用户名: 密码: 验证码:
凝血酶和可卡因电化学适体传感器的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
现代生命科学、环境科学、材料科学的迅速发展,为分析化学的发展带来了新的机遇和挑战。随着人类基因组计划的顺利完成,从基因水平去认识疾病,认识基因对人类生老病死的控制过程等取得了很大进展。核酸和蛋白质是组成生命的主要生物大分子,核酸具有传递遗传信息等功能,蛋白质则贯穿所有的生命活动过程。核酸与蛋白质之间相互作用的信息的获得,将有助于对一些生命过程的研究,进而掌握生命活动和信息传递规律并实施调节及调控。因此,蛋白质、核酸和药物的检测对人类疾病的预防、诊断和治疗具有重要的现实意义。生物传感器是简单、快速和廉价免疫检测和核酸检测的重要工具。在生物传感器生物分子识别元件中,抗体由于其制备比较繁琐、固定化易失活、保存时间有限等,因此,亟需探索新型高特异高稳定的分子识别物质,建立高选择性高灵敏的生物传感技术。利用体外筛选技术获得的适体,由于其独特的优点,成为新一代生物识别分子,适体传感器的研究也受到了人们的极大关注。电化学生物传感器具有灵敏度高、响应快、操作简便、价格低廉等优点。因此,电化学适体传感器的研究成为继免疫电化学传感器和DNA电化学传感器后新的研究热点。
     纳米技术的出现为纳米材料在分析化学领域的发展和应用开辟了新的方向。纳米材料的优异性能例如比表面积大、反应活性高等为分析化学开辟了新的研究途径,纳米粒子独特的性能为生物检测奠定了基础。将纳米粒子和高特异性的适体,高灵敏的电化学检测技术相结合,提高了电化学检测的灵敏度,扩大了纳米材料应用范围,为生物分析化学开辟了新的领域。
     本论文的研究目的是将纳米材料与高特异性的分子识别物质适体,高灵敏的电化学检测技术相结合,建立测定蛋白质、小分子药物的新方法和电化学适体传感器。发展具有高灵敏高选择性的电化学适体传感器,开拓生物传感器的研究和应用范围,为蛋白与小分子药物的疾病诊断和临床治疗提供具有潜在应用价值的分析器件。主要通过两个途径:(1)基于纳米粒子为电极修饰物、信号标记物或信号物质载体,放大了检测信号,提高了检测灵敏度;(2)利用电化学阻抗技术,建立非标记型凝血酶蛋白质和小分子药物可卡因检测的新方法。本论文分为两部分:第一部分为综述部分,第二部分为研究报告部分。
     第一章为引言。引言部分首先简要地介绍了适体的体外筛选方法、适体的特点、适体与配体的相互作用和适体的化学修饰;总结了适体传感器和电化学适体传感器的分类,适体的固定化方法以及相关的电化学分析技术;重点评述了标记型和非标记型电化学适体传感器的研究进展,对电化学适体传感器的发展进行了展望。最后阐述了本论文的选题背景、研究意义、研究目的和研究内容。
     第二章为标记型凝血酶电化学适体传感器的研究。基于碳纳米管的多负载作用,设计了以碳纳米管负载纳米银标记适体,夹心法检测凝血酶的电化学方法。以凝血酶为蛋白质的研究模型,利用碳纳米管负载纳米银标记适体Ⅲ以及固定在金电极上的适体Ⅰ与凝血酶结合形成金电极/适体Ⅰ/凝血酶/碳纳米管负载纳米银标记适体Ⅲ的三明治夹心式结构,通过检测碳纳米管负载纳米银上银的电化学信号,对凝血酶进行定量测定。氧化电流与凝血酶浓度在0.012~10nmol/L呈良好的线性关系,检出限可以达到0.005 nmol/L。该方法对凝血酶具有高的特异性识别能力,其检测不受其他蛋白质的干扰。利用碳纳米管表面负载多个纳米银粒子,对电化学信号起到了放大作用,提高了检测凝血酶的灵敏度。使用脉冲伏安法直接检测,无需对纳米粒子进行酸化和溶出,检出电位低,可能克服血液中还原性物质的干扰。该传感器有望用于实际样品中凝血酶的检测。
     第三章为非标记型凝血酶电化学适体传感器的研究。基于适体与凝血酶结合前后电子传递电阻的变化,构建了非标记适体检测凝血酶的交流阻抗电化学传感器。利用电化学沉积方法制备金纳米粒子修饰玻碳电极,将末端带巯基的适体通过分子自组装作用固定在金纳米粒子修饰玻碳电极上。通过扫描电镜、X-射线能谱和原子力显微镜等技术对沉积在电极上的金纳米粒子进行了形貌的表征。研究了以三种不同序列适体为分子识别物质,测定凝血酶的线性范围和检出限,比较了三者灵敏度的差异。考察和讨论了不同序列适体与凝血酶的动力学行为,利用动力学法和浓度平衡法计算了适体与凝血酶形成的结合常数及适体与凝血酶复合物的解离常数。对两种方法获得的适体与凝血酶复合物的解离常数进行了比较和讨论。本方法简单,无需对适体进行标记,金纳米粒子的多负载作用,提高了凝血酶检测的灵敏度。本研究对适体-目标蛋白质之间结合过程的机理有一个更深的理解,将有助于我们进一步揭示核酸与蛋白这两种生命中最关键物质之间的相互作用和关系,对于我们更好地理解基本的生物过程和预测设计适体生物检测方法,发展用于疾病诊断的方法有着重要的意义。
     第四章非标记型可卡因电化学适体传感器的研究。基于荷正电的六氨合钌离子与DNA骨架的静电结合作用,构建了检测可卡因的非标记型电化学适体传感器。将末端带巯基的可卡因适体与部分互补的单链DNA杂交,杂交溶液通过自组装作用固定在金电极上。未加入可卡因时,部分互补双链与六氨合钌离子静电结合,导纳值较大;加入可卡因后,可卡因适体与可卡因结合,构象发生变化,部分互补单链DNA解旋脱离电极表面,适体上静电结合的六氨合钌离子数量降低,导纳值减小。通过检测六氨合钌离子导纳的抑制值对可卡因进行定量测定。导纳虚部的峰值与可卡因的浓度在2~100μmol/L之间呈良好的线性关系,检出限为0.6μmol/L。对30.0μmol/L可卡因进行7次平行测定,相对标准偏差为4.0%。
     第五章标记型可卡因电化学适体传感器的研究。基于金纳米粒子多负载作用,构建了一种新型的检测可卡因的电化学适体传感器。首先将金纳米粒子通过双巯基自组装作用固定在金电极上。利用自组装作用将末端带巯基的二茂铁标记可卡因适体固定到金纳米粒子修饰金电极上。研究发现,氧化电流与可卡因的浓度在1.0~15.0μmol/L范围呈良好的线性关系,检出限为0.5μmol/L。对15.0μmol/L可卡因进行7次平行测定,相对标准偏差为3.5%。与裸金电极相比较,金纳米粒子修饰金电极可以提高适体的负载量,使测定可卡因的灵敏度提高了10倍。研究了氧化还原过程中的二茂铁的表观异相电子转移速率常数k_s,金纳米粒子修饰金电极上二茂铁的表观异相电子转移速率常数k_s大于裸金电极上二茂铁的表观异相电子转移速率常数k_s。金纳米修饰电极可以加速氧化还原反应的电子转移速度。本方法可望用于其他小分子药物的检测。
     本论文以适体为分子识别物质,以凝血酶和可卡因作为研究模型,以纳米粒子为电极修饰材料、信号物质载体或信号物质,设计了两种高灵敏的标记型电化学适体传感器;利用电化学交流阻抗技术,构建了两种非标记型电化学适体传感器。本论文所研制的电化学适体传感器,为蛋白质和小分子药物的灵敏、简单、快速检测提供了良好的分析器件和分析新方法。电化学适体传感器的研究将不仅为电化学适体传感器的设计提供新概念和思路,而且还将为临床疾病诊断、基因检测和药物筛选提供具有潜在应用价值的分析器件,对生命科学和生物传感器的发展具有重要意义。
Determination of protein has been a topic of significant interest with the accomplishment of Human Genome Project and the rapid progress of proteomic strategies.Intense research activities are carried out to develop rapid,simple,specific and sensitive detection devices for protein in medical diagnostics and biomedical research application,while the detection methodologies for protein based on antibodies cannot meet the demand.Aptamers have been emerging as a new protein recognition element in wide range of bioassays.Aptamers have attracted a considerable attention due to their ability to bind target protein with high affinity and specificity and have many advantages over antibodies.These properties of aptamers make aptamers ideal candidates as protein recognition elements in a wide range of bioassays and for the development of diseases diagnostics. Electrochemical aptamer-based biosensors have attracted significant interest due to its simple, sensitive and low-cost detection capability for applications including clinical genetic analysis, environment monitoring,and forensic identification.
     Nanoparticles are of considerable interest owing to their unique physical and chemical properties, and offer excellent prospects for biosensor.The power and scope of nanoparticles can be greatly enhanced by coupling them with the high specificity of the aptamer and the high sensitivity of the electrochemical recognitions.
     The aim of the present work is to develop novel electrochemical biosensors based on nanoparticles and aptamer.Labeled and label free electrochemical aptamer-based biosensors were designed for the determination of biological molecules such as protein and drug with high sensitivity and selectivity.
     This thesis consists of two parts.First part,chapter 1,is general introduction while second part, consisting of four chapters,is research report.
     Chapter 1-General introduction.In this chapter,the concepts of aptamer,including in vitro selection of aptamer,the characteristic of aptamer,the interactions between aptamer and target, chemical modification of aptamers,were described;the principle of aptamer-based biosensor and electrochemical aptamer-based biosensor were presented;the recent developments of labeled and label-free electrochemical aptamer-based biosensor were reviewed;the purpose and the significance of this research work were simply presented.
     Chapter 2-Labeled electrochemical aptamer-based biosensor for the determination of thrombin. A highly sensitive electrochemical method for the detection of thrombin based on the two thrombin-binding-aptamers(TBAⅠand TBAⅢ) has been developed.TBAⅠwith a thiol group at the 3′-terminal by self-assembled onto the surface of a gold electrode was employed as an electrochemical probe for capturing thrombin.TBAⅢlabeled with carbon-nanotubes(CNTs) tagged with silver nanoparticles(CNTs-Ag) was used for the detection of thrombin.CNTs were decorated with a large number of silver nanoparticles to form CNTs-Ag.Binding events were monitored by differential pulse voltammetric(DPV) signal of silver nanoparticles.There was a linear relation between the peak current at+0.20 V(vs.Ag/AgCl) and thrombin concentration over the range from 0.012 to 10 nmol/L with a detection limit of 0.005 nmol/L of thrombin.The detection processes are simple due to no requirement of acid-dissolving the label metal,the presence of other protein,as BSA did not affect the detection.This work demonstrated that the probe labeled with CNTs loaded with silver nanoparticles offers a great promising approach for sensitive detection of protein.
     Chapter 3-Label free electrochemical aptamer-based biosensor for the determination of thrombin. A simple and highly sensitive electrochemical impedance spectroscopy(EIS) biosensor based on a thrombin-binding aptamer as molecular recognition element was developed for the determination of thrombin.The signal enhancement was achieved by using gold nanoparticles(GNPs),which was electrodeposited onto a glassy carbon electrode(GCE),as a platform for the immobilization of the thiolated aptamer.In the measurement of thrombin,the change in interfacial electron transfer resistance of the biosensor using a redox couple of[Fe(CN)_6]~(3-/4-) as the probe was monitored.The increase of the electron transfer resistance of the biosensor is linear with the concentration of thrombin in the range from 0.12 nmol/L to 30 nmol/L.The association and dissociation rate constants of the immobilized aptamer-thrombin complex were 6.7×10~3 M~(-1) s~(-1) and 1.0×10~(-4) s~(-1), respectively.The association and dissociation constants of three different immobilized aptamers binding with thrombin were measured and the difference of the dissociation constants obtained was discussed.This work demonstrates that GNPs electrodeposited on GCE used as a platform for the immobilization of the thiolated aptamer can improve the sensitivity of an EIS biosensor for the determination of protein.This work also demonstrates that EIS method is an efficient method for the determination of association and dissociation constants on GNPs modified GCE.The obtained kinetics parameter and equilibrium constants will direct us to find out the basic principle for designing the aptamer based biosensor and to deeply understand the properties of the aptamer toward protein,and it will be great importance of developing new approaches for disease diagnosis.
     Chapter 4-Label free electrochemical aptasensor for the determination of cocaine.A simple and highly sensitive impedance spectroscopy biosensor based on aptamer as molecular recognition element was developed for the determination of cocaine.The solution of the modified aptamer for cocaine and the complementary short DNA were first mixed in the buffer in equal more quantities to treat a half-duplex,and then the half-duplex aptamers were immobilized onto a gold electrode surface via thiol-Au interactions.The electroactive complex,[Ru(NH_3)_6]~(3+),which can bind to anionic phosphates of aptamer and DNA strands completely through electrostatic interactions,serves as a signaling probe.[Ru(NH_3)_6]~(3+) is adsorbed on a half-duplex aptamers backbone,giving a clear detection signal in admittance.After binding with cocaine,the complementary short DNA were released together with the[Ru(NH_3)_6]~(3+) that was electrostatically binding to them,resulting in a lower admittance signal for the[Ru(NH_3)_6]~(3+) confined on the electrode surface.The admittance response exhibits a linear relationship to the logarithm of the target concentration in the concentration range from 2μmol/L to 100μmol/L.This device combines the selectivity of the aptmer recognition layer with the sensitivity of admittance to the determination of cocaine.
     Chapter 5-Labeled electrochemical aptamer-based biosensor for the determination of cocaine.A novel electrochemical self-assembled onto the surface of a gold electrode incorporating a signal enhancement for the determination of cocaine was designed.Gold nanoparticles were self-assembled onto the surface of a gold electrode through 1,6-hexanedithiol.A bifunctional derivative of the 32-base cocaine-binding aptamer with a redox-active ferrocene moiety and a thiol linker group at the termini of the strand was self-assembled onto the surface of gold nanoparticles.The oxidation peak current is linearly related to the concentration of cocaine from 1.0 to 15.0μmol/L with a detection limit of 0.5μmol/L.It was found that the sensitivity of the aptamer-based biosensor with gold nanoparticles modification is~10-folds higher than that of the aptamer-based biosensor without gold nanoparticles modification.The apparent heterogeneous electron transfer rate of ferrocene was determined to be 67 s~(-1).Compared with the apparent heterogeneous electron transfer rate of ferrocene at bare gold electrode,the apparent heterogeneous electron transfer rate of ferrocene increased at gold nanoparticles modified gold electrode.This work demonstrates that gold nanoparticles-assembled gold electrode provides a promising platform for immobilizing aptamer and enhancing the sensitivity.
引文
[1]A P F Turner,Biosensors—Sense and Sensitivity[J].Science,2000,290:1315-1317.
    [2]G A Soukup,R R Breaker.Nucleic Acid Molecular Switches[J].Trends in Biotechnology,1999,17:469-476.
    [3]W Vercoutere,M Akeson.Biosensors for DNA Sequence Detection[J].Current Opinion in Chemical Biology,2002,6(6):816-822.
    [4]H H Thorp.Cutting out the middleman:DNA Biosensors Based on Electrochemical Oxidation[J].Trends in Biotech.,1998,16:117-121.
    [5]C Tuerk,L Gold.Systematic Evolution of Ligands by Exponential Enrichment:RNA Ligands to Bacteriophage T_4 DNA Polymerase[J].Science,1990,249:505-510.
    [6]A D Ellington,J W Szostak.In Vitro Selection of RNA Molecules That Bind Specific Ligands[J].Nature,1990,346:818-822.
    [7]D L Robertson,G F Joyce.Selection in Vitro of an RNA Enzyme That Specifically Cleaves Single-Stranded DNA[J].Nature,1990,344:467-468.
    [8]S P Song,L H Wang,J Li,et al.Aptamer-based Biosensors[J].Trends in Analytical Chemistry,2008,27:108-117.
    [9]邵宁生,李少华,黄燕苹.SELEX技术及Aptamer研究的新进展[J].生物化学与生物物理进展,2006,33(4):329-335
    [10]姚春艳,府伟灵.适配子技术在生物传感器中的应用[J].国际检验医学杂志,2006,27(8):707-708.
    [11]漆红兰,李延,李晓霞,张成孝.适体传感器研究新进展[J].化学传感器,2007,27(3):1-8.
    [12]P Bridonneau,C Y F hang,A V Buvoli,et al.Site-Directed Selection of Oligonucleotide Antagonists by Competitive Elution[J].Antisense Nucleic Acid Drug Dev,1999,9(1):1-11
    [13]Y Lin,A Padmapriya,K M Morden,S D Jayasena.Peptide Conjugation to an In Vitro-Selected DNA Ligand Improves Enzyme Inhibition[J].Proc.Natl.Acad.Sci.,1995,92:11044-11048.
    [14]L S Green,D Jellinek,R Jenison,et al.Inhibitory DNA Ligands to Platelet-Derived Growth Factor B-Chain[J].Biochem.,1996,35:14413-14424.
    [15]M A Lochrie,S Waugh,D G Jr Pratt,et al.In Vitro Selection of RNAs That Bind to The Human Immunodeficiency Virus Type-1 Gagpolyprotein[J].Nucleic acids Res.,1997,25:2902-2910.
    [16]S C Gopinath,T S Misono,K Kawasaki,et al.An RNA Aptamer That Distinguishes Between Closely Replaced Human Influenza Viruses and Inhibits Haemagglutinin-Mediated Membrane Fusion[J].J.Gen.Virol.,2006,87:479-487.
    [17]E Kraus,W James,A N Barclay.Cutting Edge:Novel RNA Ligands Able to Bind CD4 Antigen and Inhibit CD41 T Lymphocyte Function[J].J.Immunol.,1998,160:5209-5212.
    [18]N Rupcich,W Chiuman,R Nutiu,et al.Quenching of Fluorophore-labeled DNA Oligonucleotides by Divalent Metal ions:Implications for Selection,Design,and Applications of Signaling Aptamers and Signaling Deoxyribozymes[J].J.Am.Chem.Soc.,2006,128:780-790.
    [19]A A Haller,P Sarnow.In vitro Selection of a 7-Methyl-Guanosine Binding RNA That Inhibits Translation of Capped mRNA Molecules[J].Proc.Natl.Acad.Sci.,1997,94:8521-8526.
    [20]K P Williams,X H Liu,T N M Schumachcr,et al.Bioactive and Nuclease-Resistant L-DNA Ligands of Vasopressin[J].Proc.Natl.Acad.Sci.,1997,94:11285-11290.
    [21]C Mannironic,A Dinardo,P Fruscoloni,G P Tocchini-Valentini.In Vitro Selection of Dopamine RNA Ligands[J].Biochem.,1997,36:9726-9734.
    [22]马新勇,汪俊,陈波,方晓红.单分子荧光成像研究凝血酶核酸适体的折叠[J].高等学校化学学报,2007,10:1852-1856.
    [23]T Hermann,D J Patel.Adaptive Recognition by Nucleic Acid Aptamers[J].Science,2000,287(5454):820-825.
    [24]C H Lin,D J Patel.Encapsulating an Amino Acid in a DNA Fold[J].Nat.Struct.Biol.,1996,3:1046-1050.
    [25]周翠松.核酸识体荧光光谱法研究及其关联数据库的构建[D].四川大学博士学位论文,2006年.
    [26]P D Jatel,A K Suri.Structure,Recognition and Discrimination in RNA Aptamer Complexes with Cofactors,Amino Acids,Drugs and Aminoglycoside Antibiotics [J].Reviews in Molecular Biotechnology,2000,74(1):39-60.
    [27]林育芳,赵迎社.适体技术:疾病治疗和药物研究的新方向[J].生命的化学,2002,22(3):237-239.
    [28]谢海燕,陈薛钗,邓玉林.核酸适配体及其在化学领域的相关应用[J].化学进展,2007,19(6):1026-1033.
    [29]W G Purschke,D Eulberq,K Buchner,et al.An RNA-Based Aquaretic Agent That Inhibits Vasopressin in vivo[J].Proc.Natl.Acad.Sci.,2006,103(13):5173-5178.
    [30]F Kleinjung,S Klussman,V A Erdmann,et al.High-Affinity RNA As a Recognition Element in a Biosensor[J].Anal.Chem.,1998,70:328-331.
    [31]R A Potyrailo,R C Conrad,A D Ellington,et al.Adapting Selected Nucleic Acid Ligands(Aptamers) to Biosensors[J].Anal.Chem.,1998,70:3419-3425.
    [32]M Lee,D R Walt.A Fiber-Optic Microarray Biosensor Using Aptamers as Receptors[J].Anal.Biochem.,2000,282:142-146.
    [33]M Liss,B Petersen,H Wolf,E Prohaska.An Aptamer-Based Quartz Crystal Protein Biosensor[J].Anal.Chem.,2002,74:4488-4495.
    [34]X J Liu,W H Tan.A Fiber-Optic Evanescent Wave DNA Biosensor Based on Novel Molecular Beacons[J].Anal.Chem.,1999,71:5054-5059.
    [35]A N Kawde,M C Rodriguez,T M H Lee,J Wang.Label Free Bioelectronic Detection of Aptamer-Protein Interaction[J].Electrochem.Commun.,2005,7:537-540.
    [36]Y S Kim,H S Jung,T Matsuura,et al.Electrochemical Detection of 17 β-estradiol Using DNA Aptamer Immobilized Gold Electrode Chip[J].Biosens.Bioelectron.,2007,22(11):2525-2531.
    [37]李景虹.自组装膜电化学[M].北京:科学出版社,2002.
    [38]T M Herne,M J Tarlov.Characterization of DNA Probes Immobilized on Gold Surfaces[J].J.Am.Chem.Soc.,1997,119:8916 -8920.
    [39]R J Lao,S P Song,H P Wu,et al.Electrochemical Interrogation of DNA Monolayers on Gold Surfaces[J].Anal.Chem.,2005,77:6475-6480.
    [40]J Zhang,S P Song,L Y Zhang,et al.Sequence-Specific Detection of Femtomolar DNA via a Chronocoulometric DNA Sensor(CDS):Effects of Nanoparticle-Mediated Amplification and Nanoscale Control of DNA Assembly at Electrodes[J].J.Am.Chem.Soc.,2006,128:8575-8580.
    [41]C H Fan,K W Plaxco,A J Heeger.Electrochemical Interrogation of Conformational Changes as a Reagentless Method for the Sequence-Specific Detection of DNA[J].Proc.Natl.Acad.Sci.,2003,100:9134-9137.
    [42]金利通.化学修饰电极[M].上海:华东师范大学出版社,1992.
    [43]藤嶋昭.电化学测定方法[M].北京:北京大学出版社,1995.
    [44]阿伦.J.巴德,拉里.R.福克纳.电化学方法原理和应用[M].北京:化学工业出版社,2005.
    [45]E Laviron,L Roullier.General Expression of the Linear Potential Sweep Voltammogram for a Surface Redox Reaction With Interactions Between The Adsorbed Molecules.Applications to Modified Electrodes[J].J.Electroanal.Chem.,1980,115:65-74.
    [46]B E Conway.Theory and Principles of Electrode Processes[M].Ronald,New York,1965,Chaps.4 and 5.
    [47]S Srinivasan,E Gileadi.The Potential-Sweep Method:A Theoretical Analysis[J].Electrochim.Acta.,1966,11(3):321-323.
    [48]E Laviron.The Use of Linear Potential Sweep Voltammetry And of A.C Voltammetry for The Study of The Surface Electrochemical Reaction of Strongly Adsorbed Systems and of Redox Modified Electrodes[J].J.Electroanal.Chem.,1979,100:263-270.
    [49]曹楚南,张鉴清.电化学阻抗谱导论[M].北京:科学出版社,2002.
    [50]史美伦.交流阻抗原理及应用[M].北京:国防工业出版社,2001.
    [51]E Katz,I Willner.Probing Biomolecular Interactions at Conductive and Semiconductive Surfaces by Impedance Spectroscopy:Routes to Impedimetric Immunosensors,DNA-Sensors,and Enzyme Biosensors[J].Electroanal.,2003,15(11):913-947.
    [52]I O K'Owino,O A Sadik.Impedance Spectroscopy:A Powerful Tool for Rapid Biomolecular Screening and Cell Culture Monitoring[J].Electroanal.,2005,17(23):2101-2113.
    [53]S Rodrigues,N Munichandraiah,A K ShuklaA.A Review of State-of-Charge Indication of Batteries by Means of A.C. Impedance Measurements [J]. Journal of Power Sources, 2000, 87: 12-20.
    [54] V Nikolov, J Lin, M Merzlyakov, K Hristova, P C Searson. Electrical Measurements of Bilayer Membranes Formed by Langmuir-Blodgett Deposition on Single-Crystal Silicon [J]. Langmuir, 2007,23(26): 13040-13045.
    [55] Y Qiu, R Liao, X Zhang. Real-Time Monitoring Primary Cardiomyocyte Adhesion Based on Electrochemical Impedance Spectroscopy and Electrical Cell-Substrate Impedance Sensing [J]. Anal. Chem., 2008, 80(4): 990-996
    [56] X J Chen, Y Y Wang, J J Zhou, et al. Electrochemical Impedance Immunosensor Based on Three-Dimensionally Ordered Macroporous Gold Film [J]. Anal. Chem.,2008, 80(6): 2133-2140.
    
    [57] P Geng, X A Zhang, W W Meng, et al. Self-assembled monolayers-based immunosensor for detection of Escherichia coli using electrochemical impedance spectroscopy [J]. Electrochimica. Acta., 2008, 53: 4663-4668.
    
    [58] L G Tsekenis, G Z Garifallou, F Davis, et al. Label-less Immunosensor Assay for Myelin Basic Protein Based upon an ac Impedance Protocol [J]. Anal. Chem.,2008, 80(6): 2058-2062.
    [59] A G Mantzila, V Maipa, M I Prodromidis. Development of a Faradic Impedimetric Immunosensor for the Detection of Salmonella typhimurium in Milk [J]. Anal. Chem., 2008, 80(4): 1169-1175.
    [60] A G E Saum, R H Cumming, F J Rowell. Use of Substrate Coated Electrodes and AC Impedance Spectroscopy for the Detection of Enzyme Activity [J]. Biosens.Bioelectron., 1998,13: 511-518.
    [61] F Abdelmalek, M Shadaram, H Boushriha. Ellipsometry Measurements and Impedance Spectroscopy on Langmuir-Blodgett Membranes on Si/SiO_2 for Ion Sensitive Sensor [J]. Sensor and Actuators B, 2001, 72: 208-213.
    [62] A X Li, F Yang, Y Ma, et al. Electrochemical Impedance Detection Of DNA Hybridization Based on Dendrimer Modified Electrode [J]. Biosens. Bioelectron.,2007,22(8): 1716-1722.
    [63] B Lillis, M Manning, E Hurley, et al. Investigation into the Effect That Probe Immobilisation Method Type Has On the Analytical Signal of an EIS DNA Biosensor [J]. Biosens. Bioelectron., 2007,22: 1289-1295.
    [64]A Bonanni,M I Pividori,M Valle.Application of the Avidin-Biotin Interaction to Immobilize DNA in the Development of Electrochemical Impedance Genosensors [J].Anal.Bioanal.Chem.,2007,389:851-861.
    [65]田昭武.电化学研究方法[M].北京:科学出版社,1984.
    [66]王丰,府伟灵.电化学阻抗谱在生物传感器研究中的应用进展[J].生物技术通讯,2007,18(3):549-552.
    [67]崔晓莉,江志裕.交流阻抗谱的表示及应用[J].上海师范大学(自然科学版),2001,30(4):53-61.
    [68]周伟舫.电化学测量[M].上海:上海科学技术出版社,1985.
    [69]R P Janek,W R Fawcett,A Ulman.Impedance Spectroscopy of Self-Assembled Monolayers on Au(111):Sodium Ferrocecyanide Charge Transfer at Modified Electrodes[J].Langmuir,1998,14:3011-3018.
    [70]Y K Bandyopadhya,K Vijayamohanan,T M Venka,T Pradeep.Self-Assembled Monolayers of Small A Romatic Disulfide and Diselenide Molecules on Polycrystalline Gold Films:A Comparative Study of The Geometrical Constraint Using Temperature-Dependent Surface-Enhanced Raman Spectroscopy,X-Ray Photoelectron Spectroscopy,and Electrochemistry[J].Langmuir,1999,15:5314-5322.
    [71]W Vercoutere,M Akeson.Biosensors for DNA sequence detection[J].Curr.Opinion in Chem.Biology,2002,6(6):816-822.
    [72]J F Rusling.Sensors for toxicity of chemicals and oxidative stress based on electrochemical catalytic DNA oxidation[J].Biosens.Bioelectron.,2004,20(5):1022-1028.
    [73]A M Oliveira-Brett,C M A Brett,L A Silva.An impedance study of the adsorption of nucleic acid bases at glassy carbon electrodes[J].Bioelectrochem.,2002,56:33-35.
    [74]A M Oliveira-Brett,L A Silva,C M A Brett.Adsorption of Guanine,Guanosine,and Adenine at Electrodes Studied by Differential Pulse Voltammetry and Electrochemical Impedance[J].Langmuir,2002,18:2326-2330.
    [75]E Lust,A Janes,K Lust.Adsorption of Adenosine on(111) and(001) Bismuth Single Crystal Planes[J].J.Electroanal.Chem.,1998,449:153-163.
    [76]C M A Brett,A M O Brett,S H P Serrano.An EIS study of DNA-Modified Electrodes [J]. Electrochim. Acta., 1999,44: 4233-4236.
    [77] Y D Zhao, D W Pang, S Hu, et al. DNA-Modified Electrodes Part 3:Spectroscopic Characterization of DNA-modified Gold Electrodes [J]. Anal. Chim.Acta., 1999,388:93-101.
    [78] B Saoudi, C Despas, M M Chehimi, et al. Study of DNA Adsorption on Polypyrrole: Interest of Dielectric Monitoring [J]. Sensor and Actuat B, 2000, 62:35-42.
    [79] F Lisdat, B Ge, B Krause, et al. Nucleic Acid-Promoted Electron Transfer to Cytochrome c [J]. Electroanal., 2001,13: 1225.
    [80] L Strassak, J Dvoak, S Hasoo, et al. Electrochemical Impedance Spectroscopy of Polynucleotide Adsorption [J]. Bioelectrochem., 2002,56: 37-41.
    [81] F Patolsky, E Katz, I Willner. Amplified DNA Detection by Electrogenerated Biochemiluminescence and by the Catalyzed Precipitation of an Insoluble Product on Electrodes in the Presence of the Doxorubicin Intercalator [J]. Angew. Chem.Int.Ed., 2002,41: 3398-3402.
    [82] L Alfonata, A Bardea, O Khersonsky, E Katz, et al. Chronopotentiometry and Faradaic Impedance Spectroscopy as Signal Transduction Methods for The Biocatalytic Precipitation of an Insoluble Product on Electrode Supports: Routes for Enzyme Sensors, Immunosensors and DNA Sensors [J]. Biosens. Bioelectron.,2001,16: 675-687.
    [83] L Alfonta, Singh A K, Willner I. Liposomes Labeled with Biotin and Horseradish Peroxidase: A Probe for the Enhanced Amplification of Antigen-Antibody or Oligonucleotide-DNA Sensing Processes by the Precipitation of an Insoluble Product on Electrodes [J]. Anal. Chem., 2001,73: 91-102.
    [84] F Patolsky, E Katz, A Bardea, et al. Enzyme-Linked Amplified Electrochemical Sensing of Oligonucleotide-DNA Interactions by Means of the Precipitation of an Insoluble Product and Using Impedance Spectroscopy [J]. Langmuir, 1999, 15:3703-3706.
    [85] F Patolsky, A Liehtenstein, I Willner. Electrochemical Transduction of Liposome-Amplified DNA Sensing [J]. Angew. Chem. Int. Ed., 2000, 39:940-944.
    [86] F Patolsky, A Lichtenstein, I Willner. Electronic Transduction of DNA Sensing Processes on Surfaces:Amplification of DNA Detection and Analysis of Single-Base Mismatches by Tagged Liposomes[J].J.Am.Chem.Soc.,2001,123:5194-5205.
    [87]F Patolsky,A Lichtenstein,I Willner.Detection of Single-Base DNA Mutations by Enzyme-Amplified Electronic Transduction[J].Nat.Biotechnol.,2001,19:253-257.
    [88]F Patolsky,A Lichtenstein,M Kotler.I Willner.Electronic Transduction of Polymerase or Reverse Transcriptase Induced Replication Processes on Surfaces:Highly Sensitive and Specific Detection of Viral Genomes[J].Angew.Chem.Int.Ed.,2001,40:2261-2264.
    [89]A Bardea,F Patolsky,A Dagan,I Willner.Sensing and Amplification of Oligonucleotide-DNA Interactions By Means Of Impedance Spectroscopy:A Route to a Tay-Sachs Sensor[J].Chem.Commun.,1999,28:21-22.
    [90]L Ramaley,M S Krause,Jr.Theory of Square Wave Voltammetry[J].Anal.Chem.,1969,41:1362-1365.
    [91]J Osteryong,J J O'Dea.Electroanal Chem[M].AJ Bard(ed.),1986,p209.
    [92]S Tombelli,M Minunni,M Mascini.Analytical Applications of Aptamers[J].Biosens.Bioelectron.,2005,20:2424-2434.
    [93]汪俊,江雅新,方晓红,白春礼.核酸适体的研究及应用[J].物理,2003,32(11):732-735.
    [94]唐吉军,邵宁生,谢剑炜.寡核苷酸适配子在分析化学中的应用[J].化学通报,2004,67:W103.
    [95]C L A Hamula,J W Guthrie,H Q Zhang,H Q Zhang,X F Li,X C Le.Selection and Analytical Applications of Aptamer[J].Trends in Anal.Chem.,2006,25(7):681-691.
    [96]刘晓静,刘韧,顾长国,朱旭东.核酸适体的研究进展[J].生理科学进展,2004,35(4):374-378.
    [97]C K O'Sullivan.Aptasensor-the Future of Biosensing?[J]Anal.Bioanal.Chem.,2002,372:44-48.
    [98]D Proske,M Blank,R Buhmann,A Resch.Aptamers-basic Research,Drug Development,and Clinical Applications[J].Applied Microbiology and Biotechnology,2005,69(4):367-374.
    [99] M Famulok, J S Hartig, G Mayer. Functional Aptamers and Aptazymes in Biotechnology, Diagnostics, and Therapy [J]. Chemical Reviews, 2007, 107(9):3715-3743.
    
    [100] Jeong-O Lee, Hye-Mi So, Eun-Kyoung Jeon, et al. Aptamers As Molecular Recognition Elements For Electrical Nanobiosensors [J]. Anal. Bioanal. Chem.,2008,390 (4): 1023-1032.
    [101] T Mairal, V Cengiz Ozalp, P L Sanchez, et al. Aptamers: Molecular Tools for Analytical Applications [J]. Anal. Bioanal. Chem., 2008, 390: 989-1007.
    [102] M Famulok, J S. Hartig, G Mayer. Functional Aptamers and Aptazymes in Biotechnology, Diagnostics, and Therapy [J]. Chemical Reviews, 2007, 107(9):3715-3743.
    [103] I Willner, M Zayats. Electronic Aptamer-based Sensors [J]. Angew. Chem. Int. Ed.,2007,46: 2-13.
    
    [104] Xiao Y, A A Lubin, A J Heeger. K W Plaxco. Label-Free Electronic Detection Of Thrombin In Blood Serum Using An Aptamer Based Sensor [J]. Angew. Chem.Int. Ed., 2005,44: 5456-5459.
    
    [105] A E Radi, J L A Sa'nchez, E Baldrich, C K. O'Sullivan. Reagentless, Reusable,Ultrasensitive Electrochemical Molecular Beacon Aptasensor [J]. J. Am. Chem.Soc,2006,128:117-124.
    
    [106] X L Zuo, S P Song, J Zhang, et al. A Target-Responsive Electrochemical Aptamer Switch (TREAS) for Reagentless Detection of Nanomolar ATP [J]. J. Am. Chem.Soc, 2007,129(5): 1042-1043.
    
    [107] Y Xiao, B D Piorek, K W Plaxco, A J Heeger. A Reagentless Signal-On Architecture for Electronic, Aptamer-Based Sensors via Target-Induced Strand Displacement [J]. J. Am. Chem. Soc, 2005,127: 17990-17991.
    [108] Y Lu, X C Li, L M Zhang, et al. Aptamer-Based Electrochemical Sensors with Aptamer-Complementary DNA Oligonucleotides as Probe [J]. Anal. Chem, 2008,80: 1883-1890.
    
    [109] F Tagliaro, C Antonioli, B Z De, et al. Reversed-Phase High-Performance Liquid Chromatographic Determination of Cocaine in Plasma and Human Hair with Direct Fluorimetric Detection [J]. J. Chromatogr. A, 1994,674 (1-2): 207-215.
    [110] G Trachta, B Schwarze, B Saegmuller, et al. Combination Of High-Performance Liquid Chromatography And SERS Detection Applied to The Analysis Of Drugs In Human Blood And Urine [J]. J. Mol. Struct., 2004, 693 (1-3): 175-185.
    [111]I A Buryakov. Express Analysis of Explosives, Chemical Warfare Agents and Drugs with Multicapillary Column Gas Chromatography and ion Mobility Increment Spectrometry [J]. J. Chromatogr. B, 2004, 800 (1-2): 75-82.
    [112]B R Baker, R Y Lai, M S Wood, et al. An Electronic, Aptamer-Based Small-Molecule Sensor for the Rapid, Label-Free Detection of Cocaine in Adulterated Samples and Biological Fluids [J]. J. Am. Chem. Soc, 2006, 128:3138-3139.
    [113] A E Radi, C K O'Sullivan. Aptamer Conformational Switch as Sensitive Electrochemical Biosensor for Potassium Ion Recognition [J]. Chem. Commun.,2006, 35: 3432-3434.
    [114] I Kazunori, K Chiharu, S Koji. Novel Electrochemical Sensor System for Protein Using the Aptamers in Sandwich Manner [J]. Biosens. Bioelectron., 2005, 20:2168-2172.
    [115] M Monica, V Mark, I Katakis. Different Strategies to Develop an Electrochemical Thrombin Aptasensor [J]. Electrochem. Commun., 2006, 8: 505-511.
    [116]Polsky R, Gill R, Kaganovsky L, I Willner. Nucleic Acid-Functionalized Pt Nanoparticles: Catalytic Labels for the Amplified Electrochemical Detection of Biomolecules [J]. Anal. Chem., 2006,78: 2268-2271.
    [117]L Zhou, L J Ou, X Chu, et al. Aptamer-Based Rolling Circle Amplification: A Platform for Electrochemical Detection of Protein [J]. Anal. Chem., 2007, 79(19):7492-7500.
    [118]P L He, L Shen, Y H Cao, D F Li, Ultrasensitive Electrochemical Detection of Proteins by Amplification of Aptamer-Nanoparticle Bio Bar Codes [J]. Anal.Chem., 2007, 79(21): 8024-8029.
    [119] J A Hansen, J Wang, A N Kawde, et al. Quantum-Dot/Aptamer-Based Ultrasensitive Multi-Analyte Electrochemical Biosensor [J]. J. Am. Chem. Soc.,2006,128: 2228-2229.
    [120] A Numnuam, K Y. Chumbimuni-Torres, Y Xiang, et al. Aptamer-Based Potentiometric Measurements of Proteins Using Ion-Selective Microelectrodes [J].Anal. Chem., 2008, 80(3): 707-712.
    [121]Jing Zheng,Wanjuan Feng,Li Lin,et al.A New Amplification Strategy for Ultrasensitive Electrochemical Aptasensor with Network-Like Thiocyanuric Acid/Gold Nanoparticles[J].Biosens.Bioelectron.,2007,23(3):341-347.
    [122]Z S,Wu M M Guo,S B Zhang,et al.Reusable Electrochemical Sensing Platform for Highly Sensitive Detection of Small Molecules Based on Structure-Switching Signaling Aptamers[J].Anal.Chem.,2007,179(7):2933-2939.
    [123]K J Feng,C H Sun,Y Kang,et al.Label-Free Electrochemical Detection of Nanomolar Adenosine Based On Target-Induced Aptamer Displacemen[J].Electrochem.Commun.,2008,10:531-535.
    [124]姚素薇,邹毅,张卫国.金纳米粒子的特性、制备及应用研究进展[J].化工进展,2007,26(3):310-315.
    [125]J Turkevitch,P C Stevenson,J Hillier.Nucleation and Growth Process in the Synthesis of Colloidal Gold[J].Discussion of the Faraday Society,1951,11:55-75.
    [126]G Frens.Regulation of the Particle Size in Monodisperse Gold Suspensions[J].Nature:Physical Science,1973,241(105):20-22.
    [127]M Brust,D Bethell,D Schiffrin,et al.Synthesis of Thiol- Derivatized old Nanoparticles in a Two-Phase Liquid-Liquid System[J].Journal of the Chemical Society,Chemical Communications,1994,994(7):801-802.
    [128]G L Glish,N D Evans,R W Murray,et al.Alkanethiolate Gold Cluster Molecules with Core Diameters from 1.5 to 5.2 nm:Core and Monolayer Properties as a Function of Core Size[J].Langmuir,1998,14(1):17-30.
    [129]Y D Li,X Wang,J Zhuang,et al.A General Strategy for Nanocrystal Synthesis[J].Nature,2005,437(1):121-124.
    [130]M Shen,Y K Du,H L Rong,et al.Preparation of Hydrophobic Gold Nanoparticles with Safe Organic Solvents by Microwave Irradiation Method[J].Colloids and Surfaces A:Physicochemical and Engineering Aspects,2005,257-258:439-443.
    [131]C L Chiang,H Mengbor,L B Lai.Control of Nucleation and Growth of Gold Nanoparticles In AOT/Span80/Isooctane Mixed Reverse Micelles[J].Journal of Solid State Chemistry,2004,177(11):3891-3895.
    [132]T K Sau,C J Murphy.Self- Assembly Patterns Formed Upon Solvent Evaporation of Aqueous Cetyltrimethylammonium Bromide-Coated Gold Nanoparticles of Various Shapes [J]. Langmuir, 2005,21(7): 2923-2929.
    [133] T K Sau, C J Murphy. Seeded High Yield Synthesis of Short Au Nanorods in Aqueous Solution [J]. Langmuir, 2004,20(15): 6414-6420.
    [134] Z Konya, V F Puntes, I Kiricsi, et al. Synthetic Insertion of Gold Nanoparticles into Mesoporous Silica [J]. Chem. Mater., 2003, (15): 1242-1248.
    [135] S Ivanova, C Petit, V Pitchon. A New Preparation Method for the Formation of Gold Nanopar- Ticles on An Oxide Support [J]. Appl Catal A: General, 2004,(267): 191-120.
    [136] X M a, N Lun, S Wen. Formation of Gold Nanoparticles Supported on Carbon Nanotubes By Using an Electroless Plating Method [J]. Diamond & Related Materials, 2005, (14): 68-73.
    [137] X Dai, R G Compton. Direct Electrodeposition of Gold Nanoparticles onto Indium Tin Oxide Film Coated Glass: Application to the Detection of Arsenic (III) [J]. Anal. Sci., 2006,22: 567-570.
    [138] M S. El-Deab, T Sotomura, T Ohsakaa Size and Crystallographic Orientation Controls of Gold Nanoparticles Electrodeposited on GC Electrodes [J]. Journal of The Electrochem. Society, 2005,152: C1-C6.
    [139] X Dai, O Nekrassova, M E Hyde, et al. Anodic stripping voltammetry of Arsenic (III) using gold nanoparticles modified electrodes [J]. Anal. Chem., 2004, 76:5924-5929.
    [140] M S El-Deab, T Sotomura, T Ohsakaa. Morphological Selection of Gold Nanoparticles Electrodeposited on Various Substrates [J]. Journal of The Electrochem. Society, 2005,152: C730-C737.
    [141] W Liao, X Y T Cui. Reagentless Aptamer Based Impedance Biosensor for Monitoring a Neuro-inflammatory Cytokine PDGF [J]. Biosens. Bioelectron.,2007,23(2): 218-224.
    [142] A E Radi, L A Josep Sa'nchez, E Baldrich, et al. Reusable Impedimetric Aptasensor [J]. Anal. Chem., 2005, 77: 6320-6323
    [143]D K Xu, D W Xu, X B Yu, et al. Label-Free Electrochemical Detection for Aptamer-Based Array Electrodes [J]. Anal. Chem., 2005,77: 5107-5113.
    [144] M C Rodriguez, A N Kawde, W Joseph. Aptamer Biosensor For Label Free Impedance Spectroscopy Detection of Proteins Based on Recognition Induced Switching of the Surface Charge[J].Chem.Commun.,2005,34:4267-4269.
    [145]Y Xu,L Yang,X Y Ye,et al.An Aptamer-Based Protein Biosensor by Detecting The Amplified Impedance Signal[J].Electroanal.,2006,18(15):1449-1456.
    [146]B L Li,Y L Wang,H Wei,S J Dong.Amplified Electrochemical Aptasensor Taking AuNPs Based Sandwich Sensing Platform as a Model[J].Biosens.Bioelectron.,2008,23(7):965-970.
    [147]N De-los-Santos-A(A|¨) lvarez,M J Lobo-Castan~o'n,A J Miranda-Ordieres,P Tun~o'n-Blanco.Modified-RNA Aptamer-Based Sensor for Competitive Impedimetric Assay of Neomycin B[J].J.Am.Chem.Soc.,2007,129(13):3808-3809.
    [148]S B Gyeong,C Suhyeong,G K Byung.A Novel Electrochemical Detection Method for Aptamer Biosensors[J].Biosens.Bioelectron.,2005,21:863-870.
    [149]L F Fabien,A H Hoang,L Mario.Label-Free Electrochemical Detection of Protein Based on A Ferrocene-Bearing Cationic Polythiophene and Aptamer[J].Anal.Chem.,2006,78:4727-4731.
    [150]A K H Cheng,B X Ge,H Z Yu.Aptamer-Based Biosensors for Label-Free Voltammetric Detection of Lysozyme[J].Anal.Chem.,2007,79:5158-5164.
    [151]L Shen,Z Chen,Y H Li,et al.A Chronocoulometric Aptamer Sensor for Adenosine Monophosphate[J].Chem.Commun.,2007,36:2169-2171.
    [152]黄德培,方培生.离子敏感器件及其应用[M].北京:科学出版社,1987.
    [153]彭承琳.生物医学传感器原理及应用[M].北京:高等教育出版社,2000.
    [154]罗细亮,徐静娟,陈洪渊.场效应晶体管生物传感器[J].分析化学,2004,32(10):1395-1490.
    [155]E Souteryrand,J P Cloarec,J R Martin,et al.Direct Detection of the Hybridization of Synthetic Homo-Oligomer DNA Sequences by Field Effect[J].J Phys.Chem.B,1997,101:2980-2985.
    [156]H M So,K Won,Y H Kim,et al.Single-Walled Carbon Nanotube Biosensors Using Aptamers As Molecular Recognition Elements[J].J.Am.Chem.Soc.,2005,127:11906-11907.
    [157]K Maehashi,T Katsura,K Kerman,et al.Label-Free Protein Biosensor Based on Aptamer-Modified Carbon Nanotube Field-Effect Transistors[J].Anal.Chem., 2007,79(2):782-787.
    [158]Y Xiang,M Y Xie,R Bash,et al.Ultrasensitive Label-Free Aptamer-Based Electronic Detection[J].Angew.Chem.Int.Ed.,2007,46:1-4.
    [159]M Zayats,Y Huang,R Gill,et al.Label-Free and Reagentless Aptamer-Based Sensors for Small Molecules[J].J.Am.Chem.Soc.,2006,128(42):13666-13667.
    [160]H Cai,T MH Lee,I M Hsing.Label-Free Protein Recognition Using an Aptamer-Based Impedance Measurement Assay[J].Sensors and Actuators B,2006,114:433-437.
    [161]B L Li,Y Du,H Wei,S J Dong.Reusable,Label-Free Electrochemical Aptasensor for Sensitive Detection of Small Molecules[J].Chem.Commun.,2007,36:3780-3782.
    [162]J A Lee,S Hwang,J Y Kwak,et al.An Electrochemical Impedance Biosensor With Aptamer-Modified Pyrolyzed Carbon Electrode For Label-Free Protein Detection[J].Sensors and Actuators B,2008,129:372-379.
    [163]S Centi,S Tombelli,M Minunni,M Mascini.Aptamer-Based Detection of Plasma Proteins by an Electrochemical Assay Coupled to Magnetic Beads[J].Anal.Chem.,2007,79(4):1466-1473.
    [164]T Hianik,V Ostatna',Z Zajacova',et al.Detection of Aptamer-Protein Interactions Using QCM and Electrochemical Indicator Methods[J].Bioorganic &Medic.Chem.Lett.,2005,15:291-295.[
    165]R Y Lai,K W Plaxco,A J Heeger.Aptamer- Based Electrochemical Detection of Picomolar Platelet Derived Growth Factor Directly in Blood Serum[J].Anal.Chem.,2007,79(1):229-233.
    [166]Y Lu,X C Li,L M Zhang,P Yu,L Su,L Q Mao.Aptamer-Based Electrochemical Sensors with Aptamer-Complementary DNA Oligonucleotides as Probe[J].Anal.Chem.,2008,80:1883-1890.
    [167]郑静,林莉,程圭芳,等.基于核酸适配体和纳米材料的凝血酶蛋白特异性识别电化学生物传感器[J].中国科学(B辑)化学,2006,36(6):485-192.
    [168]Y L Zhang,Y Huang,J H Jiang,et al.Electrochemical Aptasensor Based on Proximity-Dependent Surface Hybridization Assay for Single-Step,Reusable,Sensitive Protein Detection[J].J.Am.Chem.Soc.,2007,129(50):15448-15449.
    [169]郑静,冯婉娟,程圭芳,等.利用互补核酸杂交富集金胶实现信号扩增的电化 学凝血酶蛋白生物传感器研究 [J].高等学校化学学报, 2007,28:2274-2279.
    [170] E E Ferapontova, E M. Olsen, K V Gothelf. An RNA Aptamer-Based Electrochemical Biosensor for Detection of Theophylline in Serum [J]. J. Am.Chem. Soc, 2008,130(13): 4256-4258.
    
    [171] M Cho, Y Kim, SY Han, et al. Detection For Folding of The Thrombin Binding Aptamer Using Label-Free Electrochemical Methods [J]. BMB reports, 2008,41(2): 126-131.
    [172] K I Papamichael, M P Kreuzer, G G Guilbault. Viability of Allergy (Ige) Detection Using an Alternative Aptamer Receptor and Electrochemical Means [J].Sensors and Actuators B, 2007,121: 178-186.
    [173] J Yoshizumi, S Kumamoto, M Nakamura, K Yamana. Target-Induced Strand Release (TISR) From Aptamer-DNA Duplex: A General Strategy for Electronic Detection of Biomolecules Ranging From a Small Molecule to a Large Protein [J].Analyst, 2008,133(3): 323-325.
    [174] H Yoon, J H Kim, N Lee, et al. A Novel Sensor Platform Based on Aptamer-Conjugated Polypyrrole Nanotubes For Label-Free Electrochemical Protein Detection [J]. Chembiochem., 2008,9(4): 634-641.
    [175] D Evans, S Johnson, S Laurenson, et al. Electrical Protein Detection in Cell Lysates Using High-Density Peptide-Aptamer Microarrays [J]. J. Biol., 2008, 7(1):3.
    [176] J L A Sanchez, E Baldrich, A E Radi, et al. Electronic 'off-on' Molecular Switch for Rapid Detection of Thrombin [J]. Electroanal., 2006,18: 1957-1962.
    [177] J Elbaz, B Shlyahovsky, D Li, I Willner. Parallel Analysis of Two Analytes in Solutions or on Surfaces by Using a Bifunctional Aptamer: Applications for Biosensing and Logic Gate Operations [J]. Chem.BioChem., 2008,9: 232-239.
    [178] T H Degefa, J Kwak. Label-Free Aptasensor for Platelet-Derived Growth Factor (PDGF) Protein [J]. Anal. Chim. Acta., 2008,613: 163-168.
    [179] K Mina, M Choa, S Y Hana, et al. A Simple and Direct Electrochemical Detection of Interferon-Y using Its RNA and DNA Aptamers [J]. Biosens. Bioelectron., 2008,on line.
    
    [180] F Striggow, M Riek, J Breder, et al. The Protease Thrombin is an Endogenous Mediator of Hippocampal Neuroprotection at High Concentrations [J]. Proc. Nat. Acad.Sci.,2000,97:2264-2267.
    [181]W H Kane,E W Davie.Blood coagulation factors Ⅴ and Ⅷ:Structural and Functional similarities and Their Relationship to Hemorrhagic and Thrombotic Disorders[J].Blood,1988,71(3):539-555.
    [182]K G Mann,R J Jenny.Cofactor Proteins in the Assembly and Expression of Blood Clotting Enzyme Complexes[J].Annu.Rev.Biochem.,1988,57:915-956.
    [183]黄松音,段朝晖,梁穆兴,等.肿瘤患者凝血指标变化的临床意义[J].血栓与止血学,2002,8(4):156-157.
    [184]R P Herman.Thromb Haemost,1979,41:544-547.
    [185]张莹,魏文宁.凝血酶活性的检测及临床意义[J].微循环学杂志,2005,15(2):70-72.
    [186]M Djordjevic.SELEX Experiments:New Prospects,Applications and Data Analysis in Inferring Regulatory Pathways[J].Biomol.Eng.,2007,24(2):179-189.
    [187]S P Rad'ko,S I Rakhmetova,N V Bodoev,A I Arehakov.Aptamers as Perspective Affine Reagents for Clinical Proteomics[J].Biomed.Khim.,2007,53(1):5-24.
    [188]N S Que-Gewirth,B A Sullenger.Gene Therapy Progress and Prospects:RNA Aptamers[J].Gene.Ther.,2007,14(4):283-291.
    [189]P S Jeng,J A Fishback,A L William,et al.A Novel Oligodeoxynucleotide Inhibitor of Thrombin I.In Vitro Metabolic Stability in Plasma and Serum[J].Pharm.Res.,1995,12(12):1937-1940.
    [190]H Wei,B Li,J Li,et al.Simple and Sensitive Aptamer-Based Colorimetric Sensing of Protein using Unmodified Gold Nanoparticle Probes[J].Chemical.Comm.,2007,36:3735-3737.
    [191]W Wang,C Chen,M Qian,X S Zhao.Aptamer Biosensor for Protein Detection Using Gold Nanoparticles[J].Anal.Biochem.,2008,373:213-219.
    [192]M Cho,Y Kim,S Y Han,et al.Detection for Folding of the Thrombin Binding Aptamer using Label-Free Electrochemical Methods[J].BMB Rep.,2008,41(2):126-131.
    [193]W Vercoutere,M Akeson.Biosensors for DNA Sequence Detection[J].Curr.Opin.in Chem.Biology,2002,6(6):816-822.
    [194]Bock L C,Griffin L C,Latham J A.et al.Selection of Single-Stranded DNA Molecules That Bind and Inhibit Human Thrombin[J].Nature,1992,355:564-566.
    [195]Tasset D M,Kubik M F,Steiner W.Oligonucleotide Inhibitors of Human Thrombin That Bind Distinct Epitopes[J].J.Mol.Biol.,1997,272:688-698.
    [196]G F Cheng,J Zhao,Y H Tu,et al.A sensitive DNA Electrochemical Biosensor Based on Magnetite with a Glassy Carbon Electrode Modified by Muti-Walled Carbon Nanotubes in Polypyrrole[J].Anal.Chim.Acta.,2005,533:11-16.
    [197]J Wang,A N Kawde,M Musameh.Carbon-Nanotube-Modified Glassy Carbon Electrodes for Amplified Label-Free Electrochemical Detection of DNA Hybridization[J].Analyst,2003,128:912-916.
    [198]J Li,H T Ng,A Cassell,et al.Carbon Nanotube Nanoelectrode Array for Ultrasensitive DNA Detection[J].Nano Lett.,2003,3:597-602.
    [199]J Wang,G D Liu,M R Jan.Ultrasensitive Electrical Biosensing of Proteins and DNA:Carbon-Nanotube Derived Amplification of the Recognition and Transduction Events[J].J.Am.Chem.Soc.,2004,126:3010-3011.
    [200]M Gao,H L Qi,Q Gao,C X Zhang,Electrochemical Detection of DNA Hybridization Based on the Probe Labeled with Carbon-Nanotubes Loaded with Silver Nanoparticles[J].Electroanal.,2008,20:123-130.
    [201]H Cai,Y Xu,N N Zhu,et al.An Electrochemical DNA Hybridization Detection Assay Based on a Silver Nanoparticle Label[J].Analyst,2002,127:803-808.
    [202]H L Qi,C X Zhang,X R Li.Amperometrie Third-Generation Hydrogen Peroxide Biosensor Incorporating Multiwall Carbon Nanotubes and Hemoglobin[J].Sensors Actuators B,2006,114:364-370.
    [203]Y Y Liu,J Tang,X Q Chen,et al.A Wet-Chemical Route for the Decoration of CNTs with Silver Nanoparticles[J].Carbon,2006,44:381-392.
    [204]蔡宏,王延琴,何品刚,方禹之.基于纳米金胶标记DNA探针的电化学DNA传感器研究[J].高等学校化学学报,2003,24:1390-1394.
    [205]T A Taton,G Lu,C A Mirkin.Two-color Labeling of Oligonucleotide Arrays via Size-Selective Scattering of Nanoparticle Probes[J].J.Am.Chem.Soc.,2001,123(21):5164-5165.
    [206]J J Storhoff,R Elghanian,R C Mucic,et al.One-pot Colorimetric Differentiation of Polynucleotides with Single Base Imperfections using Gold Nanoparticle Probes[J].J.Am.Chem.Soc.,1998,120(9):1959-1964.
    [207]C H Fan,K W Plaxco,A J Heeger.Biosensors Based on Binding-Modulated Donor-Acceptor Distances[J].Trends in Biotechn.,2005,23:186-192.
    [208]I O K'Owino,S K Mwilu,O A Sadik.Metal-Enhanced Biosensor for Genetic Mismatch Detection[J].Anal.Biochem.,2007,369:8-17.
    [209]Xiao X Li,H L Qi,Q Gao,C X Zhang.Electrochemical Aptasensor for the Determination of Cocaine Incorporating Gold Nanoparticles Modification[J].Electroanal.,2008,on line.
    [210]J Wang,O RincOn,R Polsky,E Dominguez.Electrochemical Detection of DNA Hybridization Based on DNA-Templated Assembly of Silver Cluster[J].Electrochem.Commun.,2003,5:83-86.
    [211]S Fields.Proteomics in Genomeland[J].Science,2001,291(5507):1221-1224.
    [212]M B Murphy,S T Fuller,P M Richardson,S A Doyle.An Improved Method for the in Vitro Evolution of Aptamers and Applications in Protein Detection and Purification[J].Nucleic Acids Res.,2003,31(18):1-8.
    [213]G Kohler,C Milstein.Continuous Cultures of Fused Cells Secreting Antibody of Predefined Specificity[J].Nature,1975,256:459-497.
    [214]A V Kulbachinskiy.Methods for Selection of Aptamers to Protein Targets[J].Biochemistry(Mosc).2007,72(13):1505-1518.
    [215]T Schrader,S Koch.Artificial Protein Sensors[J].Mol.Biosyst.,2007,3(4):241-248.
    [216]L Gold.Conformational Properties of Oligonucleotides[J].Nucleic Acids Symp.Ser.,1995,33:20-22.
    [217]S E Osborne,I Matsumura,A D Ellington.Aptamers as Therapeutic and Diagnostic Reagents:Problems and Prospects[J].Curr.Opin.Chem.Biol.,1997,1:5-9.
    [218]S Klussmann.The Aptamer Handbook[M].2006,Wiley-VCH,Weinheim.
    [219]S Balamurugan,A Obubuafo,S A Soper,D A Spivak.Surface Immobilization Methods for Aptamer Diagnostic Applications[J].Anal.Bioanal.Chem.,2008,390:1009-1021.
    [220]G Kaur,I Roy.Therapeutic Applications of Aptamers[J].Expert opinion on investigational drugs,2008,17(1):43-60.
    [221] E J Merino, K M Weeks. Fluorogenic resolution of ligand binding by a nucleic acid aptamer [J]. J. Am. Chem. Soc., 2003,125(41): 12370-12371.
    [222] C D Medley, J E Smith, Z Tang, et al. Gold nanoparticle-Based Colorimetric Assay for the Direct Detection of Cancerous Cells [J]. Anal. Chem., 2008, 80(4):1067-1072.
    [223] J Wang, R Lv, J Xu, et al. Characterizing the Interaction Between Aptamers and Human IgE by Use of Surface Plasmon Resonance [J]. Anal. Bioanal. Chem.,2008,390(4): 1059-1065.
    [224] S Johnson, D Evans, S Laurenson, et al. Surface-Immobilized Peptide Aptamers as Probe Molecules for Protein Detection [J]. Anal. Chem., 2008, 80(4): 978-983.
    [225] Q Tang, X Su, K P Loh. Surface Plasmon Resonance Spectroscopy Study of Interfacial Binding of Thrombin to Antithrombin DNA Aptamers [J]. J. Colloid Interface Sci., 2007,315(1): 99-106.
    [226] H M So, D W Park, E K Jeon, et al. Detection and Titer Estimation of Escherichia Coli using Aptamer-Functionalized Single-Walled Carbon-Nanotube Field-Effect Transistors [J]. Small, 2008,4(2): 197-201.
    [227] E E Ferapontova, E M Olsen, K V Gothelf. An RNA Aptamer-Based Electrochemical Biosensor for Detection of Theophylline in Serum [J]. J. Am.Chem. Soc, 2008,130(13): 4256-4268.
    [228] E Bakker, Y Qin. Electrochemical Sensors [J]. Anal. Chem., 2006, 78:3965-3983.
    [229] A Lambrianou, S Demin, E A Hall. Protein Engineering and Electrochemical Biosensors [J]. Adv. Biochem. Eng. Biotechnol., 2008,109: 65-96.
    [230] Y Xiao, R Y Lai, K W Plaxco. Preparation of Electrode-Immobilized,Redox-Modified Oligonucleotides for Electrochemical DNA and Aptamer-Based Sensing [J]. Nature Protocols, 2007,2: 2875-2880.
    [231] H Yoon , J H Kim , N Lee ,et al. A Novel Sensor Platform Based on Aptamer-Conjugated Polypyrrole Nanotubes for Label-Free Electrochemical Protein Detection [J]. Chem. Biochem., 2008, 9(4): 634-641.
    [232] Panke, T Balkenhohl, J Kafka, D Schafer, F Lisdat. Impedance Spectroscopy and Biosensing [J]. Adv. Biochem. Eng. Biotechnol., 2008,109: 195-237.
    [233] R McGuinness. Impedance-Based Cellular Assay Technologies: Recent Advances, Future Promise[J].Curr.Opin.Pharmacol,2007,7(5):535-540.
    [234]Y W Tan,Y F LI,D B Zhu.Fabrication of Gold Nanoparticles Using a Trithiol (Thiocyanuric Acid) as the Capping Agent[J].Langmuir,2002,18:3392-3395.
    [235]M Fukushima,H Yanagi,S Haayashi,et al.Fabrication of gold nanoparticles and their influence on optical properties of dye-doped sol-gel films[J].Thin Solid Films,2003,438-439:39-43.
    [236]H L Qi,Y Zhang,Y G Peng,C X Zhang.Homogenous electrogenerated chemiluminescence immunoassay for human immunoglobulin G using N-(aminobutyl)-N-ethylisoluminol as luminescence label at gold nanoparticles modified paraffin-impregnated[J].Talanta,2008,75:684-690.
    [237]S Bharathi,M Nogami,S Ikeda.Novel Electrochemical Interfaces with a Tunable Kinetic Barrier by Self-Assembling Organically Modified Silica Gel and Gold Nanoparticles[J].Langmuir,2001,17:1-4.
    [238]X Dai,O Nekrassova,E H Michael,et al.Anodie Stripping Voltammetry of Arsenic(Ⅲ) Using Gold Nanoparticle-modified Electrodes[J].Anal.Chem.,2004,76:5924-5929.
    [239]J Li,X Q Lin.Electrodeposition of Gold Nanoclusters on Overoxidized Polypyrrole Film Modified Glassy Carbon Electrode and Its Application for the Simultaneous Determination of Epinephrine and Uric Acid under Coexistence of Ascorbic Acid[J].Anal.Chim.Acta.,2007,596:222-230.
    [240]M S El-Deab,T Sotomura,T Ohsaka,Oxygen Reduction at Au Nanoparticles Electrodeposited on Different Carbon Substrates[J].Electrochimica.Acta.,2006,52:1792-1798.
    [241]C Z Li,Y Liu,J H T Luong.Impedance Sensing of DNA Binding Drugs Using Gold Substrates Modified with Gold Nanoparticles[J].Anal.Chem.,2005,77:478-485.
    [242]S Liu,Y Li,J Li.L Jiang.Enhancement of DNA Immobilization and Hybridization on Gold Electrode Modified by Nanogold Aggregates[J].Biosens.Bioelectron.,2005,21:789-795.
    [243]E Majid,S Hrapovic,Y L Liu,et al.Elecrochemical Determination of Arsenic using a Gold Nanoparticle modified Glassy carbon Electrode and Flow Analysis [J].Anal.Chem.,2006,78:762-769.
    [244] S R Coughlin. Thrombin Signalling and Protease-Activated Receptors [J]. Nature,2000,407: 258-264.
    [245] G Xi, G Reiser, R F Keep. The Role of Thrombin and Thrombin Receptors in Ischemic, Hemorrhagic and Traumatic Brain Injury: Deleterious or Protective [J].J. Neurochem., 2003, 84 (1): 3-9.
    [246] D Gailani., G J Broze, et al. Factor XI Activation in a Revised Model of Blood Coagulation [J]. Science, 1991,253: 909-912.
    [247] R Nutiu, Y F Li. Structure-Switching Signaling Aptamers [J]. J. Am. Chem. Soc.,2003,125: 4771-4778.
    [248] S M El-Deab, T Okajim, T Ohsaka. Electrochemical Reduction of Oxygen on Gold Nanoparticle-Electrodeposited Glassy Carbon Electrode [J], Journal of the Electrochem. Society, 2003,150, A851-A857.
    [249] M O Finot, G D Braybrook, M T McDermott. Characterization of Electrochemically Deposited Gold Nanocrystals on Glassy Carbon Electrodes [J].J. Electroanal. Chem., 1999,466: 234-237.
    [250] D Faulhammer, B Eschgfaller, S Stark, et al. Biostable Aptamers with Antagonistic Properties to the Neuropeptide Nociceptin/Orphanin FQ [J]. RNA,2004,10: 516-527.
    [251] V G Pol, A Gedanken, J Calderon-Moreno. Deposition of Gold Nanoparticles on Silica Spheres: A Sonochemical Approach [J]. Chem. Mater., 2003, 15:1111-1118.
    [252] Z Q Li, C J Lu, Z P Xia, et al. X-ray diffraction patterns of graphite and turbostratic carbon [J]. Carbon, 2007,45: 1686-1695.
    [253] V Radmilovic, H A Gasteiger, P N Ross. Structure and Chemical Composition of a Supported Pt-Ru Electrocatalyst for Methanol Oxidation [J]. J. Catal., 1995,154:98-106.
    [254] F Patolsky, M Zayats, B Katz, I Willner. Precipitation of an Insoluble Product on Enzyme Monolayer Electrodes for Biosensor Applications: Characterization by Faradaic Impedance Spectroscopy, Cyclic Voltammetry, and Microgravimetric Quartz Crystal Microbalance Analyses [J]. Anal. Chem., 1999, 71: 3171-3180.
    [255] H Z Huang, Z G Liu, X R Yang. Application of Electrochemical Impedance Spectroscopy for Monitoring Allergen-Antibody Reactions using Gold Nanoparticle-Based Biomolecular Immobilization Method [J]. Anal. Biochem.,2006,356: 208-214.
    [256] T M Herne, M J Tarlov, Characterization of DNA Probes Immobilized on Gold Surfaces [J]. J. Am. Chem. Soc, 1997,119: 8916-8920.
    [257] A B Steel, R L Levicky, T M Herne. Immobilization of Nucleic Acids at Solid Surfaces: Effect of Oligonucleotide Length on Layer Assembly [J]. Biophysical J.,2000,79:975-981.
    [258] H A Ho, M Leclerc. Optical Sensors Based on Hybrid Aptamer/Conjugated Polymer Complexes [J]. J. Am. Chem. Soc, 2004,126(5): 1384-1387.
    [259] A B Steel, T M Herne, M J Tarlov. Electrochemical Quantitation of DNA Immobilized on Gold [J]. Anal. Chem., 1998,70: 4670-4677.
    [260] V G Pol, A Gedanken, J Calderon-Moreno. Deposition of Gold Nanoparticles on Silica Spheres: A Sonochemical Approach [J]. Chem. Mater., 2003, 15:1111-1118.
    [261] D L Li, X Q Zou, Q Shen, S J Dong. Kinetic study of DNA/DNA Hybridization with Electrochemical Impedance Spectroscopy [J]. Electrochem. Commua, 2007,9: 191-196.
    [262] J Y Liu, S J Tian, P E Nielsen, W G Knoll. In Situ Hybridization of PNA/DNA Studied Label-Free by Electrochemical Impedance Spectroscopy [J]. Chem.Commun., 2005,34: 2969-2971.
    [263] T Hianik, V Ostatna, M Sonlajtnerova, I Grman. Influence of Ionic Strength, pH and Aptamer Configuration for Binding Affinity to Thrombin [J]. Bioelectrochem.,2007,70: 127-133.
    [264] E Baldrich, J L Acero, G Reekmans, et al. Displacement Enzyme Linked Aptamer Assay [J]. Anal. Chem., 2005,77: 4774-4784.
    [265] I Szymanska, H Radecka, J Radecki, R Kaliszan. Electrochemical Impedance Spectroscopy for Study of Amyloid P-Peptide Interactions with (-) Nicotine Ditartrate and (-) Cotinine [J]. Biosens. Bioelectron., 2007,22:1955-1960.
    [266] M Berezovski, R Nutiu, Y Li, S N Krylov. Affinity Analysis of a Protein-Aptamer Complex Using Nonequilibrium Capillary Electrophoresis of Equilibrium Mixtures [J]. Anal. Chem., 2003, 75: 1382-1386.
    [267] J J Li, X Fang, W H Tan. Molecular Aptamer Beacons for Real-Time Protein Recognition [J]. Biochem. Biophys. Res. Commun., 2002,292: 31-40.
    [268] I German, D D Buchanan, R T Kennedy. Aptamers as Ligands in Affinity Probe Capillary Electrophoresis [J]. Anal. Chem., 1998,70: 4540-4545.
    [269] N Hamaguchi, A Ellington, M Stanton. Aptamer Beacons for the Direct Detection of Proteins [J]. Anal. Biochem., 2001,294: 126-131.
    [270] T Kraemer, L D Paul._Moanalytical Procedures for Determination of Drugs of Abuse in Blood [J]. Anal. Bioanal. Chem., 2007, 388(7): 1415-1435.
    [271] A Gheorghe, A van Nuijs, B Pecceu, et al. Analysis of Cocaine and Its Principal Metabolites in Waste and Surface Water Using Solid-Phase Extraction and Liquid Chromatography-Ion Trap Tandem Mass Spectrometry [J]. Anal. Bioanal. Chem.,2007,1618-2650.
    [272] S Strano-Rossi, C Colamonici, F Botre. Parallel Analysis of Stimulants in Saliva and Urine by Gas Chromatography/Mass Spectrometry: Perspectives for "in Competition" Anti-Doping Analysis [J]. Anal. Chim. Acta., 2008, 606(2):217-222.
    [273] J Feng, L Wang, I Dai, et al. Simultaneous Determination of Multiple Drugs of Abuse and Relevant Metabolites in Urine by LC-MS-MS [J]. J. Anal. Toxicol.,2007,31(6): 321-327.
    [274] P M Lujol, V Cirimele, P J Tritsch, et al. Evaluation of the IDS One-Step ELISA kits for the Detection of Illicit Drugs in Hair [J]. Forensic Sci. Int., 2007, 170(2-3):189-192.
    [275] S D Jasyasena. Aptamers: an emerging class of molecules that rival antibodies in diagnostics [J]. Clin. Chem., 1999,45(9): 1628-1650.
    [276] J W Liu, J H Lee, Y Lu. Quantum Dot Encoding of Aptamer-Linked Nanostructures for One-Pot Simultaneous Detection of Multiple Analytes [J].Anal. Chem., 2007, 79:4120-4125.
    [277] B Shlyahovsky, D Li, Y Weizmann, R Nowarski, M Kotler, I Willner.Spotlighting of cocaine by an autonomous aptamer-based machine [J]. J. Am.Chem. Soc, 2007,129: 3814-3815.
    [278] S Pan, L Rothberg. Chemical Control of Electrode Functionalization for Detection of DNA Hybridization by Electrochemical Impedance Spectroscopy [J]. Langmuir,2005,21:1022-1027.
    [279]B Lillis,M Manning,E Hurley,et al.Investigation into the Effect that Probe Immobilisation Method Type has on the Analytical Signal of an EIS DNA Biosensor[J].Biosens.Bioelectron.,2007,22:1289-1295.
    [280]M Muzikar,W R Fawcett.Use of ac Admittance Voltammetry To Study Very Fast Electron-Transfer Reactions.The[Ru(NH_3)_6]~(3+/2+) System in Water[J].Anal.Chem.,2004,76:3607-3611.
    [281]M.Steichen,Y.Decremb,E.Godfroid,C.Buess-Herman.Electrochemical DNA Hybridization Detection using Peptide Nucleic Acids and[Ru(NH_3)_6]~(3+) on Gold Electrodes[J].Biosens.Bioelectron.,2007,22:2237-2243.
    [282]M N Stojanovic,P D Prada,D W Landry.Aptamer-based folding fluorescent sensor for cocaine[J].J.Am.Chem.Soc.,2001,123:4928-4931.
    [283]T Li,B L Li,S J Dong.Adaptive Recognition of Small Molecules by Nucleic Acid Aptamers through a Label-Free Approach[J].Chem.Eur.J.,2007,23:6718-6723.
    [284]P S Ho,C A Frederick,D Saal,et al.Hexaammine with Z-DNA:Crystal Structure of a Ru(NH_3)_6~(3+) Salt of d(CGCGCG) at 1.2 Angstroms Resolution[J].J.Biomol.Struct.Dyn.,1987,4:521-534.
    [285]Y Li,H L Qi,Y G Peng,J Yang,C X Zhang.Electrogenerated chemiluminescence aptamer-based biosensor for the determination of cocaine[J].Electrochem.Commun.,2007,9:2571-2575.
    [286]M N Stojanovic,D W Landry.Aptamer-based colorimetric probe for cocaine[J]J.Am.Chem.Soc.,2002,124:9678-9679.
    [287]J W Liu,D Mazumdar,Y Lu.A simple and sensitive "Dipstick" test in serum based on lateral flow separation of aptamer-linked nanostructures[J].Angew.Chem.Int.Ed.,2006,45:7955-7959.
    [288]J W Liu,Y Lu.Fast colorimetric sensing of adenosine and cocaine based on a general sensor design involving aptamers and nanopartieles[J].Angew.Chem.Int.Ed.,2006,45:90-94.
    [289]E Pitarch,F Hernandez,J T Hove,et al.Potential of Capillary-Column-Switching Liquid Chromatography-Tandem Mass Spectrometry for the Quantitative Trace Analysis of Small Molecules,Application to the on-Line Screening of Drugs in Water[J].J.Chromatogr A,2004,1031:1-9.
    [290] S S Rossi, F Molaioni, R F Francesco Botre. Rapid Screening of Drugs of Abuse and Their Metabolites by Gas Chromatography/Mass Spectrometry: Application to Urinalysis [J]. Rapid Commun. Mass Sp., 2005,19: 1529-1535.
    [291] J Wang. Electrochemical Biosensors: Towards Point-of-Care Cancer Diagnostics [J]. Biosens. Bioelectron., 2006,21: 1887-1892.
    [292] S D Jayasena. Aptamers: An Emerging Class of Molecules That Rival Antibodies in Diagnostics [J]. Clin. Chem., 1999,45: 1628-1650.
    [293] S Klussmann. The Aptamer Handbook: Functional Oligonucleotides and Their Applications [M]. Wiley-VCH: Weinheim, Germany, 2006.
    [294] G Kaur, I Roy. Therapeutic Applications of Aptamers [J]. Expert Opin. Investig Drugs, 2008,17(1): 43-60.
    [295] J Andreas. The Aptamer Approach to Drug Discovery [J]. Innovations in Pharmaceutical Technology, 2005,16: 1-4.
    [296] N Li, C M Ho. Aptamer-Based Optical Probes with Separated Molecular Recognition and Signal Transduction Modules [J]. J. Am. Chem. Soc, 2008,130(8): 2380-2381.
    [297] C C Huang, H T Chang. Aptamer-Based Fluorescence Sensor for Rapid Detection of Potassium Ions in Urine [J]. Chem. Commun., 2008, 1461-1463.
    [298] J Wang. Analytical Electrochemistry [M]. Wiley-VCH Press 2000, pp171-172.
    [299] H Cai, C Xu, P G He, Y Z Fang. Colloid Au-enhanced DNA Immobilization for the Electrochemical Detection of Sequence-Specific DNA [J]. J. Electroanal.Chem., 2001, 510: 78-85.
    [300] M T Castafieda, S Alegret, A Merkoci. Electrochemical Sensing of DNA Using Gold Nanoparticles [J]. Electroanal., 2007,19: 743-754.
    [301] X Zu, J F Rusling. Amphiphilic Ferrocene Alcohols as Electroactive Probes in Micellar Solutions and Microemulsions [J]. Langmuir, 1997,13: 3693-3699.
    [302] Z S Wu, J H Jiang, G L Shen, R Q Yu. Highly Sensitive DNA Detection and Point Mutation Identification an Electrochemical Approach Based on the Combined Use of Ligase and Reverse Molecular Beacon [J]. Human Mutation, 2007, 28:630-637.
    [303] T M Pizzolato, M J L Alda, D Barcelo. LC-Based Analysis of Drugs of Abuse and Their Metabolites in Urine [J]. Trends in Anal. Chem., 2007,26: 609-624.
    
    [304] 李金.可卡因类物质及其检测 [J].中国药物依赖性杂志,2002, 11(2): 90-92.
    [305] K C Grabar, P C Smith, M D Musick, J A Davis, D G Walter, M A Jackson, A P Guthrie, M J Natan. Kinetic Control of Interparticle Spacing in Au Colloid-Based Surfaces: Rational Nanometer-Scale Architecture [J]. J. Am. Chem. Soc, 1996,118:1148-1153.
    [306] L M Demers, C A Mirkin, R C Mucic, et al. A Fluorescence-based Method for Determining the Surface Coverage and Hybridization Efficiency of Thiol-Capped Oligonucleotides Bound to Gold Thin Films and Nanoparticles [J]. Anal. Chem.,2000,72:5535-5541.
    [307] C Xu, H Cai, P G He, Y Z Fang. Electrochemical Detection of Sequence-Specific DNA Using a DNA Probe Labeled with Aminoferrocene and Chitosan Modified Electrode Immobilized with DNA [J]. Analyst, 2001,126: 62-65.
    [308] L Su, L Q Mao. Gold Nanoparticle/Alkanedithiol Conductive Films Self-Assembled onto Gold Electrode: Electrochemistry and Electroanalytical Application for Voltammetric Determination of Trace Amount of Catechol [J].Talanta, 2006,70: 68-74.
    [309] M Yang, Z Zhang. Impediment to Heterogeneous Electron Transfer Reactions of Redox-Active Species by Alkanedithiol Self-Assembled Monolayers with and without an Adlayer of Au Nanoparticles [J]. Electrochim. Acta., 2004, 49:5089-5095.
    [310] E Laviron. General Expression of the Linear Potential Sweep Voltammogram in the Case of Diffusionless Electrochemical Systems [J]. J. Electroanal. Chem.,1979,101:19-28.
    [311] A W Peterson, L K Wolf, R M Georgiadis. Hybridization of Mismatched or Partially Matched DNA at Surfaces [J]. J. Am. Chem. Soc., 2002, 124:14601-14607.
    [312] G Tremiliosi-Filho, L H Dall'Antonia, G Jerkiewicz. Limit to Extent of Formation of the Quasi-Two-Dimensional Oxide State on Au Electrodes [J]. J. Electroanal.Chem., 1997,422:149-159.
    [313] C E Jordan, A G Frutos, A J Thiel, R M Corn. Surface Plasmon Resonance Imaging Measurements of DNA Hybridization Adsorption and Streptavidin/DNA Multilayer Formation at Chemically Modified Gold Surfaces [J]. Anal. Chem.,1997,69: 4939-4947.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700