用户名: 密码: 验证码:
多糖、凝集素、细胞及其相互作用的电化学与压电传感研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
糖类、凝集素和细胞的研究是生命科学中的前沿领域。作为一种经典的检测手段,电化学分析已全面渗透到多个学科,在分析化学和生物化学研究中发挥着重要的作用。压电石英晶体传感器具有灵敏度高、操作简单和动态测量等优点,已成功应用于化学/生物等领域。本文利用电化学方法和压电传感技术研究了多糖、凝集素、细胞及其相互作用,具体工作如下:
     1.利用循环伏安法研究了金电极表面肝素钠不存在/存在情况下亚甲基蓝的电化学性质。两者的结合能够形成非电活性的络合物,导致亚甲基蓝峰电流的明显降低。加入肝素钠前后亚甲基蓝阳极峰电流的差值与肝素钠的浓度在0.666-64.5μg mL~(-1)范围内成线性关系,检测限为270 ng mL~(-1)。采用该方法对肝素钠的针剂实际样品进行了检测,结果令人满意。实验求算出亚甲基蓝—肝素钠反应的结合常数K_a和结合比m分别为7.32×10~5 M~(-2)和1.85。利用压电石英晶体微天平(QCM)测量技术监测了Ba~(2+)取代亚甲基蓝而与肝素阴离子结合的动力学过程,该反应的反应速率常数为0.0022 s~(-1)。
     2.采用两套方案分别考察了金电极表面凝集素伴刀豆球蛋白A(Con A)与糖原的相互结合作用。基于Con A与电极表面吸附的糖原反应过程的电化学压电石英晶体阻抗法(EPQCI)测量,同时获得了谐振频移Δf_0、动态电阻变化值ΔR1等压电石英晶体(PQC)参数和溶液电阻ΔRs、双电层电容ΔC_s等电化学阻抗(EI)参数。经计算结合常数K_a和结合位点数s分别为1.48×10~6 M~(-1)和4.09。基于糖原与组装于电极表面的Con A反应过程的PQC测量,计算出结合常数K_a为1.26×10~6 M~(-1)。另外,利用后者建立了一种测量糖原的新方法。
     3.利用QCM传感技术实时监测了人乳腺癌细胞MCF-7在具有不同表面粗糙度(R_f,且R_f=3.2或1.1)的金电极上的贴壁、铺展和增殖过程。分析了QCM信号谐振频移Δf_0和动态电阻变化值ΔR_1的关系,结果表明,除了粘、密度效应和微弱的质量效应(特别是在光滑电极表面)外,细胞的粘附生长还会引起显著的表面应力效应。通过荧光显微镜观察实验、循环伏安检测和电化学阻抗谱测量考察了电极上细胞生长状态和电极表面粗糙度的关系。提出了基于QCM技术动态监测细胞培养过程中电极表面应力的新方法,利用推导出来的简单公式可以定量求算表面应力的大小。实验结果表明,相对于粗糙电极(R_f=3.2)而言,细胞在光滑电极(R_f=1.1)上的粘附产生的表面应力更大,而其生长却显劣势。QCM的实时监测还揭示了同一电极上在贴壁阶段正常肝细胞相比肝癌细胞能产生更大的表面应力,这表明表面应力的测量能够反映出正常肝细胞和肝癌细胞贴壁行为的差异性。
     4.实时监测了人正常肝细胞L-02在QCM金电极表面的凝集过程。两种植物凝集素—Con A和麦胚凝集素(WGA)均能引起细胞的凝集,凝集过程表达的Δf_0与ΔR_1信号与细胞正常贴壁生长过程表达的QCM响应有明显差异。由于Con A良好的吸附性,细胞-Con A-细胞凝集体对金基底的吸附能力较强,表现为Δf_0与ΔR_1信号的增大和明显的QCM质量效应。与此相反,由于WGA不易吸附在金电极表面,细胞-WGA-细胞凝集体对金基底的吸附能力较差,表现为Δf_0与ΔR_1信号的减小和细胞贴壁阶段时间的延长。开展了显微镜平行观察实验,反映的信息与QCM的测量结果完全一致。对细胞生长和细胞凝集过程中的Δf_0信号进行了分析,结果可分别由两个动力学方程表示:。另外,实验还表明基于细胞凝集的QCM测量技术可以用来区分正常肝细胞L-02和肝癌细胞Bel7402。
     5.基于亚硒酸的还原,使用海藻酸钠作为模板合成了硒钠米粒子(Se NPs)。利用QCM测量技术实时监测了药物诱导人肝癌细胞Bel7402的凋亡过程。研究了阿霉素和硒纳米粒子联用的抗肿瘤效果。实验表明,两种药物均能抑制Bel7402细胞的增殖,随药物剂量的增大抑制效率增强,两药联用对细胞的抑制效率要高于单个药物的抑制效率。基于Δf_0信号,使用修正后的Bürgi公式(即金氏公式)考察了两药联用的细胞毒性效果。随着药物作用时间的延长,联用效果逐渐由明显协同效应转变为单独相加,而较低浓度药物联用的效果24小时后依然能够保持协同效应,显示其在癌症治疗方面具有潜在的应用价值。
The researches on carbohydrate, lectin and cells are the frontiers in life sciences. Electrochemical analysis, as one of the classical detecting means, has been generally penetrated in various traditional subjects and plays an important role in analytical chemistry and biochemistry. Piezoelectric crystal quartz sensor has been successfully employed in chemical/biological field due to its satisfactory performances, e.g., high sensitivity, facile operation and dynamic monitoring. Investigations by electrochemical methods and piezoelectric sensing technique in the thesis are given as follows for several polysaccharides, lectins and cells as well as their interactions:
     1. Cyclic voltammetric investigation on the electrochemical behavior of methylene blue (MB) in the absence and presence of heparin (hep) at a gold electrode was performed. The combination of MB with heparin formed a nonelectroactive complex MB-hep, which resulted in the peak current decrease of MB. The anodic peak current difference of MB was found to be proportional to the concentration of heparin in the range of 0.666 to 64.5μg mL-1 with a detection limit of 270 ng mL-1 and a satisfactory result was obtained for the determination of heparin in injection samples. The association constant Ka and the binding number m for MB-hep complex were calculated to be 7.32×10~5 M~(-2) and 1.85, respectively. The dynamic process of competition of Ba~(2+) with methylene blue for binding heparin was monitored using quartz crystal microbalance (QCM) measurement. The reaction rate constant between Ba~(2+) and MB-hep was estimated to be 0.0022 s~(-1).
     2. Two schemes were adopted for investigating the concanavalin A (Con A)-glycogen interaction on gold electrode surfaces, respectively. Based on electrochemical piezoelectric quartz crystal impedance (EPQCI) measurement during Con A reaction with glycogen adsorbed on Au electrode, the piezoelectric quartz crystal (PQC) parameters, resonant frequency shiftΔf_0 and the motional resistance changeΔR_1, and the electrochemical impedance (EI) parameters, electrolyte resistance changeΔR_s and the double layer capacitance changeΔC_s, were obtained simultaneously. The association constant Ka and the amount of the binding sites s were calculated to be 1.48×10~6 M~(-1) and 4.09, respectively. Based on single PQC measurement of glycogen reaction with Con A assembled on Au electrode, K_a was estimated to be 1.26×106 M~(-1). In addition, a novel method for glycogen detection was proposed by using the latter scheme.
     3. The processes of adhesion, spreading and proliferation of human mammary cancer cells MCF-7 on two Au electrodes with different surface roughness (R_f, and R_f=3.2 or 1.1) were monitored and clearly identified with the QCM technique. Analyses of the QCM responses on the resonant frequency shiftsΔf_0 versus the motional resistance changesΔR_1 revealed a significant surface-stress effect in the involved courses, in addition to a viscodensity effect and a relatively small mass effect (especially at the smooth electrode). Experiments of fluorescence microscopy, cyclic voltammetry and electrochemical impedance spectroscopy were conducted to investigate the cell population on the electrode versus the electrode-surface roughness. Simplified equations were deduced to quantitatively evaluate the surface stress, and a novel QCM method for dynamically measuring the surface stress on an electrode in cell-culture course was thus described. It was found that the smoother surface (R_f=1.1) gave a higher surface stress during cell attachment and less cell population on it than the rougher surface (R_f=3.2). In addition, real-time QCM monitoring showed on the same electrode the surface stress induced by hepatic normal cells being notably higher than that caused by hepatic cancer cells at cell-attachment stage, suggesting that the surface-stress measurement can exhibit the difference of adhesion-performance between the healthy and ill-behaved cells.
     4. The real time monitoring of the agglutination process of human hepatic normal cells L-02 at the QCM Au electrode was performed. Two lectins, Con A and wheat germ agglutinin (WGA), induced the cell agglutination, resulting in the differentΔf_0 andΔR_1 responses from those caused by the normal cell-attachment and growth. The cell-ConA-cell aggregates had higher affinity for the Au substrate due to the excellent adsorption-ability of Con A, which was revealed by the increasedΔf_0 andΔR_1 shifts and the obvious mass effect of QCM. In contrast, the lower adsorption-ability of cell-WGA-cell aggregates was related to the same characteristic of WGA, presenting the decreasedΔf_0 andΔR_1 responses and the time-extended adhesion phase. The parallel microscopic-observation experiments were also carried out and exhibited the comparable results. TheΔf_0 responses during the processes of cell-growth and cell-agglutination were analyzed using the two equations, respectively. Furthermore, the present work proved that the QCM-measurement technique based on the cell agglutination was useful for discriminating hepatic normal cells L-02 and hepatic cancer cells Bel7402.
     5. Selenium nanoparticles (Se NPs) were prepared based on the reduction of selenious acid, by employing sodium alginate as a template. The real-time monitoring of the drug-induced apoptosis process of human hepatic cancer cells Bel7402 was performed with the QCM measurement. The antitumor effect of adriamycin (ADM) used in combination with Se NPs was investigated. It is found that both drugs were able to inhibit cell proliferation in a dose-dependent way and the combined treatment with ADM and Se NPs was more effective in inhibiting cell growth than each of the two drugs alone. The cytotoxic effects of drug combination were evaluated with the modified Bürgi formula (Jin equation) based on theΔf_0 responses. The effect-grades gradually changed from apparent synergism to simple addition with the drug-treatment time increase but the drug combination at lower concentrations still exhibited synergism after 24 hours, suggesting its potential applicability in cancer therapy.
引文
[1]田梦玉.蛋白聚糖研究进展.生命的化学, 1999, 19: 113-115
    [2] Liu S, Bakovic L, Chen A. Specific binding of glycoproteins with poly(aniline boronic acid) thin film. J. Electroanal. Chem., 2006, 591: 210-216
    [3] Ebara Y, Okahata Y. A kinetic study of concanavalin A binding to glycolipid monolayers by using a quartz-crystal microbalance. J. Am. Chem. Soc., 1994, 116: 11209-11212
    [4] Smith E A, Thomas W D, Kiessling L L, et al. Surface plasmon resonance imaging studies of protein-carbohydrate interactions. J. Am. Chem. Soc., 2003, 125: 6140-6148
    [5] Xue C, Jog S P, Murthy P, et al. Synthesis of highly water-soluble fluorescent conjugated glycopoly(p-phenylene)s for lectin and Escherichia coli. Biomacromolecules, 2006, 7, 2470-2474
    [6] Guo C, Boullanger P, Jiang L, et al. Highly sensitive gold nanoparticles biosensor chips modified with a self-assembled bilayer for detection of Con A. Biosens. Bioelectron., 2007, 22: 1830-1834
    [7] Screen J, Stanca-Kaposta E C, Gamblin D P, et al. IR-spectral signatures of aromatic-sugar complexes: Probing carbohydrate-protein interactions. Angew. Chem. Int. Ed., 2007, 46:3644-3648
    [8] Sultan N A M, Rao R N, Nadimpalli S K, et al. Tryptophan environment, secondary structure and thermal unfolding of the galactose-specific seed lectin from Dolichos lab: Fluorescence and circular dichroism spectroscopic studies. Biochim. Biophys. Acta-General Subjects, 2006,1760: 1001-1008
    [9]孙册.谈谈凝集素作用的基本原理和糖蛋白的寡糖结构.生命的化学, 1994, 14: 36-37
    [10] Hori K, Matsubaras K, Miyazawa K. Primary structures of two hemagglutinins from the marine red alga. Biochim. Biophys. Acta, 2000, 1474: 226-236
    [11] Sharon N, Lis H. Lectins as cell recognition molecules. Science, 1989, 246: 227-230
    [12] Rhodes L L, Haywood A J, Fountain D W. FITC - conjugated lectins as a tool for differentiating between toxic and non-toxic marine dinoflagellates. N. Z. J. Mar. Freshw. Res., 1995, 29: 359-365
    [13] Cho E S. Cluster analysis on the lectin binding patterns of marine microalgae. J.Plan. Res., 2003, 25: 309-315
    [14] Van Damme E J M, Peumans W J, Pusztai A, et al. Handbook of plant lectins: Properties and biomedical applications. John Willey and Sons Ltd., Chichester, 1997
    [15] Sato Y, Murakami M, Miyazawa K, et al. Purification and characterization of a novel lectin from a freshwater cyanobacterium, Oscillatoria agardhii. Comp. Biochem. Physiol. B: Biochem. Mol. Biol., 2000, 125: 169-177
    [16]刘慧慧,李太武,苏秀榕.植物凝集素及其在生殖细胞表面糖复合物检测中的应用.自然杂志, 2003, 25: 323-327
    [17]张世民,吴孟超.凝集素在肿瘤研究中的应用.癌症, 1989, 3: 238-240
    [18]王海燕,白晓春,罗深秋.植物凝集素与医学应用.生命的化学, 2003, 23: 224-226
    [19]丁杰,王福安,张学庸.胃癌细胞PHA、DBA、WGA受体的电镜定位.中国组织化学与细胞化学杂志, 1994, 3: 251-255
    [20]杨苏敏.颅内胶质瘤六种凝集素受体标记及定量分析.中华神经外科杂志, 1994, 10: 336-338
    [21]袁玉林.凝集素在大鼠心脏缺血预处理中的应用.解剖学杂志, 2000, 23: 37-39
    [22]李友莲,吴海军.植物凝集素对桃蚜生长发育的影响.山西农业大学学报, 2000, 20: 93-96
    [23]刘士庆,施承,张洁等.棉花凝集素的分离纯化及其对棉花枯萎病菌的影响.植物病理学报, 1996, 26: 311-315
    [24]高燕会,李润植,毛雪等.植物凝集素的防卫功能及其研究进展.世界农业, 2000, 2: 33-35
    [25]王志斌,李学勇,郭三堆.植物凝集素与抗虫基因工程.生物技术通报, 1998, 2: 5-10
    [26] Lehmann M, Baumann W, Brischwein M, et al. Non-invasive measurement of cell membrane associated proton gradients by ion-sensitive field effect transistor arrays for microphysiological and bioelectronical applications. Biosens. Bioelectron., 2000, 15: 117-124
    [27] Lorenzelli L, Margesin B, Martinoia S, et al. Bioelectrochemical signal monitoring of in-vitro cultured cells by means of an automated microsystem based on solid state sensor-array. Biosens. Bioelectron., 2003, 18: 621-626
    [28] Connolly P, Clark P, Curtis A S G, et al. An extracellular microelectrode array for monitoring electrogenic cells in culture. Biosens. Bioelectron., 1990, 5: 223-234
    [29] Van Haastert P J M. Transduction of the chemotactic cAMP signal across the plasma membrane of dictyostelium cells. Experientia, 1995, 51: 1144-1154
    [30] Cudmore S, Cossart P, Griffiths G, et al. Actin-based motility of vaccinia virus. Nature, 1995, 378: 636-638
    [31] Antonik M D, D’Costa N P, Hoh J H. A biosensor based on micromechanical interrogation of living cells. IEEE Eng. Med. Biol., 1997, 16: 66-72
    [32] Keese C R, Bhawe K, Wegener J, et al. Real-time impedance assay to follow the invasive activities of metastatic cells in culture. Biotechniques, 2002, 33: 842-850
    [33] Woolley D E, Tetlow L C, Adlam D J, et al. Electrochemical monitoring of anticancer compounds on the human ovarian carcinoma cell line A2780 and its adriamycin- and cisplatin- resistant variants. Exp. Cell Res., 2002, 273: 65-72
    [34] Rishpon J. Electrochemical biosensors for environmental monitoring. Rev. Environ. Health, 2002, 17: 219-247
    [35] Kizek R, TrnkováL, ?ev?íkováS, et al. Silver electrode as a sensor for determination of zinc in cell cultivation medium. Anal. Biochem., 2002, 301: 8-13
    [36] Lee S, Sode K, Nakanishi K, et al. A novel microbial sensor using luminous bacteria. Biosens. Bioelectron., 1992, 7: 273-277
    [37] Clark L C, Lyons C. Electrode systems for continuous monitoring incardiovascular surgery. Ann. N. Y. Acad. Sci. 1962, 102: 29-45
    [38] Updiks S J, Hicks G P. The enzyme electrode. Nature, 1967, 214: 986-988
    [39]彭图治,杨丽菊.生命科学中的电分析化学.杭州大学出版社,杭州, 1999
    [40] Korell U, Spichiger U E. Novel membraneless amperometric peroxide biosensor based on a tetrathiafulvalene-p-tetracyanoquinodimethane electrode. Anal. Chem., 1994, 66: 510-515
    [41] Garguilo M G, Huynh N, Proctor A, et al. Amperometric sensors for peroxide, choline, and acetylcholine based on electron transfer between horseradish peroxidase and a redox polymer. Anal. Chem., 1993, 65: 523-528
    [42] Ruzgas T, Emnéus J, Gorton L, et al. The development of a peroxidase biosensor for monitoring phenol and related aromatic compounds. Anal. Chim. Acta, 1995, 311: 245-253
    [43] Wang C, Mulchandani A. Ferrocene-conjugated polyaniline-modified enzyme electrodes for determination of peroxides in organic media. Anal. Chem., 1995, 67: 1109-1114
    [44] Smit M H, Rechnitz G A. Reagentless enzyme electrode for the determination of manganese through biocatalytic enhancement. Anal. Chem., 1992, 64: 245-249
    [45]唐点平,袁若,柴雅琴等.纳米金修饰玻碳电极固载抗体电位型白喉类毒素免疫传感器的研究.化学学报, 2004, 62: 2062-2066
    [46] Fu Y, Yuan R, Tang D, et al. Study on the immobilization of anti-IgG on Au-colloid modified gold electrode via potentiometric immunosensor, cyclic voltammetry and electrochemical impedance technique. Colloids Surf. B: Biointerfaces, 2005, 40: 61-66
    [47] Medyantseva E P, Khaldeeva E V, Glushko N I, et al. Amperometric enzyme immunosensor for the determination of the antigen of the pathogenic fungi Trichophyton rubrum. Anal. Chim. Acta, 2000, 411: 13-18
    [48] Dai Z, Yan F, Yu H, et al. Novel amperometric immunosensor for rapid separation-free immunoassay of carcinoembryonic antigen. J. Immunol. Methods, 2004, 287: 13-20
    [49] Sandberg R G. A conductive polymer-based immunosensor for the analysis of pesticide residues. Am. Chem. Soc. Symp. Ser., 1992, 511: 81-88
    [50] He H, Xie Q, Zhang Y, et al. A simultaneous electrochemical impedance and quartz crystal microbalance study on antihuman immunoglobulin G adsorption and human immunoglobulin G reaction, J. Biochem. Biophys. Methods, 2005, 62: 191-205
    [51] Hashimoto K, Ito K, Ishimori Y. Novel DNA sensor for electrochemical gene detection. Anal. Chim. Acta,1994, 286: 219-224
    [52] Fan C, Li G, Gu Q, et al. Electrochemical detection of cecropin CM4 gene by single stranded probe and cysteine modified gold electrode. Anal. Lett., 2000, 33: 1479-1490
    [53]宋玉民,康敬万,卢小泉等.桑色素及其配合物与DNA作用的研究.高等学校化学学报, 2003, 24: 249-251
    [54] Maeda M, Mitsuhashi Y, Nakano K, et al. DNA-immobilized gold electrode for DNA-binding drug sensor. Anal. Sci., 1992, 8: 83-84
    [55]韦晓兰,莫志宏.细胞传感器与芯片的研究进展.生物化学与生物物理进展, 2004, 31: 855-859
    [56] Matsunaga T, Shigematsu A, Nakamura N. Detection of rat basophilic leukemia by cyclic voltammetry for monitoring allergic reaction. Anal. Chem., 1989, 61: 2471-2474
    [57] Ci Y, Li H, Feng J. Electrochemical method for determination of erythrocytesand leukocytes. Electroanalysis, 1998, 10: 921-925
    [58] Feng J, Ci Y, Lou J, et al. Voltammetric behavior of mammalian tumor cells and bioanalytical applications in cell metabolism. Bioelectrochem. Bioenerg., 1999, 48: 217-222
    [59] Du D, Liu S, Chen J, et al. Colloidal gold nanoparticle modified carbon paste interface for studies of tumor cell adhesion and viability. Biomaterials, 2005, 26: 6487-6495
    [60] Chen K, Chen J, Guo M, et al. Electrochemical behavior of MCF-7 cells on carbon nanotube modified electrode and application in evaluating the effect of 5-fluorouracil. Electroanalysis, 2006, 18: 1179-1185
    [61] Mitra P, Keese C R, Giaever I. Electric measurements can be used to monitor the attachment and spreading of cells in tissue culture. Biotechniques, 1991, 11: 504-510
    [62] Wegener J, Keese C R, Giaever I. Electric cell-substrate impedance sensing (ECIS) as a noninvasive means to monitor the kinetics of cell spreading to artificial surfaces. Exp. Cell Res., 2000, 259: 158-166
    [63] Giaever I, Keese C R. Micromotion of mammalian cells measured electrically. Proc. Natl. Acad. Sci. USA, 1991, 88: 7896-7900
    [64] Lo C M, Keese C R, Giaever I. Monitoring motion of confluent cells in tissue culture. Exp. Cell. Res., 1993, 204: 102-109
    [65] Tiruppathi C, Malik A B, Vecchio P J D, et al. Electrical method for detection of endothelial cell shape change in real time: assessment of endothelial barrier function. Proc. Natl. Acad. Sci. USA, 1992, 89: 7919-7923
    [66] Giaever I, Keese C R. A morphological biosensor for mammalian cells. Nature, 1993, 366: 591-592
    [67] Luong J H T, Habibi-Rezaei M, Meghrous J, et al. Monitoring motility, spreading and mortality of adherent insect cells using an impedance sensor. Anal. Chem., 2001, 73: 1844-1848
    [68] Xiao C, Lachance B, Sunahara G, et al. An in-depth analysis of electric cell-substrate impedance sensing to study the attachment and spreading of mammalian cells. Anal. Chem., 2002, 74: 1333-1339
    [69] Xiao C, Lachance B, Sunahara G, et al. Assessment of cytotoxicity using electric cell-substrate impedance sensing: Concentration and time response function approach. Anal. Chem., 2002, 74: 5748-5753
    [70] Xiao C, Luong J H T. Assessment of cytotoxicity by emerging impedancespectroscopy. Toxicol. Appl. Pharm., 2005, 206: 102-112
    [71] Yeon J H, Park J K. Cytotoxicity test based on electrochemical impedance measurement of HepG2 cultured in microfabricated cell chip. Anal. Biochem., 2005, 341: 308-315
    [72] Guo M, Chen J, Yun X, et al. Monitoring of cell growth and assessment of cytotoxicity using electrochemical impedance spectroscopy. Biochim. Biophys. Acta-General Subjects, 2006, 1760:432-439
    [73] Liu B, Cheng W, Rotenberg S A, et al. Scanning electrochemical microscopy of living cells: Part 2. Imaging redox and acid/basic reactivities. J. Electroanal. Chem., 2001, 500: 590-597
    [74] Liu B, Rotenberg S A, Mirkin M V. Scanning electrochemical microscopy of living cells. 4. Mechanistic study of charge transfer reactions in human breast cells. Anal. Chem., 2002, 74: 6340-6348
    [75] Shiku H, Shiraishi T, Ohya H, et al. Oxygen consumption of single bovine embryos probed by scanning electrochemical microscopy. Anal. Chem., 2001, 73: 3751-3758
    [76] Shiku H, Shiraishi T, Aoyagi S, et al. Respiration activity of single bovine embryos entrapped in cone-shaped microwell monitored by scanning electrochemical microscopy. Anal. Chim. Acta, 2004, 522: 51-58
    [77] Takii Y, Takoh K, Nishizawa M, et al. Characterization of local respiratory activity of PC12 neuronal cell by scanning electrochemical microscopy. Electrochim. Acta, 2003, 48: 3381-3385
    [78] Liebetrau J M, Miller H M, Baur J E, et al. Scanning electrochemical microscopy of model neurons: imaging and real-time detection of morphological changes. Anal. Chem., 2003, 75: 563-571
    [79] Rechnitz G A. Bioselective membrane electrode probes. Science, 1981, 214: 287-291
    [80] Rechnitz G A, Ho M Y. Biosensors based on cell and tissue material. J. Biotechnol., 1990, 15: 201-217
    [81]刘杰, Wang J.用于监测环境中酪氨酸酶抑制剂的植物组织电极.环境化学, 2001, 20: 398-404
    [82]郏建波,董绍俊.生化需氧量微生物传感器的研究进展.分析化学, 2003, 31: 742-748
    [83] Strand S E, Carlson D A. J. Water Pollut. Control Fed., 1984, 56: 464-467
    [84]王晓辉,白志辉,罗湘南等.硫化物和亚硫酸盐微生物电极的研究.化学传感器, 2000,20: 53-58
    [85]王晓辉,白志辉,孙裕生等.硫化物微生物电极的研制及应用.分析化学, 2000, 28: 1184
    [86] King W H. Piezoelectric sorption detector. Anal. Chem., 1964, 36: 1735-1739
    [87] King W H. Monitoring of hydrogen, methane, and hydrocarbons in the atmosphore. Environ. Sci. Technol., 1970, 4: 1136-1141
    [88] King W H, Corbett L W. Relative oxygen absorption and volatility of submicron films of asphalt using the crystal microbalance. Anal. Chem., 1969, 41: 580-583
    [89] Guibault G G. Determination of formaldehyde with an enzyme-coated piezoelectric crystal detector. Anal. Chem., 1983, 55: 1682-1684
    [90] Ngeh-Ngwainbi J, Foley P H, Kuan S S, et al. Parathion antibodies on piezoelectric crystal. J. Am. Chem. Soc., 1986, 108: 5444-5447
    [91] Alder J F, McCallum J J. Piezoelectric crystals for mass and chemical measurements. Analyst, 1983, 108: 1169-1189
    [92] Guilbault G G, Jordon J M. Analytical uses of piezoelectric quartz crystals: A review. CRC. Crit. Rev. Anal. Chem., 1988, 19: 1-28
    [93] McCallum J J. Piezoelectric devices for mass and chemical measurements: an update. Analyst, 1989, 114: 1173-1189
    [94] Janata J, Josowic M, DeVaney D M. Chemical sensors. Anal. Chem., 1994, 66: 207R-228R
    [95] Konash P L, Bastiaans G J. Piezoelectric crystal as detectors in liquid chromatography. Anal. Chem., 1980, 52: 1929-1931
    [96] Nomura T. Single-DRUP method for determination of cyanide in solution with a piezoelectric quartz crystal. Anal. Chim. Acta, 1981, 124: 81-84
    [97]姚守拙,周铁安.石英压电振子在溶液中的某些振荡特性研究.科学通报, 1985, 30: 1153-1156
    [98]姚守拙,周铁安.晶体管振荡器的压电晶体在电解质溶液中的频移特性及其化学应用.高等学校化学学报, 1988, 9: 749-751
    [99]周铁安,张文柳,聂利华等.压电石英晶体在电解质水溶液中的振荡性能研究—起振特性与振荡区间.科学通报, 1988, 33: 1154-1156
    [100] Zhou T, Zhang W, Nie L, et al. On oscillating behaviours of piezoelectric quartz crystal in aqueous electrolyte solutions-starting-up characteristics and oscillating regions. Chin. Sci. Bul., 1989, 34: 471-473
    [101] Zhou T, Nie L, Yao S. On equivalent circuits of piezoelectric quartz crystal in a liquid and liquid properties. Part I. Theoretical deviation of the equivalent circuitand effects of density and viscosity of liquids. J. Electroanal. Chem., 1990, 293: 1-18
    [102] Mo Z, Nie L, Yao S. A new type of piezoelectric detector in liquid. Part I. Theoretical considerations and measurements of resonance behavior dependent on liquid properties. J. Electroanal. Chem., 1991, 316: 79-91
    [103] Shen D, Xu Y, Nie L, et al. An impedance analyzer method to simulate the oscillating characteristic of a series piezoelectric sensor in oscillators with zero or non-zero phases. Talanta, 1994, 41: 1993-1998
    [104] Sauerbrey G. The use of quartz oscillators for weighing thin layers and for microweighing. Z. Phys., 1959, 155: 206-222
    [105] Guilbault G G, in Liu C S, Czanderna A W eds. Applications of piezoelectric quartz crystal microbalances. Amsterdam, Oxford, New York and Tokyo: Elsevier, 1984
    [106]姚守拙,压电化学与生物传感.湖南师范大学出版社,长沙, 1997
    [107] Kanazawa K K, Gordon J. Frequency of a quartz microbalance in contact with liquid. Anal. Chem., 1985, 57: 1770-1771
    [108] Bruckenstein S, Shay M. Experimental aspects of use of the quartz crystal microbalance in solution. Electrochim. Acta, 1985, 30: 1295-1300
    [109] Schumacher R. The quartz microbalance: A novel approach to the in-situ investigation of interfacial phenomena at the solid/liquid junction. Angew. Chem. Int. Ed. Engl., 1990, 29: 329-343
    [110] Hager H E. Fluid property evaluation by piezoelectric crystals operating in the thickness shear mode. Chem. Eng. Commun., 1986, 43: 25-38
    [111] Shana Z A, Radtke N E, Kelkar U R, et al. Theory and application of a quartz as a sensor for viscosity liquids. Anal. Chim. Acta, 1990, 231: 317-320
    [112] Muramatsu H, Tamiya E, Karube I. Computation of equivalent circuit parameters of quartz crystal in contact with liquids and study of liquids properties. Anal. Chem., 1988, 60: 2142-2146
    [113] Yao S Z, Zhou T A. Dependence of the oscillation frequency of a piezoelectric crystal on the physical properties of liquids. Anal. Chim. Acta, 1988, 212: 61-67
    [114] Heusler H E, Grzegorzewski A, Jackel L, et al. Measurement of mass and surface stress at one electrode of a quartz oscillator. Ber. Bunsen-Ges. Phys. Chem., 1988, 92: 1218-1225
    [115] Gabrieli C, Huet F, Keddam M, et al. Investigation of water electrolysis by spectral analysis. 1. Influence of the current density. J. Appl. Electrochem., 1989,19: 683-696
    [116] Thompson M, Arthur C L, Dhaliwal G K. Liquid-phase piezoelectric and acoustic transmission studies of interfacial immunochemistry. Anal. Chem., 1986, 58: 1206-1209
    [117] Thompson M, Dhaliwal G K, Arthur C L, et al. The potential of the bulk acoustic wave device as a liquid-phase immunosensor. IEEE. Trans. Ultrason. Ferroelec. Freq. Contr. UFFC, 1987, 34: 128-135
    [118] Martin S J, Granstaff V E, Frye G C. Characterization of quartz crystal microbalance with simultaneous mass and liquid loading. Anal. Chem., 1991, 63: 2272-2281
    [119] Martin S J, Spates J J, Wessendorf K O, et al. Resonator/oscillator response to liquid loading. Anal. Chem., 1997, 69: 2050-2054
    [120] Bandey H L, Martin S J, Cernosek R W, et al. Modeling the responses of thickness-shear mode resonators under various loading conditions. Anal. Chem., 1999, 71: 2205-2214
    [121] Martin S J, Bandey H L, Cernosek R W, et al. Equivalent-circuit model for the thickness-shear mode resonator with a viscoelastic film near film resonance. Anal. Chem., 2000, 72: 141-149
    [122] Shen D, Nie L, Yao S. A new type of piezoelectric detector in liquid: III. Computation of equivalent circuit parameters of a piezoelectric crystal with separated electrode and series piezoelectric sensors in electrolyte solution. J. Electroanal. Chem., 1994, 367: 31-40
    [123] Shen D, Lin S, Kang Q, et al. Frequency characteristics of an electrode-separated piezoelectric crystal sensor in contact with a liquid. Analyst, 1993, 118: 1143-1147
    [124] Xu Y, Shen D, Xie Q, et al. Frequency-temperature coefficient of an electrode-separated piezoelectric sensor in the liquid phase. J. Electroanal. Chem., 1995, 387: 23-28
    [125] Shen D, Huang M, Nie L, et al. Equivalent circuits of piezoelectric quartz crystals in a liquid and liquid properties: Part 2. A unified equivalent circuit model for piezoelectric sensors. J. Electroanal.Chem., 1994, 371: 117-125
    [126] Shen D, Nie L, Yao S. A new type of piezoelectric detector in liquid: Part 2. Computation of the equivalent circuit parameters of a piezoelectric crystal with a separated electrode and of series piezoelectric sensors in a non-electrolyte solution. J. Electroanal. Chem., 1993, 360: 71-87
    [127] Shen D, Zhu W, Nie L, et al. Behavior of a series piezoelectric sensor in electrolyte solution. Part I. Theory. Anal. Chim. Acta, 1993, 276: 87-97
    [128] Shen D, Kang Q, Liu Z, et al. Oscillation condition for a series piezoelectric sensor. Application to the determination of urease activity in plant seeds. Anal. Chim. Acta, 1997, 340: 55-60
    [129] Kaufman J H, Kanazawa K K, Street G B. Gravimetric electrochemical voltage spectroscopy: In situ mass measurements during electrochemical doping of the conducting polymer polypyrrole. Phys. Rev. Lett., 1984, 53: 2461-2464
    [130] Bruckenstein S, Shay M. An in situ weighing study of the mechanism for the formation of the adsorbed oxygen monolayer at a gold electrode. J. Electroanal. Chem., 1985, 188: 131-136
    [131] Deakin M R, Buttry D A. Electrochemical applications of the quartz crystal microbalance. Anal. Chem., 1989, 61: 1147-1154
    [132] Buttry D A, Ward M D. Measurement of interracial processes at electrode surfaces with the electrochemical quartz crystal microbalance. Chem. Rev., 1992, 92: 1355-1379
    [133] Deakin M R, Melroy O. Underpotential metal deposition on gold, monitored in situ with a quartz microbalance. J. Electroanal. Chem. 1988, 239: 321-331
    [134] Gloaguen F, Léger J M, Lamy C. An electrochemical quartz crystal microbalance study of the hydrogen underpotential deposition at a Pt electrode. J. Electroanal. Chem., 1999, 467: 186-192
    [135] Wilde C P, Pisharodi D. An EQCM study of corrosion and complexation at electrode surfaces. Oxidation of silver in the presence of 4,4′-bipyridyl. J. Electroanal. Chem., 1995, 398: 143-150
    [136] Donohue J J, Buttry D A. Adsorption and micellization influence the electrochemistry of redox surfactants derived from ferrocene. Langmuir, 1989, 5: 671-678
    [137] He Y, Wang Y, Zhu G, et al. Electrochemical scanning tunneling microscopy and electrochemical quartz crystal microbalance study of the adsorption of phenanthraquinone accompanied by an electrochemical redox reaction on the Au electrode. J. Electroanal. Chem., 1997, 440: 65-72
    [138] Xie Q, Shen D, Nie L, et al. A new technique of absorption spectroelectrochemistry at grazing incidence in combination with piezoelectric quartz crystal detection : electrodeposition and stripping process. Electrochimica Acta, 1993, 38: 2277-2280
    [139] Jusys Z, Massong H, Baltruschat H. A new approach for simultaneous DEMS and EQCM: Electro-oxidation of adsorbed CO on Pt and Pt-Ru. J. Electrochem. Soc., 1999, 146: 1093-1098
    [140] Tanahashi M, Matsuda T. Surface functional group dependence on apatite formation on self-assembled monolayers in a simulated body fluid. J. Biomed. Mater. Res., 1997, 34: 305-315
    [141]陈波.非质量响应体声波液相色谱检测器研究及植物药功效成分分离分析研究: [湖南大学博士学位论文].长沙:湖南大学化学化工学院, 1999
    [142] Xie Q, Zhang Y, Xu M, et al. Combined quartz crystal impedance and electrochemical impedance measurements during adsorption of bovine serum albumin onto bare and cysteine- or thiophenol- modified gold electrodes. J. Electroanal. Chem., 1999, 478: 1-8
    [143]周安宏.压电谐波传感及压电、电化学双阻抗联用新技术及其应用: [湖南大学博士学位论文].长沙:湖南大学化学化工学院, 2000
    [144] Ebara Y, Okahata Y. In situ surface-detecting technique by using quartz-crystal microbalance interaction behaviors of protein onto a phospholipids monolayer at the air-water interface. Langmuir, 1993, 9: 571-576
    [145] Yang M, Chung F L, Thompson M. Acoustic network analysis as a novel technique for studying protein adsorption and denaturation as surface. Anal. Chem., 1993, 65: 3713-3716
    [146] Caruso F, Furlong D N, Kingshott P. Characterization of fenitin adsorption onto gold. J. Colloid Interf. Sci., 1997, 186: 129-140
    [147] Seigel R R, Harder P, Dahint R, et al. On-line detection of nonspecific protein adsorption at artificial surfaces. Anal. Chem., 1997, 69: 3321-3325
    [148] Cavic B A, Chu F L, Furtado M, et al. Acoustic-waves and the real-time study of biochemical macromolecules at the liquid/solid interface. Faraday Discuss. Chem. Soc., 1997, 107: 159-176
    [149] Lacour F, Torresi R, Gabrielli C, et al. Comparison of the quartz-crystal microbalance and the double-layer capacitance methods for measuring the kinetics the adsorption of bovine serum albumin onto a gold electrode. J. Electrochem. Soc., 1992, 139: 1619-1622
    [150] Murray B S, Cros L. Adsorption of beta-lactoglobulin to metal-surface and their removal by a nonionic surfactant as monitored via a quartz-crystal microbalance. Colloids Surf. B: Biointerfaces, 1998, 10: 227-241
    [151] Hianik T, Ostatna V, Zajacova Z. The study of the binding of globular proteins toDNA using mass detection and electrochemical indicator methods. J. Electroanal. Chem., 2004, 564: 19-24
    [152]张友玉,谢青季,袁玉等.溶菌酶在裸金电极和巯基乙酸或正十二硫烷基醇修饰金电极上的吸附.应用化学, 2002, 19: 4-9
    [153] Hook F, Voros J, Rodahl M, et al. A comparative study of protein adsorption on titanium oxide surfaces using in situ ellipsometry, optical waveguide lightmode spectroscopy, and quartz crystal microbalance/dissipation. Colloids Surf., B, 2002, 24: 155-170
    [154] Lee M, Park S K, Chung C, et al. QCM study ofβ-casein adsorption on the hydrophobic surface: Effect of ionic strength and cations. Bull. Korean Chem. Soc., 2004, 25: 1031-1035
    [155] Lubarsky G V, Davidson M R, Bradley R H. Hydration-dehydration of adsorbed protein films studied by AFM and QCM-D. Biosens. Bioelectron., 2007, 22: 1275-1281
    [156] Shone A, Dorman F, Najarian J. An immunospecific microbalance. J. Biomed. Mater. Res, 1971, 6: 565-570
    [157] Roederer J E, Bastiaans G J. Microgravimetric immunoassay with piezoelectric crystals. Anal. Chem., 1983, 55: 2333-2336
    [158] Steegborn C, Skládal P. Construnction and characterization of the direct piezoelectric immunosensor for atrazine operating in solution. Biosens. Bioelectron., 1997, 12: 19-27
    [159] Attili B S, Suleiman A A. A piezoelectric immunosensor for the detection of cortisol. Anal. Lett., 1995, 28: 2149-2159
    [160] Muratsugu M, Ohta F, Miya Y, et al. Quartz crystal microbalance for the detection of microgram quantities of human serum albumin: relationship between the frequency change and the mass of protein adsorbed. Anal. Chem., 1993, 65: 2933-2937
    [161] Harteveld J L N, Nieuwenhuizen M S, Wils E R J. Detection of staphylococcal enterotoxin B employing a piezoelectric crystal immunoseneor. Biosens. Bioelectron., 1997, 12: 661-667
    [162] K?nig B, Gr?tzel M. A piezoelectric immunosensor for hepatitis viruses. Anal. Chim. Acta, 1995, 309: 19-25
    [163] Ben-Dov I, Willner I, Zisman E. Piezoelectric immunosensors for urine specimens of chlamydia trachomatis employing quartz crystal microbalance microgravimetric analyses. Anal. Chem., 1997, 69: 3506-3512
    [164]吴朝阳,沈国励,俞汝勤等.基于PEG凝集的压电免疫传感器用于日本血吸虫抗体的测定.高等学校化学学报, 1997, 11: 1774-1178
    [165] Uttenthaler E, K?βlinger C, Drost S. Quartz-crystal biosensor for detection of the African-swine-fever-disease. Anal. Chim. Acta, 1998, 362: 91-100
    [166] Uttenthaler E, K?βlinger C, Drost S. Characterization of immobilization methods for African swine fever virus protein and antibodies with a piezoelectric immunosensor. Biosens. Bioelectron., 1998, 13: 1279-1286
    [167] Bovenizer J S, Jacobs M B, Guibault G G. The detection of Pseudomonas aeruginosa using the quartz crystal microbalance. Anal. Lett., 1998, 31: 1287-1295
    [168] Aberl F, Wolf H, Drost S, et al. HIV serology using piezoelectric immunosensors. Sensor. Actuat. B-Chem., 1994, 18: 271-275
    [169] Shen G, Wang H, Deng T, et al. A novel piezoelectric immunosensor for detection of carcinoembryonic antigen. Talanta, 2005, 67: 217-220
    [170] Zeng H, Wang H, Chen F, et al. Development of quartz-crystal-microbalance-based immunosensor array for clinical immunophenotyping of acute leukemias. Anal. Biochem., 2006, 351: 69-76
    [171]莫志宏,黄红稷,钱俊臻等. IgG免疫纳米探针凝聚反应压电传感检测.高等学校化学学报, 2007, 28: 649-651
    [172] Muramatsu H, Kajiwara K, Tamiya E, et al. Piezoelectric immunosensor for the detection of candida albicans microbes. Anal. Chim. Acta, 1986, 188: 257-261
    [173] Loung J H T, Prusak-Sochaczewski E, Guilbault G G. Development of a piezoimmunosensor for the detection of Salmonella typhimurium. Ann. N.Y. Acad. Sci., 1990, 613: 439-443
    [174] Cater R M, Mekalanos J J. Quartz crystal microbalance detection of vibro cholerae O139 serotype. J. Immunol. Meth., 1995, 187: 121-129
    [175] Plomer M, George G G, Bertold H. Development of a piezoelectric cryatsl immunosensor for detection of enterbacteria. Enzyme Microb. Technol., 1992, 14: 230-238
    [176] Bernd K, Michael G. A novel immunosensor for Herpes viruses. Anal. Chem., 1994, 66: 341-348
    [177] He F, Zhu W, Geng Q, et al. Rapid detection of Escherichia coliform using a series electrode piezoelectric crystal sensor. Anal. Lett., 1994, 27: 655-669
    [178] Bao L, Tan H, Duan Q, et al. A rapid method for determination of staphylococcus aureus based on milk coagulation by using a series piezoelectric quartz rystalsensor. Anal. Chim. Acta, 1998, 369: 139-145
    [179] Yao S, Tan H, Zhang H, et al. A bulk acoustic wave ammonia sensor applied to analysis antimicrobial properties of tea. Biotechnol. Prog., 1998, 14: 639-704
    [180] Wu Y, Xie Q, Zhou A, et al. Detection and analysis of bacillus growth with piezoelectric quartz crystal impedance based on starch hydrolysis. Anal. Biochem., 2000, 285: 50-54
    [181] Zhang J, Wei W, Mao Y, et al. Monitoring of bio-oxidation process of ferrous ion by using piezoelectric impedance analysis. Current Microbiol., 2001, 43: 83-88
    [182] Fawcett N C, Evans J A, Chien L T. Nucleic acid hybridization detected by piezoelectric resonance. Anal. Lett., 1988, 21(7): 1099-1114
    [183] Wang J, Nielsen P E, Jiang M, et al. Mismatch-sensitive hybridization detection by peptide nucleic acids immobilized on a quartz crystal microbalance. Anal. Chem., 1997, 69: 5200-5202
    [184] Nicolini C, Erokhin V, Facci P, et al. Quartz balance DNA sensor. Biosens. Bioelectron., 1997, 12: 613-618
    [185] Okahata Y, Kawase M, Niikura K, et al. Kinetic measurements of DNA hybridization on an oligonucleotide-Immobilized 27-MHz quartz crystal microbalance. Anal. Chem., 1998, 70: 1288-1296
    [186] Su H, Kallury K M B, Thompson M, et al. Interfacial nucleic acid hybridization by random primer P-32 labelling and liquid-phase acoustic network analysis. Anal. Chem., 1994, 66: 769-777
    [187] Niikura K, Matsuno H, Okahata Y. Direct monitoring of DNA polymerase reactions on a quartz crystal microbalance. J. Am. Che. Soc., 1998, 120: 8537-8538
    [188] Zhou A, Xie Q, Zhang Y, et al. Piezoelectric crystal impedance analysis for investigating the changes of interfacial properties due to interaction of cobalt salt with DNA immobilized on biosensor. Anal. Sci., 2000, 16: 467-472
    [189] Mao X, Yang L, Su X, et al. A nanoparticle amplification based quartz crystal microbalance DNA sensor for detection of Escherichia coli O157: H7. Biosens. Bioelectron., 2006, 21: 1178-1185
    [190]梁金玲,周剑章,陈巧琳等.电化学石英晶体微天平研究界面电场对DNA杂交的影响.物理化学学报, 2007, 23: 1421-1424
    [191] Gryte D M, Ward M D, Hu W. Real-time measurement of anchorage-dependent cell adhesion using a quartz crystal microbalance. Biotechnol. Prog., 1993, 9: 105-108
    [192] Redepenning J, Schlesinger T K, Mechalke E J, et al. Osteoblast attachment monitored with a quartz crystal microbalance. Anal. Chem., 1993, 65: 3378-3381
    [193] Wegener J, Janshoff A, Galla H J. Cell adhesion monitoring using a quartz crystal microbalance: comparative analysis of different mammalian cell lines. Eur. Biophys J., 1998, 28: 26-37
    [194] Zhou T, Marx K A, Warren M, et al. The quartz crystal microbalance as a continuous monitoring tool for the study of endothelial cell surface attachment and growth. Biotechnol. Prog., 2000, 16: 268-277
    [195] Marx K A, Zhou T, Montrone A, et al. A quartz crystal microbalance cell biosensor: detection of microtubule alterations in living cells at nM nocodazole concentrations. Biosens. Bioelectron., 2001, 16: 773-782
    [196] Marx K A, Zhou T, Warren M, et al. Quartz crystal microbalance study of endothelial cell number dependent differences in initial adhesion and steady-state behavior: evidence for cell-cell cooperativity in initial adhesion and spreading. Biotechnol. Prog., 2003, 19: 987-999
    [197] Fredriksson C, Kihlman S, Rodahl M, et al. The piezoelectric quartz crystal mass and dissipation sensor: a means of studying cell adhesion. Langmuir, 1998, 14: 248-251
    [198] Cans A S, H??k F, Shupliakov O, et al. Measurement of the dynamics of exocytosis and vesicle retrieval at cell populations using a quartz crystal microbalance. Anal. Chem., 2001, 73: 5805-5811
    [199] Marxer C G, Coen M C, Greber T, et al. Cell spreading on quartz crystal microbalance elicits positive frequency shifts indicative of viscosity changes. Anal. Bioanal. Chem., 2003, 377: 578-586
    [200] Alessandrini A, Croce M A, Tiozzo R, el al. Monitoring cell-cycle-related viscoelasticity by a quartz crystal microbalance. Appl. Phys. Lett., 2006, 88: 83905-84100
    [201]韦晓兰.肝癌细胞压电传感技术平台的构建与应用: [重庆大学博士学位论文].重庆:重庆大学生物工程学院, 2005
    [202] N?mcováI, Rychlovsky P, HavelcováM, et al. Determination of heparin using flow injection analysis with spectrophotometric detection. Anal. Chim, Acta, 1999, 401: 223-228
    [203] Liu S, Luo H, Li N, et al. Resonance Rayleigh Scattering study of the interaction of heparin with some basic diphenyl naphthylmethane dyes. Anal. Chem., 2001, 73: 3907-3914
    [204] Gaus K, Hall E A H. Surface plasmon resonance sensor for heparin measurements in blood plasma. Biosens. Bioelectron., 1998, 13: 1307-1315
    [205] Zhu X, Wang X, Jiang C. Spectrofluorimetric determination of heparin using a tetracycline-europium probe. Anal. Biochem., 2005, 341: 299-307
    [206] Toyoda H, Nagashima T, Hirata R, et al. Sensitive high-performance liquid chromatographic method with fluorometric detection for determination of heparin and heparar suphate in biological samples: application to human urinary heparin sulphate. J. Chromatogr. B, 1997, 704: 19-24
    [207] Zhou X, Liu J, Zhang M, et al. Determination of plasma heparin by micellar electrokinetic capillary chromatography. Talanta, 1998, 46: 757-760
    [208] Gadzekpo V P Y, Bühlmann P, Xiao K P, et al. Development of an ion-channel sensor for heparin detection. Anal. Chim. Acta, 2000, 411: 163-173
    [209] Ye Q, Meyerhoff M E. Rotating electrode potentionmetry: Lowering the detection limits of nonequilibrium polyion-sensitive membrane electrodes. Anal. Chem., 2001, 73: 332-336
    [210] Ma S, Yang V C, Fu B, et al. Electrochemical sensor for heparin: Further characterization and bioanalytical applications. Anal. Chem., 1993, 65: 2078-2084
    [211] Cheng T, Lin T, Chang H. Physical adsorption of protamine for heparin assay using a quartz crystal microbalance and electrochemical impedance spectroscopy. Anal. Chim. Acta, 2002, 462: 261-273
    [212] Nilsson R, Merkel P B, Kearns D R. Unambiguous evidence for the participation of singlet oxygen (1δ) in photodynamic oxidation of amino acids. Photochem. Photobiol., 1972, 16: 109-116
    [213] Fujita K, Taniguchi K, Ohno H. Dynamic analysis of aggregation of methylene blue with polarized optical waveguide spectroscopy. Talanta, 2005, 65: 1066-1070
    [214] Ohno T, Lichtin N N. Electron transfer in the quenching of triplet methylene blue by complexes of iron(II). J. Am. Chem. Soc., 1980, 102: 4636-4643
    [215] Brett C M A, Inzelt G, Kertesz V. Poly(methylene blue) modified electrode sensor for haemoglobin. Anal. Chim. Acta, 2002, 385: 119-123
    [216] Tuite E, Kelly J M. The interaction of methylene blue, azure B, and thionine with DNA: Formation of complexes with polynucleotides and mononucleotides as model systems. Biopolymers, 1995, 35: 419-433
    [217] Kelley S O, Boon E M, Barton J K, et al. Single-base mismatch detection basedon charge transduction through DNA. Nucl. Acid Res., 1999, 27: 4830-4837
    [218] Malsch R, Guerrini M, Torri G, et al. Synthesis of a N’-alkylamine anticoagulant active low-molecular-mass heparin for radioactive and fluorescent labeling. Anal. Biochem., 1994, 217: 255-264
    [219] Jiao Q, Liu Q. Characterization of the interaction between methylene blue and glycosaminoglycans. Spectrochim. Acta A, 1999, 55: 1667-1673
    [220] Nicolai S H de A, Rodrigues P R P, Agostinho S M L, et al. Electrochemical and spectroelectrochemical (SERS) studies of the reduction of methylene blue on a silver electrode. J. Electroanal. Chem., 2002, 527: 103-111
    [221] Liu Y, Jiang Y, Song W, et al. Voltammetric determination of 5-hydroxydole-3-acetic acid in human gastric juice. Talanta 2000, 50: 1261-1266
    [222] Forster R J. Mechanism and kinetics of homogeneous 1-methyl-carbamidopyridinyl radical reactions. Phys. Chem. Chem. Phys., 1999, 1: 1543-1548
    [223] Gu T, Hasebe Y. Peroxidase and methylene blue-incorporated double stranded DNA–polyamine complex membrane for electrochemical sensing of hydrogen peroxide. Anal. Chim. Acta, 2004, 525: 191-198
    [224] Lin X, Chen J, Chen Z. Amperometric biosensor for hydrogen peroxide based on immobilization of horseradish peroxidase on methylene blue modified graphite electrode. Electroanalysis, 2000, 12: 306-310
    [225] Feng Q, Li N, Jiang Y. Electrochemical studies of porphyrin interacting with DNA and determination of DNA. Anal. Chim. Acta, 1997, 344: 97-104
    [226] Grant D, Long W F, Williamson F B. Infrared spectroscopy of heparin-cation complexes. Biochem. J., 1987, 244: 143-149
    [227] No?l M A, Topart P A. Hight-frequency impedance analysis of quartz crystal microbalance. 1. General considerations. Anal. Chem., 1994, 66: 484-491
    [228] Calvo E J, Danilowicz C, Etchenique R. Measurement of viscoelastic changes at electrodes modified with redox hydrogels with a quartz crystal device. J. Chem. Soc. Faraday Trans., 1995, 91: 4083-4091
    [229] Zhang H, Wang R, Tan H, et al. Bovine serum albumin as a means to immobilize DNA on a silver-plated bulk acoustic wave DNA biosensor. Talanta, 1998, 46: 171-178
    [230] Chen K, Liu D, Nie L, et al. Determination of urea in urine using a conductivity cell with surface acoustic wave resonator-based measurement circuit. Talanta, 1994, 41: 2195-2200
    [231] Suleiman A A, Guibault G G. Recent developments in piezoelectric immunosensors. Analyst, 1994 119: 2279-2282
    [232] Gollas B, Bartlett P N, Benuault G. An instrument for simultaneous EQCM impedance and SECM measurements. Anal. Chem., 2000, 72: 349-356
    [233] Xie Q, Wang J, Zhou A, et al. A study of depletion layer effects on equivalent circuit parameters using an electrochemical quartz crystal impedance system. Anal. Chem., 1999, 71: 4649-4656
    [234] Xie Q, Zhang Y, Yuan Y, et al. An electrochemical quartz crystal impedance study on cystine precipitatation onto an Au electrode surface during cysteine oxidation in aqueous solution. J. Electroanal. Chem., 2000, 484: 41-54.
    [235] Jiang L, Xie Q, Yang L, et al. Simultaneous EQCM and diffuse reflectance UV–visible spectroelectrochemical measurements: poly(aniline-co-o-anthranilic acid) growth and property characterization. J. Colloid Interface Sci., 2004, 274: 150
    [236] Cao Z, Xie Q, Li M, et al. Simultaneous EQCM and fluorescence detection of adsorption/desorption and oxidation for pyridoxol in aqueous KOH on a gold electrode. J. Electroanal. Chem., 2004, 568: 343-351
    [237] Bard A J, Faulkner L R. Electrochemical Methods: Fundamentals and Application. Wiley, New York, 1980
    [238]张惟杰.糖复合物生化研究技术.浙江大学出版社,杭州, 1994
    [239]沈同,王镜岩.生物化学,第二版.高等教育出版社,北京, 1990
    [240] Mori M, Adachi Y, Matsushima T, et al. Lugol staining pattern and histology of esophageal lesions. Am. J. Gastroenterol., 1993, 88: 701-705
    [241] Krisman C R. A method for the colorimetric estimation of glycogen with iodine. Anal. Biochem., 1962, 4: 17-23
    [242] Passonneau J V, Lauderdale V R. A comparison of three methods of glycogen measurement in tissues. Anal. Biochem., 1974, 60: 405-412
    [243] Zhang S, Zhao F, Li K, et al. A study on the interaction between concanavalin A and glycogen by light scattering technique and its analytical application. Talanta, 2001, 54: 333-342
    [244] Sato K, Imoto Y, Sugama J, et al. Sugar-sensitive thin films composed of concanavalin A and glycogen. Anal. Sci., 2004, 20: 1247-1248
    [245] Lvov Y, Ariga K, Ichinose I, et al. Layer-by-layer architectures of concanavalin A by means of electrostatic and biospecific interactions. J. Chem. Soc., Chem. Commun., 1995, 22: 2313-2314
    [246] Lvov Y, Ariga K, Ichinose I, et al. Molecular film assembly via layer-by-layer adsorption of oppositely charged macromolecules (linear polymer, protein and clay) and concanavalin A and glycogen. Thin Solid Films, 1996, 284: 797-801
    [247] Anzai J, Kobayashi Y. Construction of multilayer thin films of enzymes by means of sugar-lectin interactions. Langmuir, 2000, 16: 2851-2856
    [248] Hoshi T, Akase S, Anzai J. Preparation of multilayer thin films containing avidin through sugar-lectin interactions and their binding properties. Langmuir, 2002, 18: 7024-7028
    [249] Tammelin T, Merta J, Johansson L, et al. Viscoelastic properties of cationic starch adsorbed on quartz studied by QCM-D. Langmuir 2004, 20: 10900-10909
    [250] Su X, Chew F T, Li S F Y. Self-assembled monolayer-based piezoelectric crystal immunosensor for the quantification of total human immunoglobulin E. Anal. Biochem., 1962, 273: 66-72
    [251] Hildebrand A, Schaedlich A, Rothe U, et al. Sensing specific adhesion of liposomal and micellar systems with attached carbohydrate recognition structures at lectin surfaces. J. Colloid Interface Sci., 2002, 249: 274-281
    [252] Pei Z, Anderson H, Aastrup T, et al. Study of real-time lectin–carbohydrate interactions on the surface of a quartz crystal microbalance. Biosens. Bioelectron., 2005, 21: 60-66
    [253] Gumbiner B M. Cell adhesion: the molecular basis of tissue architecture and morphogenesis. Cell, 1996, 84: 345-357
    [254] Klymkowsky M W, Parrt B. The body language of cells: the intimate connection between cell adhesion and behavior. Cell, 1995, 83: 5-8
    [255] Mitchison T J, Cramer L P. Actin-based cell motility and cell locomotion. Cell, 1996, 84: 371-379
    [256] Lauffenburger D A, Horwitz A F. Cell migration: a physically integrated molecular process. Cell, 1996, 84: 359-369
    [257]司徒镇强,吴军正.细胞培养,第二版.世界图书出版公司,西安, 2004
    [258] Chiarinia A, Petrinib P, Bozzinib S, et al. Silk fibroin/poly(carbonate)-urethane as a substrate for cell growth in vitro interactions with human cells. Biomaterials, 2003, 24: 789-799
    [259] Gray S A, Kusel J K, Shaffer K M, et al. Design and demonstration of an automated cell-based biosensor. Biosens. Bioelectron., 2001, 16: 535-542
    [260] Matsubara Y, Murakami1Y, Kobayashi M, et al. Application of on-chip cell cultures for the detection of allergic response. Biosens. Bioelectron., 2004, 19:741-747
    [261] Yanase Y, Suzuki H, Tsutsui T, et al. The SPR signal in living cells reflects changes other than the area of adhesion and the formation of cell constructions. Biosens. Bioelectron., 2007, 22: 1081-1086
    [262] Ci Y, Zhang C, Feng J. Photoelectric behavior of mammalian cells and its bioanalytical applications. Bioelectrochem. Bioenerg., 1998, 45: 247-251
    [263] Maniotis A, Chen C, Ingher D. Demonstration of mechanical connections between integrins, cytoskeletal filaments, and nucleoplasm that stabilize nuclear structure. Proc. Natl. Acad. USA, 1997, 94: 849-854
    [264] Ingber D E. Integrins as mechanochemical transducers. Curr. Opin. Cell Biol., 1991, 3: 841–848
    [265] Adamson A W. Physical Chemistry of Surfaces. Wiley, New York, 1990
    [266] Berger R, Delamarche E, Lang H, et al. Surface stress in the self-assembly of alkanethiols on gold. Science, 1997, 276: 2021-2024
    [267] Von Preissing F J. Applicability of the classical curvature-stress relation for thin films on plate substrates. J. Appl. Phys., 1989, 66: 4262-4268
    [268] Müller P, Kern R. About the measurement of absolute isotropic surface stress of crystals. Surf. Sci., 1994, 301: 386-398
    [269] Tian F, Peil J H, Hedden D L, et al. Observation of the surface stress induced in microcantilevers by electrochemical redox processes. Ultramicroscopy, 2004, 100: 217-223
    [270] Janshoff A, Galla H J, Steinem C. Piezoelectric mass-sensing devices as biosensors - an alternative to optical biosensors. Angew. Chem. Int. Ed., 2000, 39: 4004-4032
    [271] Marx K A. Quartz crystal microbalance: a useful tool for studying thin polymer films and complex biomolecular systems at the solution-surface interface. Biomacromolecules, 2003, 4: 1099-1120
    [272] Granstaff V E, Martin S J. Characterization of a thickness shear mode quartz resonator with multiple nonpiezoelectric layers. J. Appl. Phys., 1994, 75: 1319–1329
    [273] EerNisse E P. Simultaneous thin-film stress and mass-change measurements using quartz resonators. J. Appl. Phys., 1972, 43: 1330-1337
    [274] EerNisse E P. Extension of the double resonator technique. J. Appl. Phys., 1973, 44: 4482-4485
    [275] Wegener J, Seebach J, Janshoff A, et al. Analysis of the composite response ofshear wave resonators to the attachment of mammalian cells. Biophys. J., 2000, 78: 2821-2833
    [276] Heitmann V, Wegener J. Monitoring cell adhesion by piezoresonators: impact of increasing oscillation amplitudes. Anal. Chem., 2007, 79: 3392-3400
    [277] FohlerováZ, Skládal P, Turánek J. Adhesion of eukaryotic cell lines on the gold surface modified with extracellular matrix proteins monitored by the piezoelectric sensor. Biosens. Bioelectron., 2007, 22: 1896-1901
    [278] Wei X, Mo Z, Li B, et al. Disruption of HepG2 cell adhesion by gold nanoparticle and Paclitaxel disclosed by in situ QCM measurement. Colloid Surface B, 2007, 59: 100-104
    [279] Schofield A L, Rudda T R, Martin D S, et al. Real-time monitoring of the development and stability of biofilms of Streptococcus mutans using the quartz crystal microbalance with dissipation monitoring. Biosens. Bioelectron., 2007, 23: 407-413
    [280] Lord M S, Modin C, Foss M, et al. Extracellular matrix remodeling during cell adhesion monitored by the quartz crystal microbalance. Biomaterials, 2008, 29: 2581-2587
    [281] Hoogvliet J C, Dijksma M, Kamp B, et al. Electrochemical pretreatment of gold electrode surfaces for molecular self-assembly: a study of bulk polycrystalline gold electrodes in phosphate buffer pH 7.4. Anal. Chem., 2000, 72: 2016-2021
    [282] Wu S. Polymer Interface and Adhesion. Marcel Dekker Inc., New Yorks, 1982
    [283] Lu C, in Czanderna A W eds. Applications of Piezoelectric Quartz Crystal Microbalance. Elsevier, Amsterdam, 1984.
    [284] Shin M, Jeon I C. Frequency-distance responses in SECM-EQCM: a novel method for calibration of the tip-sample distance. Bull. Korean Chem. Soc., 1998, 19: 1227-1232
    [285] Lin Z, Ward M D. The role of longitudinal waves in quartz crystal microbalance applications in liquids. Anal. Chem., 1995, 67: 685-693
    [286] Janshoff A, Wegener J, Sieber M, et al. Double-mode impedance analysis of cell monolayers cultured on shear wave resonators. Eur. Biophys. J., 1996, 25: 93-103
    [287] Matsuda T, Kishida A, Ebato H, et al. Novel instrumentation monitoring in situ platelet adhesivity with a quartz crystal microbalance, ASAIO J., 1992, 38: M171-173.
    [288] Cliffel D E, Bard A J. Scanning electrochemical microscopy. 36. A combined scanning electrochemical microscope-quartz crystal microbalance instrument forstudying thin films. Anal. Chem., 1998, 70: 1993-1998
    [289] Sagvolden G, Giaerer I, Pettersen E O, et al. Cell adhesion force microscopy. Proc. Natl. Acad. Sci. USA, 1999, 96: 471-476
    [290] Lee J, Leonard M, Oliver T, et al. Traction forces generated by locomoting keratocytes. J. Cell Biol., 1994, 127: 1957-1964
    [291] Guillou-Buffello D L, Hélary G, Gindre M, et al. Monitoring cell adhesion processes on bioactive polymers with the quartz crystal resonator technique. Biomaterials, 2005, 26: 4197-4205
    [292] Marx K A, Zhou T, Montrone A, et al. Quartz crystal microbalance biosensor study of endothelial cells and their extracellular matrix following cell removal: evidence for transient cellular stress and viscoelastic changes during detachment and the elastic behavior of the pure matrix. Anal. Biochem., 2005, 343: 23-34
    [293] Sharon N, Lis H. Lectins. Chapman and Hall, New York, 1984
    [294] Mahmood N, Hay A J. An ELISA utilizing immobilized snowdrop lectin GNA for the detection of envelope glycoproteins of HIV and SIV. J. Immunol. Methods, 1992, 151: 9-13
    [295] Hasegawa Y, Shinohara Y, Sota H. Structure analysis of saccharides using a biosensor based on molecular recognition. Trends Glycosci. Glycotechnol., 1997, 9: S15-S24
    [296] Galanina O E, Tuzikov A B, Rapoport E, et al. Carbohydrate-based probes for detection of cellular lectins. Anal. Biochem., 1998, 265: 282-289
    [297] Ertl P, Mikkelsen S R. Electrochemical biosensor array for the identification of microorganisms based on lectin-lipopolysaccharide recognition. Anal. Chem., 2001, 73: 4241-4248
    [298] Nagata Y, Burger M M. Wheat germ agglutinin. Molecular characteristics and specificity for sugar binding. J. Biol. Chem., 1974, 249: 3116-3122
    [299] Bernabeu P, Tamisier L, De Cesare A, et al. Study of the adsorption of albumin on a platinum rotating disk electrode using impedance measurements. Electrochim. Acta, 1988, 33: 1129-1136
    [300] Cai Y, Xie Q, Zhou A, et al. A piezoelectric quartz crystal impedance study on Cu2+-induced precipitation of bovine serum albumin in aqueous solution. J. Biochem. Biophys. Methods, 2001, 47: 209-219
    [301] Zhang Y, Xie Q, Yin F, et al. In situ monitoring of generation and precipitation of ferric hydroxide sol with a piezoelectric quartz crystal impedance analyzer. J. Colloid Interf. Sci., 2001, 236: 282-289
    [302] Zheng T, Peelen D, Smith L M. Lectin arrays for profiling cell surface carbohydrate expression. J. Am. Chem. Soc., 2005, 127: 9982-9983
    [303] Chen S, Zheng T, Shortreed M R, et al. Analysis of cell surface carbohydrate expression patterns in normal and tumorigenic human breast cell lines using lectin arrays. Anal. Chem., 2007, 79: 5698-5702
    [304] Taatjes D J, Gaudiano G, Resing K, et al. Alkylation of DNA by the anthracycline, antitumor drugs adriamycin and daunomycin. J. Med. Chem., 1996, 39: 4135-4138
    [305] Taatjes D J, Gaudiano G, Resing K, et al. Alkylation of DNA by the anthracycline, antitumor drugs adriamycin and daunomycin. J. Med. Chem., 1996, 39: 4135-4138
    [306] Komagata H, Sakai H. Chemotherapy-induced cardiac toxicity and management. Gan To Kagaku Ryoho, 2003, 30: 787-792
    [307]徐辉碧,黄开勋.硒的化学,生物化学及其在生命科学中的应用.华中理工大学出版社,武汉, 1994
    [308] WJO working group, Environ. Health Criteria 58, Selenium, 1987
    [309] Combs G F Jr, Clark L C, Turnbull B W. Reduction of cancer mortality and incidence by selenium supplementation. Med. Klin., 1997, 92: 42-45
    [310] Zhang J, Gao X, Zhang L, et al. Biological effects of a nano red elemental selenium. Biofactors, 2001, 15: 27-38
    [311] Smith T W, Cheatham R A. Functional polymers in the generation of colloidal dispersions of amorphous selenium. Macromolecules, 1980, 13: 1203-1205
    [312] Mees D R, Pysto W, Tarcha P J. Formation of selenium colloids using sodium ascorbate as the reducing agent. J. Colloid Interface Sci., 1995, 170: 254-260
    [313] Gates B, Yin Y, Xia Y. Solution-phase approach to the synthesis of uniform nanowires of crystalline selenium with lateral dimensions in the range of 10-30 nm. J. Am. Chem. Soc., 2000, 122: 12582-12583
    [314] Abdelouas A, Gong W L, Lutze W, et al. Using cytochrome c3 to make selenium nanowires. Chem. Mater., 2000, 12: 1510-1512
    [315] Nandhakumar I, Elliott J M, Attard G S. Electrodeposition of Nanostructured Mesoporous Selenium Films (H[I]-eSe). Chem. Mater., 2001, 13: 3840-3842
    [316] Gao X, Zhang J, Zhang L. Hollow sphere selenium nanoparticles: Their in-vitro anti hydroxyl radical effect. Adv. Mater., 2002, 14: 290-293
    [317] Zhang S, Zhang J, Wang H, et al. Synthesis of selenium nanoparticles in the presence of polysaccharides. Mater. Lett., 2004, 58: 2590-2594
    [318] Xia Y. Synthesis of selenium nanoparticles in the presence of silk fibroin. Mater. Lett., 2007, 61: 4321-4324
    [319] Muller C, Bailly J D, Goubin F, et al. Verappamil decreases P-glycoprotein expression in multidrug-resistant human leukemic cell lines. Int. J. Cancer, 1994, 56: 749-754
    [320] Toma S, Maselli G, Dastoli G, et al. Synergistic effect between doxorubicin and a low dose of all-trans-retinoic acid in MCF-7 breast cancer cell line. Cancer Lett., 1997, 116: 103-110
    [321] Naruse T, Nishida Y, Ishiguro N. Synergistic effects of meloxicam and conventional cytotoxic drugs in human MG-63 osteosarcoma cells. Biomed. Pharmacother., 2007, 61: 338-346
    [322] Wan X, Sun G, Wang H, et al. Synergistic effect of paeonol and cisplatin on oesophageal cancer cell lines. Digest. Liver Dis., 2008, 40: 531–539
    [323] Johnson J A, Saboungi M L, Thiyagarajan P, et al. Selenium nanoparticles: A small-angle neutron scattering study. J. Phys. Chem. B, 1999, 103: 59-63
    [324] Jin Z. About the evaluation of drug combination. Acta Pharmacol. Sin., 2004, 25: 146-147

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700