用户名: 密码: 验证码:
电化学发光DNA和适体生物传感器的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
人类遗传性疾病、传染性疾病、癌症等威胁着人类的生命,这些疾病的早期诊断和治疗都依赖于对病源、基因检测和药物的研究。建立简单、敏感、特异和快速的病源、基因和药物检测方法,对疾病的预防、诊断和治疗具有重要的意义。生物传感器是生物分子识别单元(如酶、抗体或单链DNA)与信号转换元件偶联组成的分析器件,是简单廉价快速免疫检测和核酸检测的重要工具。生物传感器的研究已成为现代分析化学研究的前沿课题之一。在生物传感器生物分子识别元件中,酶和单抗或多抗的制备比较繁琐、固定时易损失活性、活性保存时间有限、使用时对环境和样品条件要求比较高,因此,利用新型高特异性高稳定性生物识别单元,建立高选择型高灵敏度的生物传感新方法,也成为当前分析化学研究一项具有挑战性的研究工作。适体具备类似抗体对靶分子高亲合力和特异性、分子量小、结构简单、易合成和可进行连接性修饰等优点,而且反应速度快、可反复使用和长期保存。因此,适体这些独特的优点使其被认为有望取代抗体或弥补抗体不足而成为新一代生物识别分子,适体传感器的研究已成为生物传感器研究中的研究课题。
     电化学发光法兼有电化学和化学发光法的双重优点,具有极低的检测限、极宽的线性范围等优点;相对于荧光法,无光漂白,不需要光源和分光系统等优点;相对于电化学检测,具有检测限低和受电极污染影响小的优点。本论文研究工作旨在基于纳米粒子信号放大作用,结合生物分子识别物质DNA和适体的特异性,研制高灵敏度、高选择性新型电化学发光DNA和适体生物传感器。本论文研究工作是在国家自然科学基金“电化学发光适配体生物传感器”(No.20775046),“微阵列生物传感器信号化学放大基础研究”(No.90607016)和“新型功能纳米材料组装电化学发光生物亲合传感器的研究”(No.20375025)项目的资助和陕西师范大学优秀博士论文资助项目的资助下完成的。本论文研制了一种高灵敏度、高选择性、简单的新型电化学发光DNA杂交生物传感器;研制了一种简单、快速、灵敏的可卡因电化学发光适体生物传感器;研制了三种简单、快速、灵敏的凝血酶电化学发光适体生物传感器;还构建了非标记溶菌酶电化学发光适体传感器。
     本论文由五章组成。第一章为引言。引言部分介绍了电化学发光分析的原理、特点和电化学发光反应的机理;重点介绍了DNA与适体生物传感器的构造、原理、特点以及分析应用,总结了适体分子在电极上的几种主要固定方法;介绍了纳米材料作为电极修饰材料和探针载体的优点以及在DNA生物传感器中的应用;还简要介绍了本论文的目的和意义以及主要研究内容。
     第二章为电化学发光DNA杂交生物传感器的研究。本章研究工作旨在提高电化学发光DNA杂交检测的灵敏度,基于单壁碳纳米管负载大量钌联吡啶复合物标记,研制了一种超灵敏的电化学发光DNA杂交生物传感器。单链DNA探针(ss-DNA)和钌联吡啶复合物负载到单壁碳纳米管上,作为电化学发光探针。当修饰有巯基的捕获ss-DNA自组装到金电极表面,然后与目标ss-DNA进行杂交,进而与电化学发光探针杂交,形成DNA夹心结构,电化学激发后产生一个强的电化学发光响应信号。该传感器的电化学发光强度与完全互补目标ss-DNA浓度在2.4×10~(-14)mol/L~1.7×10~(-12)mol/L之间呈良好的线性关系,检出限为9×10~(-15)mol/L。该传感器对完全互补目标ss-DNA和两碱基错配ss-DNA有一定识别作用。该工作表明单壁碳纳米管可以负载电化学发光探针,从而建立超灵敏的电化学发光DNA杂交生物传感器。
     第三章为可卡因电化学发光适体传感器的研究。以可卡因适体为分子识别物质,可卡因为目标分析物,钌联吡啶衍生物为电化学发光标记物,提出并设计了一种新型的基于适体的电化学发光检测小分子药物可卡因的适体生物传感器。3′末端标记有钌联吡啶衍生物的可卡因适体为电化学发光探针。通过巯基自组装将电化学发光探针固定到电极上制备成为电化学发光适体传感器。当目标物质可卡因存在时,适体折叠,三个双链茎与可卡因结合,适体发生构象转变,钌联吡啶衍生物离电极距离变近,电化学发光强度增强。电化学发光积分强度与可卡因浓度在5.0×10~(-9)mol/L-3.0×10~(-7)mol/L之间呈良好的线性关系,检出限为1×10~(-9)mol/L。
     第四章为凝血酶电化学发光适体传感器的研究。本章的研究工作旨在设计基于适体的电化学发光检测蛋白质的适体生物传感器。以凝血酶适体作为分子识别物质,以凝血酶作为目标分析物,研制了三种简单、快速、灵敏的凝血酶电化学发光适体生物传感器。
     1.基于二茂铁淬灭钌联吡啶电化学发光设计了一种新型的检测凝血酶电化学发光适体传感器。首先自组装捕获探针到金电极上,捕获探针序列包括凝血酶适体和与DNA标记钌联吡啶(RuDNA)结合部分,随后将与RuDNA和二茂铁标记的DNA(FcDNA)探针依次完全互补单链DNA序列结合在固定化捕获探针序列上,构成传感器。在没有目标物质凝血酶存在时,由于FcDNA和RuDNA接近,产生电化学发光淬灭,得到较低的电化学发光响应信号;存在目标物质凝血酶时,由于FcDNA/凝血酶适体双链变为凝血酶适体/凝血酶复合物,电化学发光淬灭消失,产生一个增强的电化学发光响应信号。该传感器的电化学发光强度与凝血酶浓度在2.0×10~(-10)mol/L~2.0×10~(-7)mol/L范围内呈良好的线性关系,对凝血酶的检出限为6×10~(-11)mol/L。实验结果表明,所设计基于二茂铁淬灭钌联吡啶电化学发光凝血酶适体传感器为信号增强型适体传感器,可有效的降低背景信号,提高检测蛋白质的灵敏度。
     2.利用适体在目标分子的引入时,使适体原本形成的DNA/DNA双螺旋结构转变为DNA/目标分子的复合物结构,发生构型转换机制,研制了一种用于高灵敏检测凝血酶的电化学发光传感器。首先在金电极表面通过1,6-己二硫醇自组装纳米金,再将巯基修饰的捕获探针组装在纳米金表面,该捕获探针与钌联吡啶衍生物标记的凝血酶适体探针杂交后,即组成传感器。凝血酶的存在使钌联吡啶衍生物标记的适体探针从电极表面脱落而导致电化学发光强度下降。该传感器可对凝血酶进行特异性识别与检测,其电化学发光强度与凝血酶浓度在2.7×10~(-12)mol/L~2.7×10~(-9)mol/L范围内呈良好的线性关系,检出限为8×10~(-13)mol/L。该传感器有较高的灵敏度,可在水中热解后再生,稳定性良好。
     3.以碳纳米管作为信号物质载体,结合凝血酶的两段适体,构建了高灵敏的电化学发光适体传感器。将巯基修饰的凝血酶适体Ⅰ通过自组装到金电极表面,形成识别层,特异性“捕捉”目标蛋白质-凝血酶,进而结合电化学发光探针(碳纳米管负载凝血酶适体Ⅱ和钌联吡啶复合物)形成夹心结构,在含有三丙胺的检测液中通过检测电化学发光探针的电化学发光信号对凝血酶进行定量检测。实验证明,此传感器具有优异的特异性和超高的灵敏度,对凝血酶检出限可达3×10~(-15)mol/L。
     第五章为非标记溶菌酶电化学发光适体传感器的研究。以溶菌酶适体作为分子识别物质,以溶菌酶作为目标分析物,基于Ru(bpy)_3~(2+)静电结合到修饰有适体探针的电极表面,产生的电化学发光响应,设计了一种灵敏的非标记电化学发光溶菌酶适体传感器。通过表面结合阳离子电化学发光活性物质Ru(bpy)_3~(2+)的电化学发光强度积分值对凝血酶进行识别和定量分析,电化学发光强度积分值与溶菌酶的浓度在6.4×10~(-10)~6.4×10~(-7)mol/L范围内呈良好的线性关系,检出限为1.2×10~(-10)mol/L。探索建立了电化学发光测定溶菌酶适体与溶菌酶结合的解离常数。
     本论文所研制的电化学发光DNA和适体生物传感器,为DNA、小分子药物和蛋白质的快速灵敏检测提供了良好的分析器件和分析新方法。金纳米粒子提供相对大的比表面积,可以提高凝血酶适体在电极上的固定量,从而提高电化学发光检测凝血酶的灵敏度。碳纳米管可以负载有多个信号分子,从而使传感器检测DNA和凝血酶的灵敏度大大提高。本论文的研究工作为进一步研制高灵敏度和高选择电化学发光DNA和适体生物传感器提供了基础性研究资料,对此方面的研究工作具有一定的促进作用。
Biosensors are defined as analytical devices incorporating a biological material(e.g.tissue, microorganisms,organelles,cell receptors,enzymes,antibodies,nucleic acids,natural products etc.), a biologically derived material(e.g.recombinant antibodies,engineered proteins) or a biomimic(e.g. synthetic catalysts,combinatorial ligands,imprinted polymers) intimately associated with or integrated within a physicochemical transducer or transducing microsystem,which may be optical, electrochemical,thermometric,piezoelectric,magnetic or micromechanical.The research of biosensors has already become new frontier of modern analytical chemistry.Aptamers have several advantages over traditional antibody-based reagents.Unlike antibodies,aptamers can be synthesized chemically and selected by SELEX(Systematic Evolution of Ligands by Exponential Enrichment) process,undergo ligand-dependent conformational changes,and offer long-term stability,target versatility,and convenient regeneration.Because of their specific binding abilities,aptamers would be extremely useful to make aptamer-based biosensing for the determination of small molecular and protein substances.
     Electrogenerated chemiluminescence(also called electrochemiluminescence,abbreviated as ECL) is the process where species generated at electrodes undergo electron-transfer reactions to form excited states that emit light.ECL method has many distinct advantages over fluorescence method because it does not involve a light source and avoids the attendant problems of scattered light and impurities luminescent.Moreover,the specificity of the ECL reaction associated with the ECL label and the coreactant species decreases problems with side reactions and is characterized by good spatial and temporal resolution.It has also widely been used in pharmaceutical analysis, bioanalysis,environmental analysis and clinical analysis.In recent years,highly selective and sensitive analytical methods such as DNA hybridization assay and biosensor have been received much attention.The development of a simple,rapid,sensitive and selective ECL biosensor and the fabrication of a simple,cheap and stable analytical detector in ECL analysis have been a long-term goal.
     The aim of this thesis is to design and fabricate ECL DNA hybridization and aptamer-based biosensors for the determination of biological molecule with high sensitivity,selectivity and simplify. In this thesis,taking advantages of the unique properties of nanoparticles and the specificity of biological molecular recognition substances,such as DNA,aptamer,we have designed a series of ECL DNA and aptamer-based biosensors for the determination of DNA,cocaine,thrombin and lysozyme.Research work in this thesis is financially supported by the National Natural Science Foundation of China(Grant No.20775046,No.90607016,No.20375025).
     The thesis includes two parts.First part,chapter 1,is general introduction while second part consisting of four chapters,is a research report.
     In Chapter 1,general introduction to ECL,DNA biosensor and aptamer biosensor including their principles and research development,and the purpose of this research work were presented.
     In chapter 2,an ultrasensitive ECL detection method of DNA hybridization based on single-walled carbon-nanotubes(SWNT) carrying a large number of ruthenium complex tags was developed.The probe single strand DNA(ss-DNA) and ruthenium complex were loaded at SWNT, which was taken as an ECL probe.When the capture ss-DNA with a thiol group was self-assembled onto the surface of gold electrode,and then hybridized with target ss-DNA and further hybridized with the ECL probe to form DNA sandwich conjugate,a strong ECL response was electrochemically generated.The ECL intensity was linearly related to the concentration of perfect-matched target ss-DNA in the range from 2.4×10~(-14) to 1.7×10~(-12)mol/L with a detection limit of 9×10~(-15) mol/L.The ECL signal difference permitted to discriminate the perfect-matched target ss-DNA and two-base-mismatched ss-DNA.This work demonstrates that SWNT can provide an amplification platform for carrying a large number of ECL probe and thus resulting in an ultrasensitive ECL detection of DNA hybridization.
     In chapter 3,a novel ECL aptamer-based biosensor for the determination of a small molecule drug is designed employing cocaine-binding aptamer as molecular recognition element for cocaine as a model analyte and ruthenium complex served as an ECL label.A 5'-terminal cocaine-binding aptarner with the ECL label at 3'-terminal of the aptamer was utilized as an ECL probe.The ECL-AB biosensors were fabricated by immobilizing the ECL probe onto a gold electrode surface via thiol-Au interactions.An enhanced ECL signal is generated upon recognition of the target cocaine, attributed to a change in the conformation of the ECL probe from random coil-like configuration on the probe-modified film to three-way junction structure,in close proximity to the sensor interface. The integrated ECL intensity versus the concentration of cocaine was linear in the range from 5.0×10~(-9) to 3.0×10~(-7) mol/L.The detection limit was 1×10~(-9) mol/L.This work demonstrates that the combination of a highly binding aptamer to analyte with a highly sensitive ECL technique to design ECL aptamer-based biosensor is a great promising approach for the determination of small molecule drugs.
     In chapter 4,three aptamer-based ECL biosensors for the determination of thrombin were designed.As a model system,thrombin-binding aptamer was utilized as molecular recognition element and thrombin as a target analyte and tris(2,2'-bipyridyl) ruthenium derivatives as aptamer ECL label.
     First one was designed on basis of a structure-switching ECL-dequenching mechanism.The thiolated DNA capture probe,composed of a DNA sequence to adopt two distinct structures-a DNA duplex with a complementary DNA sequence tagged with tris(2,2'-bipyridyl) ruthenium derivatives (RuDNA)-binding motif and a DNA duplex with a complementary DNA sequence tagged with ferrocene(Fc)-DNA probe(FcDNA) with the target for which the aptamer is created,was self-assembled onto surface of a gold electrode.In the presence of thrombin,the aptamer prefers to form the aptamer-target complex and the switch of the binding partners for the aptamer occurs in conjunction with the generation of a strong ECL signal owing to the dissociation of FcDNA.The integrated ECL intensity versus the concentration of thrombin was linear in the range from 2.0×10~(-10) to 2.0×10~(-7) mol/L.The detection limit was 6×10~(-11) mol/L thrombin.
     Second one was designed with a "signal off" model.Gold nanoparticles were assembled onto a gold electrode through 1,6-hexanedithiol and then thiolated ss-DNA capture probe was assembled onto the surface of the gold nanoparticles.The ECL aptamer probe was designed to hybridize with capture DNA sequence and specifically recognize thrombin.The introduction of thrombin triggers structure switching of the aptamer and thus the ECL probe is forced to dissociate from the sensing interface,resulting in a decrease in ECL intensity.The decrement of integrated ECL intensity is proportional to the concentration of thrombin in the range from 2.7×10~(-12) to 2.7×10~(-9) mol/L.The detection limit was 8×10~(-13) mol/L.
     Third one was designed in sandwich model using the two aptamers(aptamerⅠand aptamerⅡ), which recognize different positions of thrombin.AptamerⅠimmobilized onto a gold electrode can captured the analyte thrombin and then the captured thrombin binds to an ECL probe composed of aptamerⅡand ruthenium complex loaded at SWNT,resulting ECL generation.The detection limit as low as 3×10~(-15) mol/L thrombin was achieved.
     In chapter 5,a novel ECL aptamer-based biosensors for label-free determination of lysozyme was developed using aptamer-self-assembly electrodes.Anti-lysozyme DNA aptamers were immobilized on gold surfaces by means of self-assembly,for which the surface concentration of aptamers was determined by ECL studies of Ru(bpy)_3~(2+) bound to the surface via electrostatic interaction with the DNA phosphate backbone.Upon incubation of the electrode with a solution containing lysozyme,the ECL response of surface-bound Ru(bpy)_3~(2+) changed substantially,and the relative decrease in the integrated the ECL intensity can be tabulated as a quantitative measure of the protein concentration 6.4×10~(-10) mol/L to 6.4×10~(-7) mol/L.It is significant that the on-electrode protein/aptamer binding constant and the optimized surface concentration of lysozyme aptamer to achieve the lower detection limit can be evaluated.This biosensor is label-free and offers a sensitive and versatile method for protein detection.
     In conclusion,one ECL DNA hybridization biosensor and five ECL aptamer-based biosensors were fabricated for the determination of biological molecule in this thesis.This thesis work demonstrates that the combination of a highly binding aptamer to analyte with a highly sensitive ECL technique to design ECL aptamer-based biosensor is a great promising approach for the determination of small molecule drugs and proteins.The sensitivity of ECL DNA hybridization and aptamer-based biosensors can be much improved using the nanoparticles modified electrode and nanotubes carrying multiple ECL probes.
引文
[1]J Rouse,S P Jackson.Interfaces between the detection,signaling,and repair of DNA damage[J].Science,2002,297:547-551.
    [2]A P Turner.Biosensors--sense and sensitivity[J].Science,2000,290:1315-1317.
    [3]R Pyati,M M Richter.ECL-Electrochemical luminescence[J].Annu.Rep.Prog.Chem.-Sect.C,2007,103:12-78.
    [4]M M Richter.Electrochemiluminescence(ECL)[J].Chem.Rev.,2004,104:3003-3036.
    [5]A J Bard,editor.Electrogenerated Chemiluminescence[M]Ed:Marcel Dekker:New York 2004.
    [6]A F Karsten,P Miloslav,G G George.Recent applications of electrogenerated chemilum-inescence in chemical analysis[J].Talanta,2001,54:531-559.
    [7]S Kulmala,J Suomi.Current status of modern analytical luminescence methods[J].Anal.Chim.Acta,2003,500:21-69.
    [8]R D Gerardi,N W Barnett,S W Lewis.Analytical applications of tris(2,2'-bipyridyl) ruthenium(Ⅲ) as a chemiluminescent reagent[J].Anal.Chim.Acta,1999,378(1-3):1-41.
    [9]A W Knight.A review of recent trends in analytical applications of electrogenerated chemiluminescence[J].TrAC-Trends Anal.Chem.,1999,18(1):47-62.
    [10]C A Marquette,L J Blum.Electro-chemiluminescent biosensing[J].Anal.Bioanal.Chem.,2008,390(1):155-168.
    [11]A F Karsten,P Miloslav,G G George.Recent applications of electrogenerated chemiluminescence in chemical analysis[J].Talanta,2001,54:531-559.
    [12]X B Yin,S J Dong,E K Wang.Analytical applications of the electrochemiluminescence of tris(2,2-bipyridyl) ruthenium and its derivatives[J].Trac-Trends Anal.Chem.,2004,23(6):432-441.
    [13]S Kulmala,J Suomi.Current status of modern analytical luminescence methods[J].Anal.Chim.Acta,2003,500:21-69.
    [14]王鹏,张文艳,周鸿,朱果逸.免疫电化学发光[J].分析化学,1998,26(7): 898-903.
    [15]陈曦,王小如,黄本立.电致化学发光研究的新进展[J].分析化学,1998,26(6):770-778.
    [16]王鹏,袁艺,朱果逸,张密林.电化学发光分析的新进展[J].分析化学,1999,27(10):1219-1225.
    [17]徐国宝,董绍俊.电化学发光及其应用[J].分析化学,2001,29(1):103-108.
    [18]张成孝,漆红兰.电化学发光分析研究进展[J].世界科技研究与发展,2004,26(4):7-13.
    [19]陈国南,林振宇.生物活性物质的电致化学发光检测[J].世界科技研究与发展,2004,26(4):66-74.
    [20]林金明.化学发光基础理论与应用[M].化学工业出版社,2004,7-8.
    [21]A E Ellington,J W Szostak.In vitro selection of RNA molecules that bind specific ligands[J].Nature,1990,346:818-822.
    [22]C Tuerk,Gold L.Systematic evolution of ligands by exponential enrichment[J].Science,1990,249:505-510.
    [23]S Tombelli,M Minunni,M Mascini.Analytical applications of aptamers[J].Biosens.Bioelectron.,2005,20:2424-2434.
    [24]J Hesselberth,P R Michael,J H Sulay,A D Ellington.In vitro selection of nucleic acids for diagnostic applications[J].Reviews in Molecular Biotechnology,2000,74:15-25.
    [25]C L A Hamula,J W Guthrie,H Q Zhang,H Q Zhang,X F Li,X C Le.Selection and analytical applications of aptamer.Trac-Trend Anal.Chem.,2006,25(7):681-691.
    [26]漆红兰,李延,李晓霞,张成孝.适体传感器研究新进展[J].化学传感器,2007,27,1-8.
    [27]E Luzi,M Minunni,S Tombelli.New trends in affinity sensing:aptamers for ligand binding[J].Trac-Trend Anal.Chem.,2003,22:810-818.
    [28]姚春艳,府伟灵.适配子技术在生物传感器中的应用[J].国际检验医学杂志,2006,27(8):707-708.
    [29]王成刚,莫志宏.核酸适体技术研究进展[J].生物医学工程学杂志,2006,23(2):463-466.
    [30]I Willner,M Zayats.Electronic Aptamer-based sensors[J].Angew.Chem.Int.Ed. 2007,46:2-13.
    [31]S P Song,L H Wang,J Li,C H Fan,J L Zhao.Aptamer-based biosensors[J].Trac-Trend Anal.Chem.,2008,27(2):108-117.
    [32]G A Soukup,R R Breaker.Nucleic acid molecular switches[J].Trends.Biotechnol.,1999,17:469-476.
    [33]W Vercoutere,M Akeson.Biosensors for DNA sequence detection[J].Curr.Opin.Chem.Biol.,2002,6(6):816-822.
    [34]H H Thorp.Cutting out the middleman:DNA biosensors based on electrochemical oxidation[J].Trends.Biotechnol.,1998,16:117-121.
    [35]汪俊,江雅新,方晓红,白春礼.核酸适体的研究及应用[J].物理,2003,32(11):732-735.
    [36]唐吉军,邵宁生,谢剑炜.寡核苷酸适配子在分析化学中的应用[J].化学通报,2004,67:W103.
    [37]C K O'Sullivan.Aptasensor-the future of biosensing?[J].Anal Bioanal Chem.,2002,372:44-48.
    [38]D Proske,M Blank,R Buhmann,A Resch.Aptamers-basic research,drug development,and clinical applications[J].Appl.Microbiol.Biotechnol.,2005,69(4):367-374.
    [39]谢海燕,陈薛钗,邓玉林.核酸适配体及其在化学领域的相关应用[J].化学进展,2007,19(6):1026-1033.
    [40]J O Lee,H M So,E K Jeon,H Chang,K Won,Y H Kim.Aptamers as molecular recognition elements for electrical nanobiosensors[J].Anal.Bioanal.Chem.,2008,390(4):1023-1032.
    [41]T Mairal,V C Ozalp,P Lozano Sanchez,M Mir,I Katakis,C K O'Sullivan.Aptamers:molecular tools for analytical applications[J].Anal.Bioanal.Chem.,2008,390(4):989-1007.
    [42]M Famulok,J S Hartig,G Mayer.Functional aptamers and aptazymes in biotechnology,diagnostics,and therapy[J].Chem.Rev.,2007,107(9):3715-3743.
    [43]D M Hercules.Chemiluminescence resulting from electrochemically generated species[J].Science,1964,145:808-809.
    [44]R E Visco,E A Chandross.Electroluminescence in solutions of aromatic hydrocarbons[J]J.Am.Chem.Soc.,1964,86:5350-5351.
    [45] K S V Santhanam, A J Bard. Chemiluminescence of electrogenerated 9, 10-diphenylanthracene anion radical [J]. J. Am. Chem. Soc, 1965, 87(1): 139-140.
    [46] R T Dufford, D Nightingale, L W Gaddum. Luminescence of grignard compounds in electric and magnetic fields, and related electrical phenomena [J]. J. Am. Chem. Soc, 1927,49(8): 1858-1864.
    [47] N. Harvey. Luminescence during electrolysis [J]. J. Phys. Chem., 1929, 33(10): 1456-1459.
    [48] Marcus, R.A. On the theory of chemiluminescent electron-transfer reactions [J]. J. Chem. Phys., 1965,43(8): 2654-2657.
    [49](1)S W Feldberg. Theory of controlled potential electrogeneration of chemiluminescence [J]. J. Am. Chem. Soc, 1966, 88(3): 390-393. (2) S W Feldberg. A possible method for distinguishing between triplet-triplet annihilation and direct singlet formation in electrogenerated chemiluminescence [J]. J. Phys. Chem., 1966,70(12): 3928-3930.
    [50] L R Faulkner, A J Bard. Electrogenerated chemiluminescence. IV. magnetic field effects on the electrogenerated chemiluminescence of some anthracenes [J]. J. Am. Chem. Soc, 1969,91(1): 209-210.
    [51] D M Hercules, F E Lytle. Chemiluminescence from reduction reactions [J]. J. Am. Chem. Soc, 1966, 88(20): 4745-4746.
    [52] N E Tokel, A J Bard. Electrogenerated chemiluminescence. IX. electrochemistry and emission from systems containing tris(2,2'-bipyridine)ruthenium(II) dichloride [J]. J. Am. Chem. Soc, 1972, 94(8): 2862-2863.
    [53] M Chang. T Saji, A J Bard. Electrogenerated chemiluminescence. 30. Electrochemical oxidation of oxalate ion in the presence of luminescers in acetonitrile solutions [J]. J. Am. Chem. Soc, 1977, 99(16): 5399-5403.
    [54] H D Abruna, A J Bard. Electrogenerated chemiluminescence. 40. a chemiluminescent polymer based on the tris(4-vinyl-4-methyl-2, 2-bipyridyl) ruthenium(II) system [J]. J. Am. Chem. Soc, 1982,104(9): 2641-2642.
    [55] D Ege, W G Becker, A J Bard. Electrogenerated chemiluminescent determination of tris(2, 2'-bipyridine)ruthenium ion (Ru(bpy)_3~(2+)) at low levels [J]. Anal. Chem, 1984, 56(13): 2413-2417.
    [56] J B Noffsinger, N D Danielson. Generation of chemiluminescence upon reaction of aliphatic amines with tris(2, 2-bipyridine)ruthenium(III) [J]. Anal. Chem., 1987, 59(6): 865-868.
    [57] J K Leland, M J J Powell. Electrogenerated chemiluminescence: an oxidative-reaction type ECL reaction sequence using tripropyl amine [J]. J. Electrochem. Soc, 1990,137: 3127-3131.
    
    [58] A J Bard, G M Whitesides. US Patent 5,221,605, June 22,1993.
    [59] G F Blackburn, H P Shah, J H Kenten, J Leland, R A Kamin, J Link, J Peteran, M J Powell, A Shah, D B Talley, S K Tyuagi, E Wilkins, T G Wu, R J Massey. Electrochemiluminescence detection for development of immunoassays and DNA probe assays for clinical diagnostics [J]. Clin. Chem., 1991,37: 1534-1539.
    [60] M M Collinson, R M Wightman. High-frequency generation of electrochemiluminescence at microelectrodes [J]. Anal. Chem., 1993, 65(19): 2576-2582.
    [61] A W Knight, G M Greenway. Occurrence, mechanisms and analytical applications of electrogenerated chemiluminescence-review [J]. Analyst, 1994,119: 879-890.
    [62] I Rubinstein, A J Bard. Electrogenerated chemiluminescence. 37. aqueous ECL systems based on tris(2, 2-bipyridine)ruthenium(2+) and oxalate or organic acids [J]. J. Am. Chem. Soc, 1981,103: 512-516.
    [63] C G Zoski, editor. Handbook of Electrochemistry [M] Ed: Elsevier: Amsterdam 2007.
    [64] H S White, A J Bard. Electrogenerated chemiluminescence. 41. electrogenerated chemiluminescence and chemiluminescence of the Ru(2, 2'-bpy)_3~(2+)-S_2O_8~(2-) system in acetonitrile-water solutions [J]. J. Am. Chem. Soc, 1982,104: 6895-6899.
    [65] T Ala-Kleme, S Kulmana, Q Jiang. Generation of free radicals and electrochemiluminescence from simple aromatic molecules in aqueous solutions [J]. Luminescence, 2006, 21(2): 118-125.
    [66] S Ikonopisov. Problems and contradictions in galvanoluminescence, a critical review [J]. Electrochim. Acta, 1975, 20: 783-793.
    [67] S Tajima. Luminescence, breakdown and colouring of anodic oxide films on aluminium [J]. Electrochim. Acta, 1977, 22: 995-1011.
    [68] S Kulmala, T Ala-Kleme, L Vare, M Helin, T Lehtinen, Hot electron-induced electrogenerated luminescence of T1(Ⅰ) at disposable oxide-covered aluminum electrodes[J].Anal.Chim.Acta,1999,398:41-47.
    [69]E F Fabrizio,I Prieto,A J Bard.Hydrocarbon cation radical formation by reduction of peroxydisulfate[J].J.Am.Chem.Soc.,2000,122:4996-4997
    [70]郑行望.流动注射与化学修饰电极电化学发光分析研究.[D].博士学位论文,.西南师范大学,2003年.
    [71]J D Waston,F H C Crick.A structure for deoxyribose nucleic acid[J].Nature,1953,171:737-738.
    [72]P Piunno,U Krull,R Hudson,M Damha,H Cohen.Fiber-optic DNA sensor for fluorometric nucleic acid determination[J].Anal.Chem.,1995,67(15):2635-2643.
    [73]F Kleinjung,F R Bier,A Warsilnke.Fibre-optic genosensor for specific determination of femtomolar DNA oligomers[J].Anal.Chim.Acta,1997,350:51-58.
    [74]S Tyagi,F R Kramer.Molecular beacons:probes that fluoresce upon hybridization [J].Nat.Biotechnol.,1996,14:303-308.
    [75]G Zhang,Y Zhou,J Yuan,S Ren.A chemiluminescence fiber-optic biosensor for detection of DNA hybridization[J].Anal.Lett.,1999,32(14):2725-2736.
    [76]姜雄平,许丹科,刘耀清,马立人,化学发光核酸传感器的研制,分析化学,2000,28:12-16.
    [77]吴晓明,周宜开,任恕,郝巧玲,错配杂交化学发光法检测细胞色素P4501A1基因多态性,分析化学,2002,30:1355-1358.
    [78]V Pavlov,Y Xiao,R G D Amon,M Kotler,I Willner,Amplified chemiluminescence surface detection of DNA and telomerase activity using catalytic nucleic acid labels[J].Anal.Chem.,2004,76:2152-2156.
    [79]J R Hawker.Chemiluminescence-based BrdU ELISA to measure DNA synthesis [J].J.Immuno.Methods,2003,274:77-82.
    [80]F F Bier,F Kleinjang,F W Scheller.Real-time measurement of nucleic-acid hybridization using evanescent-wave sensors:steps towards the genosensor[J].Sensor Actuat B-Chem,1997,38:78-82.
    [81]N Bianchi,C Rutigliano,M Tomassetti,G Feriotto,F Zorzato,R Gambari.Biosensor technology and surfacce plasmon resonance for real-time detection of HIV-1 genomic sequences amplified by polymerase chain reaction [J]. Clin. Diagn. Virol, 1997, 8(3): 199-204.
    [82] A J Thiel, A G Frutos, C E Jordan. In situ surface plasmon resonance imaging detection of DNA hybridization to oligonucleotide arrays on gold surfaces [J]. Anal. Chem., 1997,69: 4948-4956.
    [83] M T Carter, A J Bard. Electrochemical investigation of the interaction of metal chelates with DNA, electrogenerated chemiluminescent investigation of the interaction of tris 1, 10-phenanthroline ruthenium (II) with DNA [J]. Bioconjug. Chem., 1990,1(4): 257-263.
    [84] M Rodriguez, A J Bard. Electrochemical studies of the interaction of metal chelates with DNA. 4. voltammetric and electrogenerated chemiluminescent studies of the interaction of tris(2, 2-bipyridine) Osmium(II) with DNA [J]. Anal Chem., 1990, 62(24): 2658-2662.
    [85] T Kuwabara, T Noda, H Ohtake, T Ohtake, S Toyama, Y Ikariyama. Classification of DNA-binding mode of antitumor and antiviral agents by the electrochemiluminescence of ruthenium complex [J]. Anal. Biochem., 2003, 314: 30-37.
    [86] W J Miao, A J Bard. Electrogenerated chemiluminescence. 72. determination of immobilized DNA and C-reactive protein on Au (III) electrodes using tris (2, 2-bipyridyl) ruthenium (II) labels [J]. Anal. Chem., 2003,75: 5825-5834.
    [87] G Firrao. Detection of DNA/DNA hybridization by electrogenerated chemiluminescence [J]. Int. J. Environ. Anal. Chem., 2005, 85: 609-612.
    [88] L Dennany, R J Forster, J F Rusling. Simultaneous direct electrochemiluminescence and catalytic voltammetry detection of DNA in ultrathin films [J]. J. Am. Chem. Soc, 2003,125: 5213-5218.
    [89] M L Yang, C Z Liu, K J Qian, P G He, Y Z Fang. Study on the electrochemiluminescence behavior of ABEI and its application in DNA hybridization analysis [J]. Analyst, 2002,127:1267-1271.
    [90] W Miao, A J Bard. Electrogenerated chemiluminescence. 77. DNA hybridization detection at high amplification with [Ru(bpy)_3]~(2+)-containing microspheres [J]. Anal. Chem., 2004, 76(18): 5379-5386.
    [91] H Wang, C X Zhang, Y Li, H L Qi. Electrogenerated chemiluminescence detection for deoxyribonucleic acid hybridization based on gold nanoparticles carrying multiple probes[J].Anal.Chim.Acta,2006,575:205-211.
    [92]Y Li,H L Qi,F Fang,C X Zhang.Ultrasensitive electrogenerated chemiluminescence detection of DNA hybridization using carbon-nanotubes loaded with tris(2,2-bipyridyl) ruthenium derivative tags[J].Talanta,2007,72:1704-1709.
    [93]Z Chang,J M Zhou,K Zhao,N N Zhu,P G He,Y Z Fang.Ru(bpy)_3~(2+)-doped silica nanoparticle DNA probe for the electrogenerated chemiluminescence detection of DNA hybridization[J].Electrochimica Acta,2006,52:575-580.
    [94]H Wei,Y Du,J Z Kang,E K Wang.Label free electrochemiluminescence protocol for sensitive DNA detection with a tris(2,2-bipyridyl)ruthenium(Ⅱ) modified electrode based on nucleic acid oxidation[J].Electrochem.Commun.,2007,9:1474-1479.
    [95]A M Spehar,S Koster,S Kulmala,E Verpoorte,N de Rooij,M Koudelka-Hep.The quenching of electrochemiluminescence upon oligonucleotide hybridization[J].Luminescence,2004,19(5):287-295.
    [96]C Bertolino,M MacSweeney,J Tobin,B O'Neill,M M Sheehan,S Coluccia,H Berney.A monolithic silicon based integrated signal generation and detection system for monitoring DNA hybridization[J].Biosens.Bioelectron.,2005,21(4):565-573.
    [97]A M Spehar-Deleze,L Schmidt,R Neier,S Kulmala,N de Rooij,M Koudelka-Hep.Electrochemiluminescent hybridization chip with electric field aided mismatch discrimination[J].Biosens.Bioelectron.,2006,22:722-729.
    [98]陈帆,刘盛辉.脱氧核糖核酸(DNA)生物传感器的研究现状(Ⅱ)--电化学发光DNA生物传感器[J].浙江工业大学学报,2000,28(1):47-50.
    [99]K E Erkkila,D T Odom,J K Barton.Recognition and reaction of metallointercalators with DNA[J].Chem.Rev.,1999,99(9):2777-2796.
    [100]J Wang,X Cai,G Rivas,H Shiraishi,P A M Farias,N Dontha.DNA electrochemical biosensor for the detection of short DNA sequences related to the human immunodefeciency virus[J].Anal.Chem.,1996,68(15):2629-2634.
    [101]庞代文,齐义鹏,王宗礼,程介克.DNA的电化学研究[J],化学通报,1994,2:1-4.
    [102] Hashimoto K, Ito K, Ishimori Y. Novel DNA sensor for electrochemical gene detection [J]. Anal. Chim. Acta, 1994,286(2): 219-224.
    [103] N C Tansil, H Xie, F Xie, Z Gao. Direct detection of DNA with an electrocatalytic threading intercalator [J]. Anal. Chem., 2005, 77(1): 126-134.
    [104] U Asseline, M Delarue, G Lancelot, F Toulme, N T Thuong, T Montenay-Garestier, C Helene. Nucleic acid-binding molecules with high affinity and base sequence specificity: intercalating agents covalently linked to oligodeoxynucleotides [J]. Proc. Natl. Acad. Sci .USA, 1984; 81(11): 3297-3301.
    [105] K M Mlilan, A Saraullo, S R Mikkelsen. Voltammetric DNA biosensor for cystic fibrosis based on a modified carbon paste electrode [J]. Anal. Chem., 1994,66(18): 2943-2947.
    [106] K Hashimoto, K Ito, Y Ishimori. Sequence-specific gene detection with a gold electrode modified with DNA probes and electrochemically active dye [J]. Anal. Chem., 1994, 66(21): 3830-3836.
    [107] A B Steel, T M Herne, M J Tarlov. Electrochemical quantitation of DNA immobilized on gold [J]. Anal. Chem., 1998, 70: 4670-4677.
    [108] S Takenaka, Y Uto, H Kondo, T Ihara, M Takagi. Electrochemically active DNA probes: detection of target DNA sequences at femtomole level by high performance liquid chromatography with electrochemical detection [J]. Anal. Biochem., 1994,218: 436-443.
    [109] J Wang, G D Liu, M R Jan. Ultrasensitive electrical biosensing of proteins and DNA: carbon-nanotube derived amplification of the recognition and transduction events [J]. J. Am. Chem. Soc, 2004,126: 3010-3011.
    [110] C Fan, K W Plaxco, A J Heeger. Electrochemical interrogation of conformational changes as a reagentless method for the sequence-specific detection of DNA [J]. Proc. Natl. Acad. Sci. USA, 2003,100(16): 9134-9137.
    [111] Y Xiao, A A Lubin, B R Baker, K W Plaxco, A J Heeger. Single-step electronic detection of femtomolar DNA by target-induced strand displacement in an electrode-bound duplex [J]. Proc. Natl. Acad. Sci. USA, 2006, 103(45): 16677-16680.
    [112] K Kim, H S Yang, S H Park, D S Lee, S J Kim, Y T Lim, Y T Kim. Washing-free electrochemical DNA detection using double-stranded probes and competitive hybridization reaction [J]. Chem. Commun., 2004,1466-1467.
    [113] D J Caruana, A Heller. Enzyme-amplified amperometric detection of hybridization and of a single base pair mutation in an 18-base oligonucleotide on a 7-m-diameter microelectrode [J]. J. Am. Chem. Soc, 1999,121(4): 769 -774.
    [114] C N Campbell, D Gal, N Cristler, C Banditrat, A Heller. Enzyme-amplified amperometric sandwich test for RNA and DNA [J]. Anal. Chem., 2002, 74(1): 158-162.
    [115] Y C Zhang, H H Kim, A Heller. Enzyme-amplified amperometric detection of 3000 copies of DNA in a 10-μL droplet at 0.5 fM concentration [J]. Anal. Chem., 2003, 75(13): 3267-3269.
    [116] F Patolsky, A Lichtenstein, I Willner. Detection of single-base DNA mutations by enzyme-amplified electronic transduction [J]. Nat. Biotechnol., 2001,19: 253 -257.
    [117] N C Fawcett, J A Evans, L C Chew, N Flowers. Nucleic acid hybridization detected by piezoelectric resonance [J]. Anal. Lett., 1988,21:1099-1114.
    [118] Y Okahata, Y Matsunobu, K Ijiro, M Mukae, A Murakami, K Makino. ybridization of nucleic acids immobilized on a quartz crystal microbalance [J]. J. Am. Chem. Soc, 1992,114(21): 8299-8300.
    [119] H Su, K M R Kallury, M Thompson. Interfacial nucleic acid hybridization studied by random primer 32P labeling and liquid-phase acoustic network [J]. Anal. Chem., 1994,66(6): 769-777.
    [120] J C Andle, J F Vetelino, M W Lade, D J McAllister. An acoustic plate mode biosensor [J]. Sensor Actuat B-Chem, 1992, 8: 191-198.
    [121] G Z Sauerbrey. The use of quartz oscillators for weighting thin layers and for microweighting [J]. Z Phys. 1959,155: 206-222.
    [122] M Maeda, Y Mitsuhashi, K Nakano, M Takagi. DNA-immobilized gold electrode for DNA-binding drug sensor [J]. Anal. Sci., 1992, 8(1): 83-84.
    [123] R B Towery, N C Fawcett, P Zhang, J A Evans. Genomic DNA hybridizes with the same rate constant on the QCM biosensor as in homogeneous solution [J]. Biosens. Bioelectron., 2001,16(1): 1-8.
    [124] I Ben-Dov, I Willner, E Zisman. Piezoelectric immunosensors for urine specimens of chlamydia trachomatis employing quartz crystal microbalance microgravimetric analyses[J].Anal.Chem.,1997,69(17):3506-3512.
    [125]S Han,J Lin,M Satjapipat,A J Baca,F M Zhou.A three-dimensional heterogeneous DNA sensing surface formed by attaching oligodeoxynucleotide-capped gold nanoparticles onto a gold-coated quartz crystal[J].Chem.Commun.,2001,2:609-610.
    [126]X C Zhou,S J O'Shea,S F Y Li.Amplified microgravimetric gene sensor using Au nanoparticle modified oligonucleotides[J],Chem.Commun.,2000,11:953-954.
    [127]C R Graham,D Leslie,D J Squirrell.Gene probe assays on a fibre-optic evanescent wave biosensor[J].Biosens.Bioelectron.,1992,7(7):487-493.
    [128]K Hashimoto,K Miwa,M Goto,Y Ishimori.DNA sensor:a novel electrochemical gene detection method using carbon electrode immobilized DNA probes[J].Supramol Chem,1993,2:265-270.
    [129]A Sassolas,B D Leca-Bouvier,L J Blum.DNA biosensors and microarrays[J].Chem.Rev.,2008,108(1):109-139.
    [130]王申五主编.基因诊断技术—非放射性操作手册.北京:北京医科大学/中国协和医科大学联合出版社,1993:19-20.
    [131]D L Robertson,G F Joyce.Selection in vitro of an RNA enzyme that specifically cleaves single-stranded DNA[J].Nature,1990,344:467-468.
    [132]T Hermann,D J Patel.Adaptive recognition by nucleic acid aptamers[J].Science,2000,287(5454):820.
    [133]D H Nguyen,S C DeFina,W H Fink,T Dieckmann.Binding to an RNA aptamer changes the charge distribution and conformation of malachite green[J].J.Am.Chem.Soc.,2002 124(50):15081-15084.
    [134]R D Jenison,S C Gill,A Pardi,B Polisky.High-resolution molecular discrimination by RNA[J].Science,1994,263(5152):1425-1429.
    [135]J Liu,Y Lu.Adenosine-dependent assembly of aptazyme-functionalized gold nanoparticles and its application as a colorimetric biosensor[J].Anal.Chem.,2004,76:1627-1632.
    [136]J Liu,Y Lu.Preparation of aptamer-linked gold nanoparticle purple aggregates for colorimetric sensing of analytes[J].Nat.Protoc.,2006,1(1):246-252.
    [137] J Liu, D Mazumdar, Y Lu. A simple and sensitive "dipstick" test in serum based on lateral flow separation of aptamer-linked nanostructures [J]. Angew. Chem. Int. Ed., 2006,45(47): 7955-7959.
    [138] J Liu, Y Lu. Fast colorimetric sensing of adenosine and cocaine based on general sensor design involving aptamers and nanoparticles [J]. Angew. Chem. Int. Ed., 2006,45: 90-94.
    [139] J Liu, J H Lee, Y Lu. Quantum dot encoding of aptamer-linked nanostructures for one-pot simultaneous detection of multiple analytes [J]. Anal Chem., 2007, 79(11): 4120-4125.
    [140] M N Stojanovic, D W Landry. Aptamer-based colorimetric probe for cocaine [J]. J. Am. Chem. Soc, 2002,124(33): 9678-9679.
    [141] M B Murphy, S T Fuller, P M Richardson, S A Doyle. An improved method for the in vitro evolution of aptamers and applications in protein detection and purification [J]. Nucl. Acids Res., 2003, 31:108-110.
    [142] S Balamurugan, A Obubuafo, S A Soper, R L McCarley, D A Spivak. Designing highly specific biosensing surfaces using aptamer monolayers on gold [J]. Langmuir, 2006,22 (14): 6446 -6453.
    [143] F Kleinjung, S Klussman, V A Erdmann, F W Scheller, J P Furste, F F Bier. High-affinity RNA as a recognition element in a biosensor [J]. Anal. Chem., 1998,70:328-331.
    [144] R A Potyrailo, R C Conrad, A D Ellington, G M Hieftje. Adapting selected nucleic acid ligands (aptamers) to biosensors [J].Anal. Chem., 1998, 70(16): 3419-3425.
    [145] T G McCauley, N Hamaguchi, M Stanton. Aptamer-based biosensor arrays for detection and quantification of biological macromolecules [J]. Anal. Biochem., 2003, 319: 244-250.
    [146] M Levy, S F Cater, A D Ellington. Quantum-dot aptamer beacons for the detection of proteins [J]. Chem. Bio. Chem., 2005,6: 2163 -2166.
    [147] J G Bruno, J L Kiel. In vitro selection of DNA aptamers to anthrax spores with electrochemiluminescence detection [J]. Biosens. Bioelectron., 1999, 14(5): 457-464.
    [148] J G Bruno, J L Kiel, Use of magnetic beads in selection and detection of biotoxin aptamers by electrochemiluminescence and enzymatic methods: drug discovery and genomic technologies [J]. Bio. Techniques, 2002, 32(1): 178-183.
    [149] Y Li, H L Qi, Y G Peng, J Yang, C X Zhang. Electrogenerated chemiluminescence aptamer-based biosensor for the determination of cocaine [J]. Electrochem. Commun., 2007,10: 2571-2575.
    [150] X Y Wang, W Yun, J M Zhou, P Dong, P G He, Y Z Fang. Ru(bpy)_3~(2+)-doped silica nanoparticle aptasensor for detection of thrombin based on electrogenerated chemiluminescence [J]. Chin. J. Chem., 2008,26(2): 315-320.
    [151] X Y Wang, J M Zhou, W Yun, S S Xiao, Z Chang, P G He, Y Z Fang. Detection of thrombin using electrogenerated chemiluminescence based on Ru(bpy)_3~(2+)-doped silica nanoparticle aptasensor via target protein-induced strand displacement [J]. Anal. Chim. Acta, 2007,598(2): 242-248.
    [152] V Pavlov, Y Xiao, B Shlyahovsky, I Willner. Aptamer-functionalized Au nanoparticles for the amplified optical detection of thrombin [J]. J. Am. Chem. Soc.,2004,126(38): 11768-11769.
    [153] B A Sparano, K Koide. A strategy for the development of small-molecule-based sensors that strongly fluoresce when bound to a specific RNA [J]. J. Am. Chem. Soc, 2005,127: 14954-14955.
    [154] N Rupcich, R Nutiu, Y F Li, J D Brennan. Entrapment of fluorescent signaling DNA aptamers in sol-gel-derived silica [J]. Anal. Chem., 2005,77: 4300-4307.
    [155] B Shlyahovsky, D Li, E Katz, I Willner. Proteins modified with DNAzymes or aptamers act as biosensors or biosensor labels [J]. Biosens. Bioelectron., 2007, 22(11): 2570-2576.
    [156] Y Xiao, B D Piorek, K W Plaxco, A J Heeger. A reagentless signal-on architecture for electronic, aptamer-based sensors via target-induced strand displacement [J]. J. Am. Chem. Soc, 2005,127: 17990-17991.
    [157] Y Xiao, A A Lubin, A J Heeger, KW Plaxco. Label-free electronic detection of thrombin in blood serum using an aptamer based sensor[J]. Angew. Chem. Int. Ed., 2005, 44: 5456-5459.
    [158] R Y Lai, K W Plaxco, A J Heeger. Aptamer-based electrochemical detection of picomolar platelet-derived growth factor directly in blood serum [J]. Anal. Chem., 2007, 79: 229-233.
    [159]J A Hansen,J Wang,A N Kawde,Y Xiang,K V Gothelf,G Collins.Quantum-dot/aptamer-based ultrasensitive multi-analyte electrochemical biosensor[J].J.Am.Chem.Soc.,2006,128:2228-2229.
    [160]A Numnuam,K Y Chumbimuni-Torres,Y Xiang,R Bash,P Thavarungkul,P Kanatharana,E Pretsch,J Wang,E Bakker.Aptamer-based potentiometric measurements of proteins using ion-selective microelectrodes[J].Anal.Chem.,2008,80(3):707-712.
    [161]J Zheng,W J Feng,L Lin,F Zhang,G F Cheng,P G He,Y Z Fang.A new amplification strategy for ultrasensitive electrochemical aptasensor with network-like thiocyanuric acid/gold nanoparticles[J].Biosens.Bioelectron.,2007,23(3):341-347.
    [162]P L He,L Shen,Y H Cao,D F Li.Ultrasensitive electrochemical detection of proteins by amplification of aptamer-nanoparticle bio bar codes[J].Anal.Chem.,2007,79(21):8024-8029.
    [163]I Kazunori,K Chiharu,S Koji.Novel electrochemical sensor system for protein using the aptamers in sandwich manner[J].Biosens.Bioelectron.,2005,20:2168-2172.
    [164]B R Baker,R Y Lai,M S Wood,E H Doctor,A J Heeger,K W Plaxco.An electronic,aptamer-based small-molecule sensor for the rapid,label-free detection of cocaine in adulterated samples and biological fluids[J].J.Am.Chem.Soc.,2006,128:3138-3139.
    [165]X L Zuo,S P Song,J Zhang,D Pan,L Wang,C Fan.Target-responsive electrochemical aptamer switch(TREAS) for reagentless detection of nanomolar ATP[J].J.Am.Chem.Sot.,2007,129(5):1042-1043.
    [166]A E Radi,C K O"Sullivan.Aptamer conformational switch as sensitive electrochemical biosensor for potassium ion recognition[J].Chem.Commun.,2006,32:3432-3434.
    [167]D Xu,D Xu,X Yu,Z Liu,W He,Z Ma.Label-free electrochemical detection for aptamer-based array electrodes[J].Anal.Chem.,2005,77:5107-5113.
    [168]H Cai,T M H Lee,I M Hsing.Label-free protein recognition using an aptamer-based label-free protein recognition using an aptamer-based impedance measurement assay[J].Sensor Actuat B-Chem,2006,114:433-437.
    [169] Y Xu, L Yang, X Y Ye, P G He, Y Z Fang. An aptamer-based protein biosensor by detecting the amplified impedance signal [J]. Electroanalysis, 2006, 18(15): 1449-1456.
    [170] X Li, L Shen, D Zhang, H Qi, Q Gao, F Ma, C Zhang. Electrochemical impedance spectroscopy for study of aptamer-thrombin interfacial interactions [J]. Biosens. Bioelectron., 2008,23:1624-1630.
    [171] A N Kawde, M C Rodriguez, T M H Lee, J Wang. Label free bioelectronic detection of aptamer-protein interaction [J]. Electrochem. Commun., 2005, 7: 537-540.
    [172] L F Fabien, A H Hoang, L Mario. Label-free electrochemical detection of protein based on a ferrocene-bearing cationic polythiophene and aptamer [J]. Anal. Chem., 2006, 78: 4727-4731.
    [173] A K H Cheng, B X Ge, H Z Yu. Aptamer-based biosensors for label-free voltammetric detection of lysozyme [J]. Anal. Chem., 2007, 79: 5158-5164.
    [174] I A Buryakov. Express analysis of explosives, chemical warfare agents and drugs with multicapillary column gas chromatography and ion mobility increment spectrometry [J]. J. Chromatogr. B, 2004,800 (1-2): 75-82.
    [175] N de-los-Santos-Alvarez, M J Lobo-Castanon, A J Miranda-Ordieres, P Tunon-Blanco. Modified-RNA aptamer-based sensor for competitive impedimetric assay of neomycin B [J]. J. Am. Chem. Soc, 2007, 129(13): 3808-3809.
    [176] Y S Kim, H S Jung, T Matsuura, H Y Lee, T Kawai, M B Gu. Electrochemical detection of 17P-estradiol using DNA aptamer immobilized gold electrode chip [J]. Biosens. Bioelectron., 2007,22(11): 2525-2531.
    [177] L Shen, Z Chen, Y Li, P Jing, S Xie, S He, P He, Y Shao. A chronocoulometric aptamer sensor for adenosine monophosphate [J]. Chem. Commun., 2007, 21, 2169-2171.
    [178] M Zayats, Y Huang, R Gill, C.-a Ma, I Willner. Label-free and reagentless aptamer-based sensors for small molecules [J]. J. Am. Chem. Soc, 2006, 128(42): 13666-13667.
    [179] A Bini, M Minunni, S Tombelli, S Centi, M Mascini. Analytical performances of aptamer-based sensing for thrombin detection [J]. Anal. Chem., 2007, 79(7): 3016-3019.
    [180] M Liss, B Petersen, H Wolf, E Prohaska. An aptamer-based quartz crystal protein biosensor [J]. Anal. Chem., 2002, 74(17): 4488-4495.
    [181] M Minunni, S Tombelli, A Gullotto, E Luzi, M Mascini. Development of biosensors with aptamers as bio-recognition element: the case of HIV-1 Tat protein [J]. Biosens. Bioelectron., 2004,20(6): 1149-1156.
    [182] C A Savran, S M Knudsen, A D Ellington, S R Manalis. Micromechanical detection of proteins using aptamer-based receptor molecules [J]. Anal. Chem., 2004, 76(11): 3194-3198.
    [183] B Basnar, R Elnathan, I Willner. Following aptamer-thrombin binding by force measurements [J]. Anal. Chem., 2006, 78(11): 3638-3642.
    [184] Y X Jiang, C F Zhu, L S Ling, L J Wan, X H Fang, C L Bai. Specific aptamer-protein interaction studied by atomic force microscopy [J]. Anal. Chem., 2003,75:2112-2116.
    [185] Y Jiang, J Wang, X Fang, C Bai. Study of the effect of metal ion on the specific interaction between protein and aptamer by atomic force microscopy [J]. J. Nanosci. Nanotechno., 2004,4(6): 611-615.
    [186] H M So, K Won, Y H Kim, B K Kim, B H Ryu, P S Na, H Kim, J O Lee. Single-walled carbon nanotube biosensors using aptamers as molecular recognition elements [J]. J. Am. Chem. Soc, 2005,127:11906-11907.
    [187] K Maehashi, T Katsura, K Kerman, Y Takamura, K Matsumoto, E Tamiya. Label-free protein biosensor based on aptamer-modified carbon nanotube field-effect transistors [J]. Anal. Chem., 2007,79(2): 782-787.
    [188] S Balamurugan, A Obubuafo, S A Soper, D A Spivak. Surface immobilization methods for aptamer diagnostic applications [J]. Anal. Bioanal. Chem., 2008, 390(4): 1009-1021.
    [189] C C Huang, Z Cao, H T Chang, W Tan. Protein-protein interaction studies based on molecular aptamers by affinity capillary electrophoresis [J]. Anal. Chem., 2004, 76(23): 6973-6981.
    [190] M Michaud, E Jourdan, A Villet, A Ravel, C Grosset, E Peyrin. A DNA aptamer as a new target-specific chiral selector for HPLC [J]. J. Am. Chem. Soc, 2003, 125: 8672-8679.
    [191]M Ikanovic,W E Rudzinski,J G Bruno,A Allman,M P Carrillo,S Dwarakanath,S Bhahdigadi,P Rao,J L Kiel,C J Andrews.Fluorescence assay based on aptamer-quantum dot binding to bacillus thuringiensis spores[J].J.Fluoresc.2007,17:193-199.
    [192]C Lin,E Katilius,Y Liu,J Zhang,H Yan.Self-assembled signaling aptamer DNA arrays for protein detection[J].Angew.Chem.Int.Ed.,2006,45:5296-5301.
    [193]C Lin,Y Liu,H Yan.Self-assembled combinatorial encoding nanoarrays for multiplexed biosensing[J].Nano.Lett.,2007,7(2):507-512.
    [194]张炯,万莹,王丽华,宋世平,樊春海.电化学DNA生物传感器[J].化学进展,2007,19(10):1576-1584.
    [195]鞠熀先.电分析化学与生物传感器技术[M].北京:科学技术出版社,2006.
    [196]鞠滉先.生物分析化学[M].北京:科学出版社,2007.
    [197]L A Chrisey,G U Lee,C E O'Ferrall.Covalent attachment of synthetic DNA to self-assembled monolayer films[J].Nucleic Acids Res.,1996,24:3031-3039.
    [198]E Baldrich,A Restrepo,C K O'Sullivan.Aptasensor development:elucidation of critical parameters for optimal aptamer performance[J].Anal.Chem.,2004,76:7053-7063.
    [199]M D Schlensog,T M A Gronewold,M Tewes,M Famulok,E Quandt.A love-wave biosensor using nucleic acids as ligands[J].Sensor Actuat B-Chem,2004,101:308-315.
    [200]C C Huang,Y F Huang,Z Cao,W Tan,H T Chang.Aptamer-modified gold nanoparticles for colorimetric determination of platelet-derived growth factors and their receptors[J].Anal.Chem.,2005,77(17):5735-5741.
    [201]T M Herne,M J Tarlov.Characterization of DNA probes immobilized on gold surfaces[J].J.Am.Chem.Sot.,1997,119:8916-8920.
    [202]J C Love,L A Estroff,J K Kriebel,R G Nuzzo,G M Whitesides.Self-assembled monolayers of thiolates on metals as a form of nanotechnology[J].Chem.Rev.,2005,105(4):1103-1169.
    [203]C D Bain,G M Whitesides.Attenuation lengths of photoelectrons in hydrocarbon films[J].J.Phys.Chem.,1989,93:1670-1673.
    [204]A S Duwez.Exploiting electron spectroscopies to probe the structure and organization of self-assembled monolayers: a review [J]. J. Electron. Spectrosc. Relat. Phenom., 2004,134: 97-138.
    [205] M D Porter, T B Bright, D L Allara, C E D Chidsey. Spontaneously organized molecular assemblies. 4. Structural characterization of n-alkyl thiol monolayers on gold by optical ellipsometry, infrared spectroscopy, and electrochemistry [J]. J. Am. Chem. Soc, 1987,109: 3559-3568.
    [206] D Roy, J Fendler. Reflection and absorption techniques for optical characterization of chemically assembled nanomaterials [J]. Adv. Mater., 2004, 16(6): 479-508.
    [207] S J Stranick, P S Weiss, A N Parikh, D L Allara. Alternating current scanning tunneling spectroscopy of self-assembled monolayers on gold [J]. J. Vac. Sci. Technol. A, 1993,11: 739-741.
    [208] C F Quate. Scanning probes as a lithography tool for nanostructures [J]. Surf. Sci., 1997,386: 259-264.
    [209] G Binnig, H Rohrer. Scanning tunneling microscopy [J]. IBM J Res Dev, 2000, 44: 279-293.
    [210] D L Allara, R G Nuzzo. Spontaneously organized molecular assemblies. 2. quantitative infrared spectroscopic determination of equilibrium structures of solution-adsorbed n-alkanoic acids on an oxidized aluminum surface [J]. Langmuir, 1985,1: 52-63.
    [211] G M Whitesides, P E Laibinis. Wet chemical approaches to the characterization of organic surfaces: self-assembled monolayers, wetting, and the physical-organic chemistry of the solid-liquid interface [J]. Langmuir, 1990, 6: 87-96.
    [212] D K Xu, L R Ma, Y Q Liu, Z H Jiang, Z H Liu. Development of chemiluminescent biosensing of nucleic acids based on oligonucleotide- immobilized gold surfaces [J]. Analyst, 1999,124: 533-536.
    [213] M L Sauthier, R L Carroll, C B Gorman, S Franzen. Nanoparticle layers assembled through DNA hybridization: characterization and optimization [J]. Langmuir, 2002,18: 1825-1830.
    [214] A A Yu, T Savas, S Cabrini, E diFabrizio, H I Smith, F Stellacci. High resolution printing of dna feature on poly(methyl methacrylate) substrates using supramolecular nano-stamping[J].J.Am.Chem.Soc.,2005,127:16774-16775.
    [215]S Hwang,E Kim,J Kwak.Electrochemical detection of DNA hybridization using biometallization[J].Anal.Chem.,2005,77:579-584.
    [216]D Y Petrovykh,H Kimura-Suda,L J Whitman,M J Tarlov.Quantitative analysis and characterization of DNA immobilized on gold[J].J.Am.Chem.Soc.,2003,125:5219-5226.
    [217]J J Storhoff,R Elghanian,R C Mucic,C A Mirkin,R L Letsinger.One-pot colorimetric differentiation of polynucleotides with single base imperfections using gold nanoparticle probes[J].J.Am.Chem.Soc.,1998,120:1959-1964.
    [218]K C Grabar,R G Freeman,M B Hommer,M J Natan.Preparation and characterization of Au colloid monolayers[J].Anal.Chem.,1995,67(4):735-743.
    [219]Z S Wu,M M Guo,S B Zhang,C R Chen,J H Jiang,G L Shen,R Q Yu.Reusable electrochemical sensing platform for highly sensitive detection of small molecules based on structure-switching signaling aptamers[J].Anal.Chem.,2007,79(7):2933-2939.
    [220]E Kai,S Sawata,K Ikebukuro,T Iida,T Honda,I Karube.Detection of PCR products in solution using surface plasmon resonance[J].Anal.Chem.,1999,71(4):796-800.
    [221]X J Liu,W H Tan.A fiber-optic evanescent wave DNA biosensor based on novel molecular beacons[J].Anal.Chem.,1999,71(22):5054-5059.
    [222]A Merkoci,M Aldavert,S Marin,S Alegret.New materials for electrochemical sensing V:Nanoparticles for DNA labeling[J].Trac-Trends Anal.Chem.,2005,24(4):341-355.
    [223](1)王辉,李延,漆红兰,张成孝.纳米金修饰电极和探针载体的DNA电化学发光分析方法研究[J].陕西师范大学学报,2006,34(4):69-72.
    (2)A Doron,E Katz,I Willner,Organization of Au colloids as monolayer films onto ITO glass surfaces:application of the metal colloid films as base interfaces to construct redox-active monolayers,Langmuir,1995,11:1313-1317.
    [224]赵红秋,林琳,唐季安等.利用纳米金颗粒增强DNA探针在传感器上的固定程度和识别能力[J].科学通报,2001,46(4):292-295.
    [225]L Authier,C Grossiord,P Berssier,B Limoges.Gold nanoparticle-based quantitative electrochemical detection of amplified human cytomegaloviras DNA using disposable microband electrodes [J]. Anal. Chem., 2001, 73(18): 4450-4456.
    [226] J Zhang, S P Song, L Zhang, L Wang, H Wu, D Pan, C Fan. Sequence-specific detection of femtomolar DNA via a chronocoulometric DNA sensor (CDS): effects of nanoparticle-mediated amplification and nanoscale control of DNA assembly at electrodes [J]. J. Am. Chem. Soc, 2006,128(26): 8575-8580.
    [227] D Tasis, N Tagmatarchis, A Bianco, M Prato. Chemistry of carbon nanotubes [J]. Chem. Rev., 2006,106(3): 1105-1136.
    [228] K Rege, G Viswanathan, G Zhu, A Vijayaraghavan, P M Ajayan, J S Dordick. In vitro transcription and protein translation from carbon nanotube-DNA assemblies [J]. Small, 2006,2(6): 718-722.
    [229] G F Chen, J Zhao, Y H Tu, P G He, Y Z Fang. A sensitive DNA electrochemical biosensor based on magnetite with a glassy carbon electrode modified by muti-walled carbon nanotubes in polypyrrole [J]. Anal. Chim. Acta, 2005, 533(1):11-16.
    [230] Innovations from the NASA CICT Program, Detecting DNA with carbon nanotube arrays, www.cict.nasa.gov
    [231] H Cai, X N Cao, Y Jiang, P G He, Y Z Fang. Carbon nanotube-enhanced electrochemical DNA biosensor for DNA hybridization detection [J]. Anal. Bioanal. Chem., 2003,375:287-293.
    [232] J.Wang; G. D.Liu; M. R.Jan; Q. Y.Zhu; Electrochemical detection of DNA hybridization based on carbon-nanotubes loaded with CdS tags [J]. Electrochem. Commu., 2003, 5(12): 1000-1004.
    [233] J N Wohlstadter, J L Wilbur, G B Sigal, H A Biebuyck, M A Billadeau, L W Dong, A B Fischer, S R Gudibande, S H Jameison, J H Kenten, J Leginus, J K Leland, R J Massey, S J Wohlstadter. Carbon-nanotube based biosensor [J]. Adv. Mater., 2003,15:1184-1187.
    [234] D H Jung, B H Kim, Y K Ko, M S Jung, S Jung, S Y Lee, H T Jung. Covalent attachment and hybridization of DNA oligonucleotides on patterned single-walled carbon nanotube films [J]. Langmuir, 2004,20(20): 8886-8891.
    [235] P G He, S Li, L Dai. DNA-modified carbon nanotubes for self-assembling and biosensing applications [J]. Synthetic Matals, 2005, 154: 17-20.
    [236] Y F Ma, S R AIi, A S Dodoo, H X He. Enhanced sensitivity for biosensors: multiple functions of DNA-wrapped single-walled carbon nanotubes in self-doped polyaniline nanocomposites [J]. J. Phys. Chem. B, 2006, 110(33): 16359-16365.
    [237] X J Zhao, R Tapec-Dytioco, W H Tan. Ultrasensitive DNA detection using highly fluorescent bioconjugated nanoparticles [J]. J. Am. Chem. Soc, 2003, 125(38): 11474-11475.
    [238] T Shimdzu, T Iyoda, K Izaki. Photoelectrochemical properties of bis(2, 2'-bipyridine)(4, 4'-dicarboxy-2, 2-bipyridine)ruthenium(II) chloride [J]. J. Phys. Chem, 1985, 89 (4): 642-645.
    [239] K Kalyanasundaram, M K Nazeeruddin, M Gr¨atzel, G Viscardi, P Savarino, E Barni. Synthesis and photophysical characterization of highly luminescent complexes of Ru(II) containing 4, 4'-di-(p-carboxyphenyl)-2, 2'-bipyridine [J]. Inorg. Chim. Acta, 1992,198-200: 831-839.
    [240] R F Khairoutdinov, L V Doubova, R C Haddon, L Saraf. Persistent photoconductivity in chemically modified single-wall carbon nanotubes [J]. J. Phys. Chem. B, 2004,108(52): 19976-19981.
    [241] F Frehill, J G Vos, S Benrezzak, A A Koos, Z Konya, M G Ruther, W J Blau, A Fonseca, J B Nagy, L P Biro, A I Minett, M in het Panhuis. Interconnecting carbon nanotubes with an inorganic metal complex [J]. J. Am. Chem. Soc, 2002, 124(46): 13694-13695.
    [242] E Terpetschnig, H Szmacinski, H Malak, J R Lakowicz. Metal-ligand complexes as a new class of long-lived fluorophores for protein hydrodynamics [J]. Biophys. J, 1995, 68: 342-350.
    [243] C Xu, H Cai, P G He, Y Z Fang. Ferrocenecarboxaldehyde labeled DNA probe for the study on DNA damage and protection [J]. Fresen. J. Anal. Chem, 2000, 367: 593-595.
    [244] N H L Chin, T K Christopoulos, J Peltier. Sandwich-type deoxyribonucleic acid hybridization assays based on enzyme amplified time-resolved fluorometry [J]. Analyst, 1998,123: 1315-1319.
    [245] A E Radi, J L A Sanchez, E Baldrich, C K O'Sullivan. Reusable impedimetric aptasensor [J]. Anal. Chem., 2005, 77(19): 6320-6323.
    [246] R Levicky, T M Herne, M J Tarlov, S K Satija. Using self-assembly to control the structure of DNA monolayers on gold: a neutron reflectivity study [J]. J. Am. Chem. Soc, 1998,120(38): 9787-9792.
    [247] A. Heller. Spiers memorial lecture on the hypothesis of cathodic protection of genes [J]. Faraday Disc, 2000,116: 1-13.
    
    [248] S Fields. Proteomics in genomeland [J]. Science, 2001,291(5507): 1221-1224.
    [249] R F Service. Searching for recipes for protein chips [J]. Science, 2001, 294(5549): 2080-2082.
    [250] M B Murphy, S T Fuller, P M Richardson, S A Doyle. An improved method for thein vitroevolution of aptamers and applications in protein detection and purification [J]. Nucleic Acids Res., 2003,31(18): e110.
    [251] A Abbott. A post-genomic challenge: learning to read patterns of protein synthesis [J]. Nature, 1999,402(6763): 715-720.
    [252] G Blobel, R W Wozniak. Structural biologyProteomics for the pore [J]. Nature, 2000,403: 835-836.
    [253] T Mairal, V Cengiz Ozalp, P Lozano Sanchez, M Mir, I Katakis, C K O'Sullivan. Aptamers: molecular tools for analytical applications [J]. Anal. Bioanal. Chem., 2008,390 (4): 989-1007.
    [254] C C Huang, S HChiu, Y F Huang, H T Chang. Aptamer-functionalized gold nanoparticles for turn-on light switch detection of platelet-derived growth factor [J]. Anal. Chem., 2007,79(13): 4798-4804.
    [255] R Nutiu, Y Li. Structure-switching signaling aptamers: transducing molecular recognition into fluorescence signaling [J]. Chem. Eur. J., 2004, 10(8): 1868-1876.
    [256] R Nutiu, Y Li. Structure-switching signaling aptamers [J]. J. Am. Chem. Soc, 2003,125(16): 4771-4778.
    [257] S Balamurugan, A Obubuafo, S A Soper, R L McCarley, D A Spivak. Designing highly specific biosensing surfaces using aptamer monolayers on gold [J]. Langmuir, 2006,22(14): 6446-6453.
    [258] S Takenaka, Y Uto, H Kondo, T Ihara, M Takagi. Electrochemically active DNA probes: detection of target DNA sequences at femtomole level by high-performance liquid chromatography with electrochemical detection [J]. Anal. Biochem., 1994,218: 436-443.
    [259] W D Cao, J P Ferrance, J Demas, J P Landers. Quenching of the electrochemiluminescence of tris(2,2'-bipyridine)ruthenium(II) by ferrocene and its potential application to quantitative DNA detection [J]. J. Am. Chem. Soc, 2006,128: 7572-7578.
    [260] T Hianik, V Ostatna, M Sonlajtnerova, I Grman. Influence of ionic strength, pH and aptamer configuration for binding affinity to thrombin [J]. Bioelectrochem., 2007, 70: 127-133.
    [261] W Berg, B Hillvarn, H Arwin, M Stenberg, I Lundstrom. The isoelectric point of thrombin and its behaviour compared to prothrombin at some solid surfaces [J]. Thromb. Haemost., 1979,42: 972-982.
    [262] M N Stojanovic, P de Prada, D W Landry. Aptamer-based folding fluorescent sensor for cocaine [J]. J. Am. Chem. Soc, 2001,123(21): 4928-4931.
    [263] E Heyduk, T Heyduk. Nucleic acid-based fluorescence sensors for detecting proteins [J]. Anal. Chem, 2005, 77(4): 1147-1156.
    [264] X Fang, Z Cao, T Beck, W Tan. Molecular Aptamer for real-time oncoprotein platelet-derived growth factor monitoring by fluorescence anisotropy [J]. Anal. Chem, 2001, 73(23): 5752-5757.
    [265] S Jhaveri, R Kirby, R Conrad, E Maglott, M Bowser, R T Kennedy, G Glick, A D Ellington. Designed signaling aptamers that transduce molecular recognition to changes in fluorescence intensity [J]. J. Am. Chem. Soc, 2000, 122(11): 2469-2473.
    [266] S Jhaveri, M Rajendran, A D Ellington. In vitro selection of signaling aptamers [J]. Nat. Biotechnol, 2000,18: 1293-1297.
    [267] M N Stojanovic, P de Prada, D W Landry. Fluorescent sensors based on aptamer self-assembly [J]. J. Am. Chem. Soc, 2000, 122(46): 11547-11548.
    [268] N Hamaguchi, A Ellington, M Stanton. Aptamer beacons for the direct detection of proteins [J]. Anal. Biochem, 2001, 294: 126-131.
    [269] C J Yang, S Jockusch, M Vicens, N J Turro, W Tan. Light-switching excimer probes for rapid protein monitoring in complex biological fluids [J]. Proc. Natl. Acad. Sci. USA, 2005, 102: 17278-17283.
    [270]Y Li,H L Qi,J Yang,C X Zhang.Detection of DNA immobilized on bare gold electrodes and gold nanoparticle-modified electrodes via electrogenerated chemiluminescence using a ruthenium complex as a tag[J].Microchimica Acta,2008,online.
    [271]L S Green,D Jellinek,R Jenison,A Ostman,C H Heldin,N Janjic.Inhibitory DNA ligands to platelet-derived growth factor b-chain[J].Biochemistry,1996,35(45):14413-14424.
    [272]黄松音,段朝晖,梁穆兴,林向华,范侠.肿瘤患者凝血指标变化的临床意义[J].血栓与止血学,2002,8(4):156-157.
    [273]Herman R.P Thrombhaemost,1979,41,544-547
    [274]严慧敏,黄济群,廖兆全.凝血酶底物发色肽的化学合成[J].广州医学院学报,1995,23(5):33-37.
    [275]K Ikebukuro,C Kiyohara,K Sode.Novel electrochemical sensor system for protein using the aptamers in sandwich manner[J].Biosens.Bioelectron.,2005,20(10):2168-2172.
    [276]M Lee,D R Walt.A fiber-optic microarray biosensor using aptamers as receptors [J].Anal.Bioehem.2000,282:142-146.
    [277]Y Jiang,X Fang,C Bai.Signaling aptamer/protein binding by a molecular light switch complex[J].Anal.Chem.,2004,76:5230-5235.
    [278]D M Tasset,M F Kubik,W Steiner.Oligonucleotide inhibitors of human thrombin that bind distinct epitopes[J].J.Mol.Biol.,1997,272:688-698.
    [279]V A Spiridonova,E V Rog,T N Dugina,S M Strukova,A M Kopylov.Aptamer DNA:A new type of thrombin inhibitors[J].Russ.J.Bioorg.Chem.,2003,29(5):450-453.
    [280]S O Kelley,N M Jackson,M G Hill,J K Barton.Long-range electron transfer through DNA films[J].Angew.Chem.Int.Ed.1999,38(7):941-945.
    [281]S O Kelley,J K Barton,N M Jackson,M G Hill.Electrochemistry of methylene blue bound to a DNA-modified electrode[J].Bioconjugate Chem.,1997,8(1):31-37.
    [282]D W Pang,H D Abruiia.Micromethod for the investigation of the interactions between DNA and redox-active molecules[J].Anal.Chem.,1998,70(15):3162-3169.
    [283] H Z Yu, C Y Luo, C G Sankar, D Sen. Voltammetric procedure for examining DNA-modified surfaces: quantitation, cationic binding activity, and electron-transfer kinetics [J]. Anal. Chem., 2003, 75(15): 3902-3907.
    [284] L Su, C G Sankar, D Sen, H Z Yu. Kinetics of ion exchange binding of redox metal cations to thiolate-DNA monolayers on gold [J]. Anal. Chem., 2004, 76(19): 5953-5959.
    [285] L Su, D Sen, H Z Yu. Voltammetric study of the ion-exchange binding of non-electroactive metal cations to DNA-modified surfaces [J]. Analyst, 2006, 131:317-322.
    [286] J C Cox, A D Ellington. Automated selection of anti-protein aptamers [J]. Bioorg. Med. Chem., 2001, 9:2525-2531.
    [287] J C Cox, A Hayhurst, J Hesselberth, T S Bayer, G Georgiou, A D Ellington. Automated selection of aptamers against protein targets translated in vitro: from gene to aptamer [J]. Nucleic Acids Res., 2002, 30: e108.
    [288] R Kirby, E J Cho, B Gehrke, T Bayer, Y S Park, D P Neikirk, J T McDevitt, A D Ellington. Aptamer-based sensor arrays for the detection and quantitation of proteins [J]. Anal. Chem., 2004,76:4066-4075.
    [289] M Rodriguez, A N Kawde, J Wang. Aptamer biosensor for label-free impedance spectroscopy detection of proteins based on recognition-induced switching of the surface charge [J]. Chem. Commun., 2005,4267-4269.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700