用户名: 密码: 验证码:
利用DH群体构建不结球白菜遗传连锁图谱及重要农艺性状QTL定位
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
不结球白菜(Brassica campestris ssp.chinensis)原产于我国,是东亚地区重要的蔬菜作物之一,在日常生活中占有重要地位。不结球白菜遗传图谱的构建及重要农艺性状的QTL定位将为其遗传育种及分子标记辅助选择提供有益的参考。本研究重点做了以下工作:
     对不结球白菜游离小孢子培养的关键技术进行了单因素和多因素分析。单因素研究结果表明:基因型之间的小孢子胚诱导率差异显著,54个基因型根据小孢子胚诱导率的高低可分为4类;对供体材料低温处理小孢子胚诱导率差异不大;高温诱导在12~60h范围内差异不大;NAA和6-BA的添加对小孢子胚诱导率差异不大,浓度过大时小孢子胚诱导率反而降低;活性炭的有无和浓度大小对小孢子胚诱导率影响极大。通过基因型、NAA、6-BA、活性炭四因素分析结果表明:基因型之间差异显著,活性炭不同浓度之间差异显著;不同基因型与活性炭不同浓度之间的互作差异显著;其它的互作差异均不显著。
     利用从F_1代杂交种‘暑绿’中得到的112个双单倍体(doubled haploid,DH)株系构成的群体作为作图群体,应用SRAP、SSR、RAPD和ISSR四种标记来构建遗传连锁图谱,通过Mapmaker3.0/EXP软件分析,得到1张不结球白菜分子遗传图谱,图谱总长度1 116.9 cM,平均图距6.0 cM,共包括14个连锁群,186个多态性分子标记,包括114个SRAP、33个SSR、24个RAPD和15个ISSR标记。每个连锁群上的标记数在4~27个之间,连锁群的长度在30.3~165.8 cM的范围内,平均图距在3.4~11.1cM之间。
     利用已构建的包括186个分子标记的不结球白菜遗传连锁图谱,采用复合区间作图法(CIM),对维生素C、可溶性糖、可溶性蛋白、粗纤维和干物质含量以及叶片、叶柄重比值6个品质性状进行了QTL定位和遗传效应分析,共检测到控制可溶性蛋白的QTL 2个,控制干物质的QTL 3个,控制叶片、叶柄重比的QTL 4个,但是未得到控制维生素C、可溶性糖和粗纤维的QTL。
     以包括186个分子标记的不结球白菜遗传连锁图谱为框架,采用复合区间作图法(CIM),对这2个耐寒相关性状进行了QTL分析。结果检测到4个控制相对电导率的QTL;得到控制冷害指数的QTL 7个。同时对两种方法的QTL定位结果进行了比较分析,并对QTL的解释变异百分率及加性效应进行了分析。
     以由186个分子标记构成的不结球白菜分子遗传图谱为框架,分8个时期对株高、开展度和最大叶叶型指数3个形态学性状进行了动态QTL定位。结果在8个时期检测到控制株高的非条件QTL8个,分布于4个连锁群上。在这些QTL有1个QTL在各个时期均被检测到,其余的在某1个或几个时期被检测到,这些QTL解释变异百分率全部大于10%;除第1期外,在6个时期检测到控制株高条件QTL 12个,这些QTL分别分布于6个连锁群上,都是非条件OTL检测时未检测到的,这些QTL的解释变异百分率大于10%的有8个。在8个时期共检测到控制开展度的非条件QTL 17个,分布于8个连锁群上,这些非条件QTL,没有1个在8个时期都被检测到,只在某1个或几个时期被检测到,这17个非条件QTL解释变异百分率大于10%的有15个;除第1期外,分别在4个时期检测到控制开展度的条件QTL 10个,这些条件QTL分别分布于5个连锁群上,其解释变异百分率大于10%的有6个。在8个不同时期检测到控制叶型指数的非条件QTL 21个,分布于7个连锁群上,其中有1个在8个时期均被检测到,其余的在某1个或几个时期被检测到,这些控制叶型指数的非条件QTL解释变异百分率大于10%的有14个;除了第1期以外,分别在4个时期新检测到控制叶型指数的条件QTL总共5个,这些QTL分别分布于5个连锁群上,这5个条件QTL解释变异百分率大于10%的有4个。
Non-heading Chinese cabbage {Brassica campestris ssp. chinensis) is originated from China, which is one of the important vegetables in eastern Asia and play an important role in daily menu. Construction of genetic map and QTL mapping will provide an available reference to genetic breeding and molecular marker assisted selection in non-heading Chinese cabbage. The results are shown as follows:
     Several key factors affecting isolated microspore culture in non-heading Chinese cabbage were studied by mono-factor and multi-factor experimental designs. The results of mono-factor experiments were shown as follows: there were significant differences in the frequency of microspore-induced embryos among 54 genotypes, whose genotypes were classified into four levels; for the low temperature treatment, no significant differences had been found; there were no significant differences under high temperature when the incubation time was within 12~60 h; the addition of NAA and the 6-BA in NLN medium had no significant influence on the frequency of microspore-induced embryos, and if the concentration was excessive, the frequency would decrease; the presence and concentration of activated charcoal had a great influence on the frequency of microspore-induced embryos. Moreover, as indicated by analysis results of genotypes, NAA, 6-BA and activated charcoal concentrations, there were significant differences among different genotypes and activated charcoal concentrations respectively as well as interaction of these two factors, while other interactions remained non-significant.
     A genetic linkage map of non-heading Chinese cabbage was constructed, which was based on a DH (doubled haploid) population with 112 individuals derived from a F_1 hybrid variety 'Shulv'. Four kinds of markers of SRAP, SSR, RAPD and ISSR were adopted and 186 polymorphic markers including 114 SRAP, 33 SSR, 24 RAPD and 15 ISSR markers were integrated into the resulted map using Mapmaker 3.0 version. This map consisted of 14 linkage groups, covering 1 116.9 cM with a mean marker interval of 6.0 cM. Various linkage groups were featured by 4-27 maker numbers, 30.3-165.8 cM length and 3.4-11.1 cM mean marker interval.
     By using composite interval mapping (CIM) method, a molecular genetic map with 186 markers was adopted to map and analyze QTL for the quality-related traits including vitamin C, soluble sugar, soluble protein, coarse fibrin, dry weight in leaves and weight ratio between the leaf and the leafstalk in non-heading Chinese cabbage. Two QTL were detected for soluble protein, three QTL for dry weight and four QTL for weight ratio between the leaf and the leafstalk, while no QTL were detected for controlling vitamin C, soluble sugar and coarse fibrin.
     Based on composite interval mapping (CIM) method., a genetic linkage map with 186 molecular markers was employed in mapping QTL for two cold-tolerant traits in non-heading Chinese cabbage Four QTL controlling electric conductance were detected in LG1, while seven QTL of cold damage index were detected in three LGs. The results of QTL mapping of relative electric conductance and cold damage index were compared and analyzed, as well as the explained variance and the additive effect of these QTL were estimated.
     A genetic linkage map with 186 molecular markers was adopted in dynamic mapping QTL for morphological traits including the plant height, plant width and the leaf index at eight different growth stages in non-heading Chinese cabbage. A total of eight unconditional QTL for the plant height were mapped in four linkage groups at eight growth stages. As revealed by results, only one unconditional QTL for plant height was detected at all eight stages, others were detected at one or several stages respectively. The explained variance of each unconditional QTL was more than 10%. Twelve conditional QTL for the plant height were detected in six linkage groups at six stages except the first stage. These conditional QTL did not emerge in detecting the unconditional QTL. The explained variance of eight in twelve conditional QTL was more than 10%. For plant diameter, a total of seventeen unconditional QTL were detected in eight linkage groups at eight growth stages. Among these unconditional QTL, none was detected at all growth stages, just at one or several stages respectively. The explained variance of single QTL was more than 10% except two of them. Ten conditional QTL for plant diameter were detected in five linkage groups at four stages except the first stage. The explained variance of six in ten conditional QTL was more than 10%. For the leaf index, a total of twenty-one unconditional QTL was detected in seven linkage groups at eight growth stages. Just one of them was detected at all eight stages, others were detected at one or several stages respectively. The explained variance of fourteen in twenty-one unconditional QTL was more than 10%. Five new conditional QTL for the leaf index were detected in five linkage groups at four stages expect the first stage. The explained variance of four in five conditional QTL was more than 10%.
引文
白瑞雪,孙立洁,耿红卫,等.干旱及冻害胁迫下好好芭抗旱和耐寒性的测定方法[J].中国油料作物学报,2005,27(4):55-58
    包劲松,何平,夏英武,等.不同发育阶段水稻苗高的QTL分析[J].遗传,1999,21(5):38-40
    包劲松.植物阶段转变的分了机制研究进展[C].侯喜林,常有宏主编,园艺学进展(第2辑),南京:东南大学出版社,1998,8-11
    曹鸣庆,李岩,蒋淘,等.大白菜和小白菜游离小孢子培养试验简报[J].华北农学报,1992,7(2):119-120
    曹鸣庆,李岩,刘凡.基因型和供体植物生长环境对大白菜游离小孢子胚胎发生的影响[J].华北农学报,1993,8(4):1-6
    陈耀峰,朱庆麟.蔗糖和麦芽糖的配比对小麦花粉愈伤组织诱导和分化频率的影响[J].作物学报,1993,(3):145-148
    陈玉萍,田志宏,陈爱武,等.包心芥菜游离小孢子培养的初步研究[J].华中农业大学学报,1998,17(1):93-95
    崔秀敏,侯喜林,董玉秀.ISSR-PCR和链亲和素磁珠吸附法开发白菜SSR引物[J].园艺学报,2006,33(1):155-157
    杜晓华,王得元,巩振辉.目标区域扩增多态性(TRAP):一种新的植物基因型标记技术[J]:分子植物育种,2004,2(5):747-694
    杜玮南,方福德.单核苷酸多态性的研究进展川.中国医学科学院学报,2000,22(4):392-394
    方宣钧,吴为人,唐纪良.作物DNA标记辅助育种[M].北京:科学出版社,2001
    方荣,陈学军,缪南生,等.辣椒QTL定位研究进展[J].江西农业学报,2005,17(3):68-73
    高用明,朱军.植物QTL定位方法的研究进展[J].遗传,2000,22(3):175-179
    耿建峰,原玉香,张晓伟,等.利用游离小孢子培养技术育成抗热大白菜新品种‘豫园50’[J].园艺学报,2002,29(1):89
    耿建峰,原玉香,张晓伟,等.利用游离小孢子培养技术育成早熟大白菜新品种‘豫新5号’[J].园艺学报,2003,30(2):249
    耿建峰,张晓伟,蒋武生,等.花椰菜新品种豫雪60及其栽培技术[J].河南农业科学,2001,4(4):26
    郭金英,申书兴,陈雪平,等.十字花科蔬菜游离小孢子培养研究进展[J].河北农业大学学报,2002,25(增刊):122-124
    郭爱华,左宝峰,姚延祷,等.自然降温对雪松叶片中叶绿素及电导率的影响[J].山西农业大学学报,2005,25(4):393-395
    何慈信,朱军,严菊强,等.水稻叶挺长发育动态的Q1L分析[J].水稻科学,2000,14(4):193-198
    何慈信,朱军,严菊强,等.水稻穗干物质重发育动态的QTL定位[J].中国农业科学,2000,33(1):24-32
    侯喜林,曹寿椿.不结球白菜育种研究进展[J].南京农业大学学报,2003,26(4):111-115
    侯喜林,曹寿椿,张蜀宁,等.优质白菜新品种‘暑绿’ [J].园艺学报,2004,31(3):421
    胡学军,邹国林.甘蓝分子连锁图的构建与品质性状的QTL定位[J].武汉植物学研究,2004,22(6):482-485
    黄福平,梁月荣,陆建良,等.应用RAPD和ISSR分子标记构建茶树回交1代部分遗传图谱[J].茶叶科学,2006,26(3):171-176
    黄莺,刘仁祥,武筑珠,等.活性炭、微量元素、大量元素对烟草花药培养的影响[J].贵州农业科学,1999,27(4):1-5
    霍赫洛夫主编.刘龙杰译.单倍体与育种[M].北京:农业出版社,1985,11-18
    贾继增.分子标记种质资源鉴定和分子标记育种[J].中国农业科学,1996,29(4):1-10
    简令成.植物抗寒机理研究的新进展[J].植物学通报,1992,9(3):17-22
    简令成,王红,孙龙华,等.植物抗寒剂对培育冬小麦壮苗、提高越冬存活率及产量的作用[J].植物学通报,1994,11(特刊):144-147
    姜立荣,刘凡,李怀军,等.大白菜小孢子胚状体发生早期的超微结构研究[J].北京农业科学.1996,14(3):28-31
    蒋武生,原玉香,张晓伟,等.小白菜游离小孢子培养及其再生植株[J].河南农业大学学报,2005,39(4):398-401
    蒋武生,耿建峰,原玉香,等.基因型和有机附加物对小白菜花药培养胚状体诱导的影响[J].中国瓜菜,2006(2):1-4
    李菲,张淑江,章时蕃,等.大白菜游离小孢子培养胚胎发生中的加倍机制[J].园艺学报,2006.33(5):974-978
    栗根义,高睦枪,赵秀山.大白菜游离小孢子培养[J].园艺学报,1993,20(2):167-170
    栗根义,高睦枪,赵秀山.高温预处理对游离小孢子培养的效果[J].实验生物学报,1993,26(2):165-168.
    李合生主编.植物生理生化实验原理和技术[M].北京:高等教育出版社,2000
    梁慧敏,夏阳,王太明.植物抗寒、抗旱、耐盐基因工程研究进展[J].草业学报,2003,12(3):1-4
    刘创社,董振生.甘蓝型油菜耐寒性的筛选及利用研究[J].陕西农业科学,2001(5):2-4
    刘公社,曹鸣庆,李岩,等.高温对大白菜小孢子培养的影响[J].植物学报,1995,37(2):140-146
    刘鸿先,曾韶西,王以柔,等.低温对不同耐寒力的黄瓜(Cucumic sativus)幼苗子叶各细胞器中超氧化物岐化酶(SOD)的影响[J].植物生理学报,1985,11(1):48-57
    刘树兵,王洪刚,孔令让,等.高等植物的遗传作图[J].山东农业大学学报(自然科学版),1999,30(1):73-78
    林忠旭,张献龙,聂以春,等.棉花SRAP遗传连锁图构建[J].科学通报,2003,48(15):1676-1679
    卢钢,曹家树.白菜和芜菁杂种的小孢子培养研究[J].浙江大学学报(农业与生命科学版),2001,27(2):161-164
    卢钢,曹家树,陈杭,等.白菜几个重要园艺性状的QTLs分析[J].中国农业科学,2002,35(8):969-974
    梅捍卫,罗利军,郭世彪,等.水稻加工品质数量性状基因座(QTLs)分子定位研究[J].遗传学报,2002,29(9):791-797
    莫惠栋.质量·数量性状的遗传分析[J].作物学报,1993,19(1):1-6
    牛锦凤,王振平·李国,等.几种方法测定鲜食葡萄枝条抗寒性的比较[J].果树学报,2006,23(1):31-34
    牛森主编.作物品质分析[M].北京:农业出版社,1990
    潘俊松,王刚,李效尊.黄瓜SRAP遗传图谱的构建及始花节位的基因定位[J].自然科学进展,2005,15(2):167-172
    屈淑萍.大白菜品质性状综合评价及配合力研究[D].哈尔滨:东北农业大学,2000
    任羽,王得元,张银东.相关序列扩增多态性(SRAP)一种新的分子标记技术[J].中国农学通报,2004,20(6):11-13
    宋晓飞.大白菜分子遗传图谱的构建及农艺性状QTL定位[D].保定:河北农业大学,2006
    孙丹.大白菜小孢子培养再生成株及其差异性的初步研究[D].武汉:华中农业大学,2003
    王子成,李忠爱,邓秀新.植物反转录转座子及其分子标记[J].植物学通报,2003,20(3):287-294
    王美.大白菜遗传图谱的构建及抗TuMV的QTL定位[D].泰安:山东农业大学,2003
    王美,张凤兰,孟祥栋,等.中国白菜AFLP分子遗传图谱的构建[J].华北农学报,2004,19(1):28-33
    王得元,何晓明,王鸣编著.蔬菜生物技术概论[M].北京:中国农业出版社,2002,26-38
    吴国海.玉米几个数量性状在不同发育阶段的基因效应分析[J].遗传学报,1987,14(5):363-369.
    吴洁,谭文芳,何俊蓉,等.甘薯SRAP连锁图构建淀粉含量QTL检测[J].分子植物育种,2005,3(6):841-845
    吴为人,李维明,卢浩然,等.数量性状基因座的动态定位策略[J].生物数学学报,1997,12(5):490-495
    席章营,朱芬菊,台国琴,等.作物QTL分析的原理与方法[J].中国农学通报,2005,21(1):88-92
    肖炳光,徐照丽,陈学军,等.利用DH群体构建烤烟分子标记遗传连锁图[J].中国烟草学报.2006,12(4):35-40
    刑永忠,徐才国,华金平.水稻株高和抽穗期基因定位和分离[J].植物学报,2001,43(7):721-726
    徐云碧.分子标记在数量基因定位中的应用[J].遗传,1992,14(2):45-48
    徐云碧,朱立煌.分子数量遗传学[M].中国农业出版社,北京,1994
    严建兵,汤华,黄益勤,等.不同发育时期玉米株高QTL的动态分析[J].科学通报,2003,48(18):1959-1964
    严准,田志宏,盂金陵.甘蓝游离小孢子培养的初步研究.华中农业大学学报.1999,18(1):5-7
    叶雪凌.大白菜游离小孢子胚诱导与植株再生技术研究[D].沈阳:沈阳农业大学,2004
    于栓仓.大白菜分子遗传图谱的构建及重要农艺性状的QTL定位[D].北京:中国农业科学院,2003
    于栓仓,王永健,郑晓鹰.大白菜分子遗传图谱的构建与分析[J].中国农业科学,2003,36(2):190-195
    于栓仓,王永健,郑晓鹰.大白菜耐热性QTL定位与分析[J].园艺学报,2003,30(4):417-420
    于栓仓,王永健,郑晓鹰.大白菜部分形态性状的QTL定位与分析[J].遗传学报,2003,30(12):1153-1160
    易克,徐向利,卢向阳,等.利用SSR和ISSR标记技术构建西瓜分子遗传图谱[J].湖南农业大学学报(自然科学版),2003,29(4):333-337
    余凤群,刘后利.供体材料和培养基成分对甘蓝型油菜小孢子胚状体产量的影响[J].华中农业大学学报,1995,14(4):327-331
    曾国平,曹寿椿.不结球白菜主要品质性状遗传效应分析[J].园艺学报,1997,(2):26-27.
    张德双,曹鸣庆,秦智伟.绿菜花游离小孢子培养、胚胎发生和植物再生[J].华北农学报,1998,13(3):102-106
    张凤兰,高田义人.甘蓝型油菜胚发生能力的遗传分析[J].华北农学报,2001,16(1):27-32
    张凤兰,钉贯靖久.大白菜小孢子再生植株自然加倍率的探讨[J].北京农业科学,1993,11(2):23-25
    张凤兰,钉贯靖久,吉川宏昭.环境条件对白菜小孢子培养的影响[J].华北农学报,1994,9(1):95-100
    张建军,殷丽青,范昆华,等.应用组织培养诱导白菜和莴苣四倍体[J].1997,13(4):21-27
    张立阳.大白菜连锁图谱的构建和重要农艺性状的QTL定位[D].扬州:扬州大学,2005
    张立阳,张凤兰,王美,等.大白菜永久高密度分子遗传图谱的构建[J].园艺学报.2005,32(2):249-255
    张鲁刚,王鸣,陈杭,等.中国白菜RAPD分子连锁图谱的构建[J].植物学报,2000,42(5):485-489
    张鲁刚.中国白菜分子标记遗传图谱的构建及QTL定位研究[D].杨陵:西北农林科技大学,1999.
    张晓芬,王晓武,娄平,等.利用大白菜DH群体构建AFLP遗传连锁图谱[J].园艺学报,2005,32(3):443-448
    张晓伟,高睦枪,耿建峰,等.利用游离小孢子培养技术育成早熟春甘蓝新品种‘豫生1号’[J].园艺学报,2001,28(6):577
    张增翠,侯喜林,曹寿椿.不结球白菜主要营养品质性状双列杂交遗传分析[M].园艺学进展,1998:544-548
    张增翠,侯喜林,曹椿寿.不结球白菜维生素C和可溶性糖含量的遗传分析[J].园艺学报,1999,26(3):170-174
    周朴华、何立珍.组织培养中用秋水仙素诱发黄花菜同源四倍体的研究[J].中国农业科学,1995,28(1):49-55
    周伟军,毛碧增,唐桂香,等.甘蓝型油菜小孢子再生植株染色体倍数检测研究[J].中国农业科学,2002,35(6):724-727
    朱昌兰,翟虎渠,万建民.稻米食味品质的遗传和分子生物学基础研究[J].江西农业大学学报(自然科学版),2002,24(4):454-459
    朱军.数量性状遗传分析的新方法及其在育种中的应用[J].浙江大学学报(农业生命科学版),2000,26(1):1-6
    邹金美.大白菜花药和游离小孢子培养技术体系的研究[D].武汉:华中农业大学,2003
    Ajisaka H, Kuginuki Y, Hida K, Enomoto S, Hirai M. 1995, A linkage map of DNA markers in Brassica campestris. Breed Science, 45 (Suppl.), 195-197.
    Ajisaka, H., Y. Kuginuki, M. Shiratori, K. Ishiguro, et al.. 1999. Mapping of loci affecting the culture efficiency of microspore culture of Brassica rapa L. syn. Campestris L. using DNA polymorphism. Breeding science 49:187-192.
    Arakawa N, Tsutsumi K, Sanceda N G, et al. A rapid and sensitive method for the determination of ascorbic acid using 4,7-diphenyl-1,10-phenanthroline [J]. Agric Biol Chem, 1981, 45(5): 1289-1290
    Burnett L. Embryogenesis and plant regeneration from isolated microspore of Brassica rape L. ssp. Oleffera [J]. Plant Cell Report, 1992, 11:215-218
    Barnabas B, Bert B, Kovocs G. Colchicine, an efficient genome-doubling agent for maize (Zea mays L.) microspore culture in anther [J]. Plant Cell Report, 1999, 18(10): 858-862
    Botstein D, White R L, Skolnick M H, et al. Construction of a genetic linkage map in man using restriction fragment length polymorphisms [J]. Am J Hum Genet, 1980, 32(3): 314-333
    Beavis W D. The power and deceit of QTL experiments: Lessons from comparative QTL studies. In DB Wilkinson(ed) [C].Proc 49~th Annu Corn Sorghum Res. Conf [C]. Washington: Am Seed Trade Assoc, 1994, 250-266
    Cao G, Zhu J, He C, et al. Impact of epistasis and QTLxenviroument interaction on the developmental behavior of plant height in rice (Oryza sativa L.) [J]. Theor. Appl. Genet., 2001, 103:153-160
    Cao MQ. Embryogensis and plant regeneration of sauerkraut cabbage (Brassica oleracea L. ssp. capitato) via in vitro isolated microspore culture [J]. C. R. Acad. Sci. Paris, t. 310, 1990(13): 203-209
    Chen FQ, Foolad M R, Hymanl J, et al. Mapping of QTLs for Iycopene and other fruit traits in a Lycopersicon esculentura XL. Pimpinellifolium cross and comparison of QTLs across tomato species [J]. Molecular Breeding, 1999, 5:283-299
    Chen Z Z, Snyden S, Fan Z G; Efficient production of doubled haploid through plants chromosome doubling of isolated microspores in Brassica napus [J]. Plant Breeding, 1994, 113: 217-221.
    Churchill G A, Doerge R W. Empirical threshold values for quantitative trait mapping [J]. Genetics, 1994,138 (3): 963-971.
    Cummins H, Wyatt R. Genetic variability in natural population of the moss Artichum angustatum [J]. Bryologist, 1981, 84:30-38
    Custers J M B, Cordewener J H G. Temperature controls both gametophytic and sporphyic development in microspore culture of Brassica napes [J]. Plant Cell Report, 1994(13): 267-271
    Doerge R W, Churchill G A. Permutation tests for multiple loci affecting a quantitative character [J]. Genetics, 1996, 142 (1): 285-294.
    Donis-Keller H ,Green P, Helms C, et al. A genetic linkage map of the human genome [J]. Cell, 1987, 51:319-377
    Dunwell J M, Cornish M, De Courcel A G L. Influence of genotype, plant growth temperature and anther incubation temperature on microspore embryoid production in Brassica napus ssp oleifero [J]. Experimental Botany, 1985, 36:679-689
    Eshed Y, Zamir D. An introgression line population of Lycopersicon pennellii in the cultivated tomato enable the identification and fine mapping of yield-associated QTL [J]. Genetics, 1995, 141:1147-1162
    Gatschet M J, Taliaferro C M, Andenson J A, et al. Cold Acclimation and Alterations in Protein Synthesis in Bermudagrass Crowns [J] J. Amer. Soc. Hort. Sci., 1994, 119(3): 477-480.
    Hansen M, Svinuset K. Plant regenration from isolated microspore of Brassica napus vat. napifera. Plant Cell Reports, 1993, 12:496-500
    Hetz E. Plant regenration from isolated microspore of black mustard (Brassica nigra). Ⅻ. Eucapia Congress. 1989,10-25
    Howell P M, Marshall D F, Lydiate D J. Towards developing intervarietal substitution lines in Brassica napus using marker-assisted selection [J]. Genome, 1996, 39:348-358
    Hu J G, Vick B A. Target region amplification polymorphism: a novel marker technique for plant genotyping [J]. Plant Molecular biology Reporter, 2003, 21:289-294
    Ilic-Grubor K I, Attree S M, Fowke L C. Induction of microspore-derived embryos of Brassica napus L with polyethylene glycol as osmoticum in a low sucrose medium [J]. Plant Cell Reports, 1998, 17:329-333
    Jiang C, Zeng Z B. Mapping quantitative trait loci with domain and missing markers in various crosses from two inbred lines [J]. Genetica, 1997, 101:47-58
    Kahler A L, Wehrhahr C F. Associations between quantitative trains and enzyme loci in the F_2 population of a maize hybrid [J]. Theor. Appl. Genet., 1986, 72:15-26
    Kao C H, Zeng Z B, Teasdale R D. Multiple interval mapping for quantitative trait loci [J]. Genetics, 1999, 152:1203-1216
    Kearsey M J, Farquhar A G L QTL anaiysis in plants; where are we now [J]. Heredity, 1998, 80:137-142
    Keller W A. An efficient method for culture of isolated microspores of Brassica napus. Proc.7th Intern. Rapeseed Cong, 1988, 152-157
    Kojima T, Nagaoka T, Nodaka, et al. Genetic linkage map of ISSR and RAID markers in Einkorn wheat in relation to that of RFLP markers [J]. Theor. Appl. Genet. 1998, 96:37-45
    Kole C, Thormann C E, Karlsson B H, et al. Comparative mapping of loci controlling winter survival and related traits in oilseed Brassica rapa and B. napus [J]. Molecular Breeding, 2002, 9:201-210
    Koniecany A, Ausubel F M. A procedure for mapping Arabidopsis mutations using co-dominant ecotype specific PCR-based markers [J]. Plant J, 1993, 4:403-410
    Kott L S, Polsoni L Autotoxiciy in isolated Microspore Culture of Brassica napes [J]. Can.J.Bot..1998, 66:1665-1670
    Lander E S, Green P, Abrahamson J. MAPMARKER: an interactive computer package for constructing primary genetic linkage maps of experimental and natural population [J]. Genomics, 1987, 1:174-181
    Lander E S, Botstein D. Mapping Mendelian factors underlying quantitative traits using RFLP linkage maps [J]. Genetics, 1989, 121:185-199
    Li G Y, Ouiros C F. Sequence-related amplified polymorphism (SRAP), a new marker system based on a simple PCR reaction: its application to mapping and gene tagging in Brassica [J]. Theor. Appl. Genet., 2001, 103:455-461
    Lichter R. Induction of haploid plants from isolated pollen of Brassica napus [J]. Z.Pflanzenphysiol, 1982, 105:427-434
    Lichter R. Effcient yield of embryoids by culture of isolated microspores of different Brassicoceae spcies[J]. Plant Breed, 1989, 103(2): 119-123
    Lin H X, 7.hang X L, Nie Y CH, et al. Construction of a genetic linkage map for cotton based on SRAP [J]. Chinese Science Bulletin, 2003, 48(19): 2063-2067
    Matsumoto E, Yasui C, Ohi M, et al. Linkage analysis of RFLP markers for clubroot and pigraentation in Chinese cabbage (Brassica rapa ssp. pekinensis) [J]. Euphytica, 1998, 104:79-86
    Misevie D, Gerie I, Tadie B. Allozyme marker loci associated with favorable alleles for grain yield in maize [J]. Theor. AppL Genet., 1990, 80:518-522
    Nozakl T, Kumazakl A, Koba T, et al. Linkage analysis among loci for RAPDs, isozymes and some agronomic traits in Brassica campestris L [J]. Euphytica, 1997, 95:115-123
    Ockendon D J, McClenghan R. Effect of silver nitrate and 2,4-D on anther culture of Brussels sprouts (Brassica oleracea var. gemmifera). Plant Cell, Tissue and Organ Culture, 1993, 32:41-46
    Olson M, Hood L, Cantor C, et al. A common language for physical mapping of human genome [J]. Science, 1989, 254:1434-1435
    Ong M H, Blan shard J M V. Texture determinants in cooked, parboiled dee. Rice starch amylose and the fine structure of amylopectin [J]. Journal of Cereal Science, 1995, 21:251-260
    Osolnic B, Bochanec B, Jelaska S. Stimulation of androgencsis in white cabbage (Brassiea var Capitata) anther by low temperature and anther dissection [J]. Plant Cell, Tissue and Organ Culture, 1993, 32:241-246
    Paran I, Michelmore R W. Development of reliable PCR-based markers linked to downy mildew resistance genes in lettuce [J]. Theor Appl Genet, 1993, 85:985-993
    Rafalsky J A, Tingey S V. Genetic diagnostics in plant breeding, RAPDs, microsatellites and machines [J]. Trends Genet, 1993, 9:275-279
    Ramsay L D, Jwnnings D E, Bohuon E J R, et al. The construction of a substitution library of recombinant backeross lines in Brassica oleracea for the precision mapping of quantitative trait loci [J]. Genome, 1996, 39:558-567
    Rlanco A, Giovanni C. Quantitative trait loci influencing grain protein content in tetraploid wheats [J]. Plant Breeding, 1996, 115(5): 310-316
    Robertson D S A. A possible technique for isolating genetic DNA for quantitative trait in plants [J].Theor Bio, 1985, 117:1-10
    Saiki RK, Scharf S, Faloona FA, et al. Enzymatic amplification of fl-globin sequences and restriction site analysis for diagnosis of sickle cell anemia [J]. Science, 1985, 230:1350-1354
    Sato T.Plant regeneration from isolated mierospore culture of Chinese cabbage (Brassica campestris ssp. pekinensis) [J]. Plant Cell Reports, 1989, 8:486-488
    Silua Dias J C. Effect of activated charcoal on B. oleracea microspore culture embryoidgenesis [J]. Euphytica, 1999,108(1): 65-69
    Soltis D E, Haufler C H, Gastony G J. Detecting enzyme variation in the fern genus Bommeria: an analysis of methodology [J]. Syst Bot, 1980,5:30-38
    Song K M, Slocum M K, Osborn T C. Molecular marker analysis of genes controlling morphological variation in Brassica rapa (syn. campestris) [J]. Theor, and Appl. Genet, 1995, 90:1-10.
    Song K.M, Suzuki J Y, Solcum M K, et al. A linkage map of Brassica rapa (syn. Campestris) based on restriction fragment length polymorphism loci [J]. Theor. Appl. Genet., 1991, 82: 296-304
    Staub J K, Serquen F C, Gupta M. Genetic markers map construction and their application in plant breeding [J]. Hort science, 1996, 31(5): 729-740
    Stuber CW, Sisco P H. Marker-facilitated transfer of QTL alleles between elite inbred lines and responses in ybred [C].Proc 46~(th) Annual Corn and Sorghum Industry Research Conf, American Seed Trade Assoc, 1991,41: 70-83
    Suwabe K, Tsukazaki H, Iketani H, et al. Identification of two loci for resistance to clubroot (Plasmodiophora brassicae Woronin) in Brassica rapa L [J]. Theor. Appl. Genet., 2003,107: 997-1002
    Sun Z D, Wang Z N, Tu J X, et al. An ultradense genetic recombination map for Brassica napus, consisting of 13551 SRAP markers [J]. Theor. Appl. Genet. (Accepted)
    Takahata Y. Determination of microspore population to obtain high frequency embryogenesis in broccoli [J]. Plant Tissue Culture Lectors. 1993,10(1): 49-53
    Tarn S M, Mhiri C, Vogelaar A, et al. Comparative analysis diversities within tomato and pepper collections detected by retrortransposon-based SSAP, AFLP and SSR [J]. Theor. Appl. Genet., 2005, 110: 819-831
    
    Tanksley S D. Mapping polygenes [J].Annu Rev Genet, 1993,27:205-233
    Tanksley S D, Young N D, Paterson A H. RFLP Mapping in Plant Breeding: New Tools for an Old Science [J]. Bio Technology, 1989,7: 257-264
    Teutonico R A, Osbon T C. Mapping of RFLP and qualitative trait in Brassica rapa and comparision to the linkage maps of B. napus, B. oleracea, and Arabidopsis thaliana [J]. Theor Appl Genet, 1994, 89: 885-894
    Teutonico R A, Osborn T C. Mapping loci controlling gvernalization requirement in Brassica Rapa [J]. Theor. Appl. Genet., 1995, 91:1279-1283.
    Thurling N, Chay P M. The influence of donor plant genotype and environment on production of microspore in cultured anthers of Brassico napus Ofeifera [J]. Ann Bot, London, 1984,54: 681-693
    Tuyl J M V Vries J B de, Bino R J. Identification of 2n pollen producing interspecific hybrids of Lilum using flow cytomemtry [J]. Cytologia, 1988, 54(4): 737-747
    Vodenicharova M. Use of proteins as molecular-genetic markers in plants [J]. Genet Sel, 1989, 22:269-277
    Van der Schaar W, Aionson-Blanco C, Leonkloosterziel K M, et al. QTL analysis of seed dormancy in Axabidopsis using recombinant inbred lines and MOM mapping [J]. Heredity, 1997, 79:190-200
    Vos P, Hogers R, Bleeker M, et al. AFLP: A new technique for DNA fingerprinting [J].Nucleic Acids Res, 1995, 23:4407-4414
    Wang G, Pan J S, Li X Z, et al. Construction of a cucumber genetic linkage map with SRAP markers and location of the genes for lateral branch traits [J]. Science in China Set. C life Sciences, 2005,48(3): 213-220
    West G B, Brown J H, Enquist B J. A general model for ontogenetic growth [J]. Nature, 2001, 413:628-631.
    William J G K, Kubelik A R, Livak K J, et al. DNA polymorphisms amplified by arbitrary primers are useful as genetic markers [J]. Nucleic Acids Research, 1990, 18(22): 6531-6535
    Wright S. Genic and organismic selection [J]. Evolution, 1980, 34:825-843
    Wu R L, Min L. Functional mapping-how to map and study the genetics architecture of dynamic complex traits [J]. Nature review genetics. 2006, 7 (3): 229-237
    Wu W R, Li W M. A new approach for mapping quantitative trait loci using complete genetic marker linkage maps [J]. Theor. Appl. Genet., 1994, 89:535-539
    Wu W R, Li W M. Model fitting and model testing in the method of joint mapping of quantitative trait loci [J]. The.or Appl Genet, 1996, 92:477-482
    Xu Y B, Shen T Z. Diallel analysis of tiller number at different growth stages in rice (Oryza satliva L.) [J]. Theor Appl Genet, 1991, 83: 243-249.
    Yan J Q, Zhu J, He C X, et al. Molecular dissection of development behavior of plant height in rice (Oryza sativa L.) [J]. Genetics, 1998, 150:1257-1265
    Yano M, Harushima Y, Nagarma Y, et al. Identification of quantitative trait loci controlling heading ,date in rice using high-density linkage map [J]. TheorAppl Genet, 1997, 95:1025-1032
    Zeng Z B. Precision mapping of quantitative trait loci [J]. Genetics, 1994, 136 (4): 1457-1468.
    Zeng Z B, Liu J, Stam L F, et al. Genetic architecture of a morphological shape difference between two Drosophila species [J]. Genetics, 2000, 54:299-310
    Zhang X W, Wu J, Zhao J J, et al. Identification of QTLs Related to Bolting in Brassica rapa ssp. pekinensis(syn. Brassica campestris ssp.pekinensis) [J]. Agricultural Sciences in China, 2006, 5(4):265-271
    Zhu J. Analysis of conditional genetic effects and variance components in developmental genetics[J]. Genetics, 1995, 141:1633-1639
    Zietk/ewicz E, Patalsk/A, Labuda D. Genomic fingerprinting by simple sequence repeat (SSR)-anchored polymerase chain react/on amplification [J]. Genomics, 1994, 20:176-183

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700