦,王桦,吴朝阳,等.纳米金自组装膜的IgM压电免疫传感器的研究.化学学报,2003,61(4):608-613
    [56] Choi Jeong-woo, Park Ki-Suk, lee Woochang, et al. Regulation of anti-LDL immobilization on self-assembled protein Glayer using CHAPS and its application to immunosensor. Materials Science and engineering, 2004,24:241-247
    [57] Urban G, Kamper H, Jachimowicz A, et al. The construction of microcalorimetric biosensors by use of high resolution thin film thermistors. Biosensors and Bioelectronics, 1991,6(3):275-280
    [58] 温志立,汪世平,沈国励.免疫传感器的发展概述.生物医学工程学杂志,2001,18(4):642-646
    [59] Thevenot DR, Toth K, Durst RA, et al. Electrochemical biosensors: recommended definitions and classification. Biosensor and Bioelectronics, 2001,16:121-131
    [60] Simpson DL, Kobos RK, Microbiological assay of tetracycline with a potentiometric carbon dioxide gas sensor. Anal Lett, 1982,15(B16):1345-1349
    [61] Simpson DL, Kobos RK. Potentiometric microbiological assay of gentamicin, streptomycin, and neomycin with a carbon dioxide gas-sensing electrode. Anal Chem, 1983,55(12):1974-1977
    [62] Fonong T, Rechnitz GA. Homogeneous Potentiometric Enzyme-Immunoassay for Human Immunoglobulin-G. Anal Chem, 1984,56(13):2586-2590
    [63] Keating M Y, Rechnitz GA, Potentiometric Digoxin Antibody Measurements with Antigen Ionophore Based Membrane Electrodes. Anal Chem, 1984,56(4):801-806
    [64] Schasfoort RB, Kooyman RP, Bergveld P. A new approach to immunopet operation. Biosensors and Bioelectronics, 1990,5(2):103-124
    [65] Ghindilis AL, Skorobotko OV, Gavnlova VP. A new approach to the construction of potentiometric immunosensors. Biosensors and Bioelectronics, 1992,7(4):301-304
    [66] Aizawa M, Morioka A, Suzuki S. Enzyme immunosensor. Ⅲ. Amperometric determination of human chorionic gonadotropin by membrane-bound antibody. Analytical Biochemistry, 1979,9(1):22-28
    [67] Rachkov AE, Rozhko MI, Sergeyeva TA. Method and apparatus for the detection of the binding reaction of immunoglobulins. Sensors and Actuators, 1994,19:610-613
    [68] Sandberg RG, Van Houten LJ, Schwartz JL. A conductive polymer-based immunosensor for the analysis of pesticide residues. Am Chem Sec Syrup Ser, 1992,511(1):81-88
    [69] 吴朝阳,汪世平,沈国励,等.基于PEG凝集的压电免疫性传感器用于日本血吸虫抗体的测定.高等学校化学学报,1997,18(11):1774-1778
    [70] 汪世平,温志立,吴朝阳,等.压电免疫传感器检测日本血吸虫循环抗原的研究.中国人兽共患病杂志,2002,18(4):47-51
    [71] 王存嫦,王桦,吴朝阳,沈国励,俞汝勤.一种新的生物分子固定化方法在日本血吸虫压电免疫传感器中的应用.化学传感器,2003,23(4):8-14
    [72] 周亚民,王永东,王桦,吴朝阳,沈国励.基于Nafion膜修饰的血吸虫抗体压电免疫传感器研究.分析化学,2006,S1:195-198
    [73] 沈国励,吴朝阳,俞汝勤.日本血吸虫免疫传感器研究.化学传感器,2001,21(3):33-34
    [74] 曹轩,胡舜钦,沈国励,等.基于壳聚糖-溴化氰改性褐藻酸钠凝集作用的日本血吸虫安培免疫传感器.高等学校化学学报,2003,24:1377-1380

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700