用户名: 密码: 验证码:
小清河流域农田非点源氮污染定量评价研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着农田氮肥施用量的不断增加,由氮素造成的农田非点源污染已成为水体污染的主要因素之一。当前世界各国都致力于研究提高农田氮肥利用率和减少非点源氮污染的方法与途径。本文采用田间试验与生物地球化学循环模型相结合的方法,研究了环渤海典型流域——山东小清河流域典型农田非点源氮素的运移机理、排放途径和转化规律。以田间定点观测资料为基础,验证并校正了基于氮循环机理的过程模型——DNDC模型,通过模型模拟提出了农田典型种植方式下的优化管理措施,并与流域GIS数据库相结合,从流域尺度上识别全流域氮流失的潜在负荷及关键源区,定量分析氮污染的主要分布和贡献,进而初步提出基于全流域的调控策略和优化管理措施。主要研究结果如下:
     (1)以小清河流域典型农作系统冬小麦/夏玉米轮作、冬小麦/大葱轮作、设施蔬菜为研究对象,采用田间原装渗漏计定位观测,研究农田土壤中氮流失特征。试验表明,历城冬小麦/夏玉米轮作地常规施肥处理下小麦生长季0~1 m土壤硝态氮积累量在90.13~426.97 kg N hm~(-2),玉米季为67.96~204.32 kg N hm~(-2)。整个轮作生长季常规施肥处理水分渗漏量为176.5mm,由此而带走的氮素淋失量为38.76 kg N hm~(-2),占氮素总输入量的6.5%,对照小区为3.54 kg N hm~(-2),施肥处理是不施肥处理的10倍以上。章丘冬小麦/大葱轮作地6个不同处理试验表明,大葱生长季硝态氮淋失量随氮肥投入量的增加而增加,常规施肥处理氮淋失量为20.35 kg N hm~(-2),占氮肥总输入量的5.2%;对照处理最小,为4.32 kg N hm~(-2),前者是后者的约5倍;优化施肥和减量施肥均能有效减少硝态氮淋溶量,分别为17.49和13.46 kg N hm~(-2)。此外,径流试验表明,该地区氮素径流流失较小,常规施肥处理为0.51 kg N hm~(-2),但仅占氮肥总输入量的0.01%,各施肥处理之间N素径流流失与氮肥施用量之间不存在明显的相关关系。寿光设施蔬菜一个生长季的研究表明,常规施肥处理氮肥投入总量为1465 kg N hm~(-2),氮淋失量为214.04 kg N hm~(-2),占氮肥总输入量的14.6%;对照处理为76.26 kg N hm~(-2),前者是后者的约3倍。
     (2)利用田间实测数据验证和校正模型,结果表明,校正后的DNDC模型能更好地模拟冬小麦/夏玉米轮作系统、冬小麦/大葱轮作系统和设施蔬菜种植系统土壤水分以及氮素淋失的动态变化规律。同时,模型也很好的拟合了冬小麦/夏玉米轮作系统中土壤中NO3--N和NH4+-N的残留量,模拟值和实测值相关性显著。敏感性分析表明土壤pH值、施肥量、土壤孔隙率对氮素的淋失影响较大,是模型需要仔细考虑的输入参数。
     (3)利用模型提出了基于地块的最优化管理措施,即历城唐王小麦/玉米轮作系统施氮量减小到常规施肥量的60%,并提高玉米秸秆还田率到100%;章丘小麦/大葱轮作系统施氮量减小到常规施肥量的50%;寿光设施蔬菜系统为施氮量减小到常规施肥量的20%,并减小灌溉量为常规的80%。在保证作物产量在可接受范围的条件下,各点通过优化管理措施能显著减少氮素淋失量、N2O排放量以及NH3挥发损失。该评价结果可直接用于指导生产实践。
     (4)建立了小清河流域分乡镇单元的作物类型、种植面积、农田管理等GIS数据库,利用DNDC模型对流域尺度上氮素淋失量进行了模拟。2006年全流域8个区县年均氮淋失负荷范围为10.44×10~3 t ~36.86×10~3 t,平均为23.65×10~3 t。以氮肥投入总量222.2×10~3 t计算,该流域平均氮素流失量占氮肥投入的10.6%。淋失量空间分布表明,大于80 kg N hm~(-2)的单元主要分布在章丘市和寿光市的部分乡镇;淋失量小于10 kg N hm~(-2)的单元主要集中在流域的上游济南市历城区,在桓台和广饶县也有零星分布;其他地区氮素淋失量大多为20~40 kg N hm~(-2)和40~80 kg N hm~(-2)。
     (5)利用DNDC模型初步建立了区域冬小麦/夏玉米轮作体系下优化管理措施。运用该措施可将传统区域氮肥用量减小30%,而且对冬小麦/夏玉米产量没有影响,同时能产生较好的环境效应,氮素淋失量可降低35%,N2O排放降低28%,NH3挥发损失降低了34%。然而,氮肥施用量对作物产量和氮淋失量的影响区域差异极大,在制定区域优化管理措施时,不能全流域一个标准,而应根据当地更小范围农业发展状况和土壤营养元素平衡情况因地制宜地进行制定。
Modern agricultural practices are strongly linked to fertilizer application for maintaining optimum yields. However, inefficient fertilizer use has led to a significant portion of the nitrogen (N) applied to farm fields reaching surface or underground water systems. Non-point source pollution caused by Nitrate from cropland is major factor seriously causing water quality degradation with the increasing application of N fertilizers. The scientists from all over the world are committing themselves on improving the utilization of N fertilizer and decreasing the non-point source N pollution from farmland. By combining the field experiment methods with biogeochemical model in this paper, non-point source pollution of nitrogen in farmland was studied on its diffusion and movement mechanisms, releasing routes and transferring characteristics in the typical watershed, Xiaoqing River basin, around Bohai Bay. Observations of N leaching from typical croplands in Xiaoqing River basin were used for the validation and modification of the N cycling process-based model, the DNDC or DeNitrification-DeComposition model. The optimum management practices for different crop systems at site scale were proposed based on analyzing the simulated results in typical croplands. And then coupled with Geographic Information System (GIS), the DNDC model estimated the N leaching load and identified key pollution areas at regional scale with the support of the GIS database, and quantified the distribution and contribution of N pollution, and evaluated impacts of current management practices on N accumulation and loss. At last, some suggestions were further put forward. The main results were as follows:
     (1) The lysimeter method was used to study the characters of N leaching under summer maize-winter wheat rotation system, winter wheat-green onion rotation field, and vegetables-greenhouse fields in typical farmlands of Xiaoqing River Basin. For summer maize-winter wheat rotation field in Licheng site, the results showed that NO3--N was the dominant N style remained in the soil. The soil NO3--N accumulation for conventional treatment ranged from 90.13 to 426.97 kg N hm~(-2) during the winter wheat growth period, and from 67.96 to 204.32 kg N hm~(-2) during summer maize growth period. During the whole rotation growth season, the amount of water leaching was 176.5mm, and N leaching caused by water leaching was 38.76 kg N hm~(-2) occupying 6.5% of the total N fertilizer input for the conventional treatment, which was over 10 times than that for the control treatment with 3.54 kg N hm~(-2). Six different treatments were set up in winter wheat-green onion rotation field in Zhangqiu site. The amount of N leaching during green onion growth season was significantly increased with N fertilizer application increasing. The N leaching was 20.35 kg N hm~(-2) for the conventional-fertilizer treatment accounting for 5.2% of the total N fertilizer applied, while it was 2.28 kg hm~(-2) for the control treatment. The N leaching amount was 17.49 and 13.46 kg hm~(-2) for the optimum-fertilizer and decrease-fertilizer treatment, respectively, they both can reduce N leaching effectively. Moreover, the runoff experiment showed that the maximum amount of N runoff was 0.51 kg N hm~(-2) for the conventional-fertilizer treatment, only accounting for 0.01 % of the total N fertilizer applied, it was far less than the amount of N leaching, proving that the N leaching was dominant during green onion growth season. The relative relationship between the N runoff loss and fertilizer applied showed insignificantly. For the greenhouse vegetable field in Shouguang, The results showed that the N leaching amounted to 214.04 kg N hm~(-2) for the conventional treatment, accounting for 14.6% of the total N fertilizer applied with the amount of 1465 kg N hm~(-2) during one crop growth season, while it was 76.26 kg N hm~(-2) for the control treatment. The former amount of N leaching was 2 times than latter.
     (2) Observations of field N leaching were used for model validation and modification, the results showed that the modified model can simulate the soil water movement and the change of N leaching well in winter wheat-summer maize rotation field, winter wheat-green onion rotation field, and greenhouse vegetables field. Moreover, the model generally had acceptable performances in the model simulations for soil residual NO3--N, NH4+-N in winter wheat-summer maize rotation field. Sensitivity tests showed that the simulated great impacts of soil pH, fertilization, and soil porosity on nitrate leaching were consistent with observations reported by other researchers.
     (3) The optimum management practices for different crop systems at site scale were proposed based on analyzing the simulated results in typical croplands, which was the decrease of fertilizer application to 60% of conventional fertilizer rate, coupled with increase the maize residue returned rate to 100% for the wheat-summer maize rotation field at Licheng site; the decrease of fertilizer application to 50% of conventional fertilizer rate for the wheat-green onion rotation field at Zhangqiu site; the decrease of fertilizer application to 20% of conventional fertilizer rate, coupled with decrease the irrigation rate to 80% of conventional irrigation rate for greenhouse vegetable field at Shouguang site. Under maintaining the grain yields, the optimum management practices for each site can reduce the N loss by N leaching, N2O emissions, and NH3 volatilization. These results can guide directly for the agricultural production.
     (4) The DNDC model was used to estimate the N potential leaching load at regional scale with the support of the GIS database which was established by compiling the local climate/soil condition and agricultural census data. The results showed that the N potential leaching load ranged from 10.44×10~3 t to 36.86×10~3 t, with the average of 23.65×10~3 t in Xiaoqing River Basin in 2006. Taking the amount of total N fertilizer applied 222.2×10~3 t, the average N leaching accounted for 10.6% of the N fertilizer applied. The spatial distribution of N leaching showed that the cells (i.e. towns) with N leaching more than 80 kg N hm~(-2) mainly distributed in Zhangqiu City and Shouguang City; the cells with N leaching less than 10 kg N hm~(-2) mainly distribued in Licheng District, Jinan City, and Huangtai county and Guangrao county. The amount of N leaching in other regions mainly concentrated between 20 and 40 kg N hm~(-2), and also between 40 and 80 kg N hm~(-2).
     (5) Based the regional DNDC model, the regional optimum management practices for winter wheat summer maize rotation system had been established preliminarily. The management practices can reduce the N fertilizer rate 30% compared with conventional N fertilization with no negative impact on agricultural production, meanwhile, the N leaching can reduced 35%, N2O emission reduced 28%, and NH3 volatilization decreased 34%. However, the effects of N fertilization on crop yields and N leaching varied greatly in different regions. Therefore, consideration of the N pollution control effectiveness, it was not effective or efficient to implement a uniform policy thoughout the whole watershed. Instead, it should be site-specific to make management practices.
引文
1.蔡崇法,丁树文.应用USLE模型与地理信息系统IDRISI预测小流域土壤侵蚀量研究.水土保持学报,2000,2:113~120.
    2.蔡贵信.氨挥发.见:朱兆良,文启孝主编,中国土壤氮素.南京:江苏科学技术出版社,1990:171~194.
    3.曹林奎.旱田土壤氮素流失特征及其控制途径研究[博士学位论文].上海:上海交通大学,2006.
    4.曹文志,洪华生,张玉珍,等.AGNPS在我国东南亚地区的检验.环境科学学报,2002,22(4):537~540.
    5.陈永智,丁光国,胡永军,柴玉梅,韩秀丽,都明霞.寿光大棚蔬菜土壤养分调查.见:李晓林,张福锁,米国华主编,平衡施肥与可持续优质蔬菜生产.北京:中国农业大学出版社,2000,52~58.
    6.陈志凡,赵烨.基于氮素流失对非点源污染研究的述评.水土保持研究,2006,13(4):49~53.
    7.陈子明.氮肥施用对土体中氮素移动及其对环境质量和产量的影响.见:氮素-产量-环境.陈子明主编.中国农业科技出版社,北京.1996,1~3.
    8.程炯,吴志峰,刘平,等.珠江三角洲典型流域AnnAGNPS模型模拟研究.农业环境科学学报,2007,26(3):842~846.
    9.程励励,文启孝,李洪.稻草还田对土壤氮素和水稻产量的影响.土壤,1992,24(5):234~238.
    10.崔玉亭.化肥与生态环境保护.北京:化学工业出版社,2000.
    11.单保庆,尹澄清,白颖,等.小流域磷污染物非点源输出的人工降雨模拟研究.环境科学学报,2000,20(1):33~37.
    12.丁新泉.华北平原冬小麦/夏玉米轮作体系氮肥的氨挥发[硕士学位论文].北京:中国农业大学,2005.
    13.董亮.GIS支持下西湖流域水环境非点源污染研究[硕士学位论文].杭州:浙江大学,2001
    14.段亮,段增强,常江.地表管理与施肥方式对太湖流域旱地氮素流失的影响.农业环境科学学报,2007,26(3):813~818.
    15.段永惠,张乃明,张玉娟.施肥对农田氮磷污染物径流输出的影响研究.土壤,2005,37(1):48~51.
    16.段永惠,张乃明.滇池流域农村面源污染状况分析.环境保护,2003,(7):28~30.
    17.方玉东,封志明,胡业翠,等.基于GIS技术的中国农田氮素养分收支平衡研究.农业工程学报,2007,23(7):35~41.
    18.傅涛,倪九派,魏朝富等.不同雨强和坡度条件下紫色土养分流失规律研究.植物营养与肥料学报,2003,9(1):71~74.
    19.傅伯杰,马克明.黄土丘陵区土地利用结构对土壤养分分布的影响.科学通报.1998,43(22):2444~2448.
    20.高志岭.冬小麦/夏玉米轮作体系农田土壤N2O排放和CH4吸收特征[博士学位论文].北京:中国农业大学,2004.
    21.郭胜利,余存祖.有机肥对土壤剖面硝态氮淋失影响的模拟研究.水土保持研究, 2000,7(4):123-126.
    22.国家环保总局.2005中国近岸海域环境质量公报.2006.
    23.韩凤朋,郑纪勇,王云强,等.黄河支流非点源污染物(N、P)排放量的估算.环境科学学报,2006,26(11):1893~1899.
    24.洪华生,黄金良,张珞平.AnnAGNPS模型在九龙江流域农业非点源污染模拟应用.环境科学,26(4):63~69.
    25.黄金良,洪华生,张珞平.基于GIS和模型的流域非点源污染控制区划.环境科学研究,19(4):119~124.
    26.黄满湘,章申,唐以剑,等.模拟降雨条件下农田径流中氮的流失过程.土壤与环境,2001,10(2):6~10.
    27.黄满湘,章申,张国梁.应用大型原状土柱渗漏计测定冬小麦-夏玉米轮作期硝态氮淋失.环境科学学报,2003,23(11):11~16.
    28.黄绍敏,张鸿程,宝德俊,黄甫湘荣.氮肥对土壤硝态氮含量及分布的影响及合理施肥研究.土壤与环境,2000,9(3):201~203.
    29.黄沈发,陆贻通,沈根祥等.上海郊区早作农田氮素流失研究.农村生态环境,2005,21 (2):50~53.
    30.黄元仿,李韵珠,陆锦文.田间条件下土壤氮素迁移的模拟模型的田间检验与利用.水利学报,1996,6: 15~23.
    31.惠二青,陈友媛,刘贯群,邱汉学.小清河流域无机氮非点源污染的量化研究.农业环境科学学报,2005a,24(增刊):108~113.
    32.惠二青,刘贯群,邱汉学,陈友媛.适用于中大尺度流域的非点源污染模型.农业环境科学学报,2005b,24(3):552~556.
    33.姜翠玲,崔广柏.湿地对农业非点源污染的去除效应.农业环境保护,2002,21(5):471~473.
    34.蒋晓辉.滇池面源污染及其综合治理.云南环境科学,2000,(12):33~34.
    35.巨晓棠,刘学军,张福锁.冬小麦-夏玉米轮作体系中的氮肥效应及氮素平衡研究.中国农业科学,2002,35(11):1361~1368.
    36.康玲玲,朱小勇,王云璋,等.不同雨强下黄土性土壤养分流失规律研究.土壤学报,1999,16(4):536~543.
    37.寇长林,巨晓棠,张福锁.三种集约化种植体系氮素平衡及其对地下水硝酸盐含量的影响.应用生态学报,2005,16(4):660~ 667.
    38.赖庆旺,李茶苟,黄庆海.红壤性水稻土无机肥连施与土壤结构特性的研究.土壤学报,1992,29:168~174.
    39.李长生.陆地生态系统的模型模拟.复杂系统与复杂性科学,2004,1(1):49~57.
    40.李长生,肖向明,S.Frolking.中国农田的温室气体排放第四纪研究,2003,23(5):493~503.
    41.李虎,王立刚,邱建军.黄淮海平原河北省范围内农田土壤二氧化碳和氧化亚氮排放量的估算.应用生态学报,2007,18(9):1994-2000.
    42.李成亮,何圆球,林天.种植制度对地表径流的影响.水土保持通报,2004,24 (1):29~31.
    43.李贵桐,赵紫娟,黄元仿,等.秸秆还田对土壤氮素转化的影响.植物营养与肥料学报,2002,8(2):162~167.
    44.李国斌,王焰新,程胜高.基于暴雨径流过程监测的非点源污染负荷定量研究[J].环境保护,2002,(5):46-48.
    45.李俊良.保护地番茄养分利用及土壤氮素淋失.应用与环境生物学报,2001,7(2):126~129.
    46.李世清,李生秀.半干旱地区农田生态系统中硝态氮的淋失.应用生态学报,2000,11(2):240~242.
    47.李晓欣,胡春胜,张玉铭,董文旭,欧阳志云.华北地区小麦—玉米种植制度下硝态氮淋失量研究.干旱地区农业研究,2006,24(6):7~10.
    48.李志博,王起超,陈静.农业生态系统中氮素循环研究进展.土壤与环境,2002,11(4):417~421.
    49.梁博,王晓燕,曹利平.中国水环境非点源污染负荷估算研究方法.吉林师范大学学报,2004,(3):58~61.
    50.刘长余,武瑞锁.小清河流域的水污染治理,华北水利水电学院学报,2001,22(3):84~86.
    51.刘光栋,吴文良.桓台县高产农田土壤硝态氮淋失动态研究.中国生态农业学报,2002,10(4):71~74.
    52.刘宏斌,李志宏,张维理,林葆.露地栽培条件下大白菜氮肥利用率与硝态氮淋溶损失研究.植物营养与肥料学报,2004,10(3):286~291.
    53.刘兆辉,江丽华,张文君,等.氮、磷、钾在设施蔬菜土壤剖面中的分布及移动研究.农业环境科学学报.2006,25(增刊):537~542.
    54.陆海明,尹澄清,王夏晖,等.于桥水库周边农业小流域氮素流失浓度特征.环境科学学报,2008,28(2): 349~355.
    55.吕耀.农业生态系统中氮素造成的非点源污染.农业环境保护,1998,17(1):35~39.
    56.吕唤春.千岛湖流域农业非点源污染及其生态效应的研究[博士学位论文].杭州:浙江大学,2002.
    57.马吉刚,梅泽本,夏泉等.山东小清河污水治理现状及对策.水土保持研究,2003,10(2):108~111.
    58.马立珊,王祖强,张水铭等.苏南太湖水系农业面源污染及控制对策研究.环境科学学报,1997,17(1):39~47.
    59.马立珊.苏南太湖水系农业非点源氮污染及其控制对策研究.应用生态学报,1992,3(4):346~354.
    60.邱建军,李虎,王立刚.中国农田施氮水平与土壤氮平衡的模拟研究.农业工程学报,2008,24(8):40~44.
    61.邱建军,王立刚,唐华俊,等.东北三省耕地土壤有机碳储量变化的模拟研究.中国农业科学,2004,37(8):1166~1171.
    62.全为民,严力蛟.农业面源污染对水体富营养化的影响及其防治措施.生态学报,2002,22(3):291~299.
    63.任祖淦.化学氮肥对蔬菜硝酸盐污染影响的研究,中国环境科学,1997,17(4):326~329.
    64.史志华,蔡崇法,丁树文,等.基于GIS的汉江中下游农业面源氮磷负荷研究.环境科学学报,2002,22(4):473~477.
    65.苏东彬.指太湖地区典型农业小流域非点源污染研究[硕士学位论文].南京:海河大学,2007.
    66.王朝辉,宗志强,李生秀,陈宝明.蔬菜的硝态氮累积及菜地土壤的硝态氮残留.环境科学,2002,23(3):79~83.
    67.王家玉,王胜佳,陈义.稻田土壤中氮素淋失的研究.土壤学报,1996,33(1):28~36.
    68.王立刚,邱建军,李唯炯,等.黄淮海平原地区夏玉米农田土壤呼吸的动态研究.土壤肥料,2002(6):13~17.
    69.王立刚,邱建军,李唯炯,等.应用DNDC模型分析施肥与翻耕方式对土壤有机碳含量的长期影响.中国农业大学学报,2004,6:11~18.
    70.王晓燕,高焕文,李洪文,等.保护性耕作对农田地表径流与土壤水蚀影响的试验研究.农业工程学报,2000,l6(3):66~69.
    71.王晓燕,郭芳,蔡新广,等.密云水库潮白河流域非点源污染负荷.城市环境与城市生态, 2003,16(1):31~33.
    72.王晓燕,王一峋,蔡新广,等.北京密云水库流域非点源污染现状研究.环境科学与技术,2002,25(4):1~3.
    73.王效科,李长生.中国农业土壤N2O排放量的估算.环境科学学报,2000,20(4):483~488.
    74.王效科,庄亚辉,李长生.中国农田土壤N2O排放通量分布格局研究.生态学报,2001,21(8):1225~1232.
    75.王兴仁,曹一平,毛达如.作物施肥调控系统的建立和应用.北京农业大学学报,1995,21 (增刊):1~6.
    76.王兴武,于强,张国梁,李运生.鲁西北平原夏玉米产量与土壤硝态氮淋失.地理研究.2005,24(1):140~150.
    77.吴金水,郭胜利,党廷辉.半干旱区农田土壤无机氮积累与迁移机理.生态学报,2003,23(10):2041~2049.
    78.武俊喜、陈新平、贾良良.2004冬小麦一夏玉米轮作中高肥力土壤的持续供氮能力.植物营养与肥料学报,10(l):1~5.
    79.夏青.计算非点源污染负荷的流域模型.中国环境科学,1985,(4): 23~30.
    80.谢军飞,李玉娥.DNDC模型对北京旱地农田N2O排放的模拟对比分析.农业环境科学学报,2004,23(4):691~695.
    81.邢维芹,骆永明,王林权,等.半干旱区玉米水肥空间耦合效应I:氮素的吸收和残留及其环境效应.土壤,2003,2:118~121.
    82.熊正琴,邢光熹,沈光裕.太湖地区湖、河和井水中氮污染状况的研究.农村生态环境,2002,18(2):29~33.
    83.徐文彬,刘广深,洪业汤.DNDC模型对我国旱地N2O释放的拟合对比分析.矿物学报,2002,22(3):222~228.
    84.徐文彬.浅谈推算和预测宏观尺度土壤N2O释放量的方法.土壤通报.2000,31(2):91~95.
    85.许峰,蔡强国,吴淑安.坡地农林复合系统养分过程研究进展.水土保持学报,2000,14(1):83~87.
    86.许其功,刘鸿亮,沈珍瑶,等.三峡库区典型小流域氮磷流失特征.环境科学学报,2007,27(2): 326~331.
    87.晏维金,尹澄清,孙濮,等.磷氮在水田湿地中的迁移转化及径流流失过程,应用生态学报,1999, 10(3):312~316.
    88.杨守春.黄淮海平原主要作物优化施肥和土壤培肥技术.北京:中国农业科技出版社, 1991.
    89.尹澄清,毛战坡.用生态工程技术控制农村非点源污染.应用生态学报,2002,13(2):229~232.
    90.于翠松,安玉坤,郝振纯.济南市小清河水生态治理对策研究,海河水利,2006,1:21~23.
    91.于兴修,杨桂山,梁涛.西苕溪流域土地利用对氮素径流流失过程的影响.农业环境保护,2002,21(5):421~ 424.
    92.袁新民,同延安,杨学云,等.有机肥对土壤NO3--N累积的影响.土壤与环境,2000, 9(3):197~200.
    93.袁新民,杨学云,同延安,等.不同施氮量对土壤硝态氮累积的影响.干旱地区农业研究.2001,l9(1):7~l3.
    94.苑韶峰,吕军.流域农业非点源污染研究概况.土壤通报,2004,35(4):507~511.
    95.张从.中国农业面源污染的环境影响及其控制对策.环境科学动态,2001,(4):10-13
    96.张国梁,章申.农田氮素淋失研究进展.土壤,1998,6:291~297.
    97.张乃风,李家康.科学施用化肥,提高增产效益,降低农业成本.见:陈俊生主编,建设高产优质高效农业.北京:中国农业出版社,1990,490~502.
    98.张乃明,张玉娟,陈建军,李成学.滇池流域农田土壤氮污染负荷影响因素研究.中国农学通报,2004,20(5):148~150.
    99.张荣保,姚琪,计勇,等.太湖地区典型小流域非点源污染物流失规律.长江流域资源与环境,2005,14(1): 94~98.
    100.张维理,冀宏杰,Kolbe H.,徐爱国.中国农业面源污染形势估计及控制对策I:21世纪初期中国农业面源污染的形势估计.中国农业科学,2004,37(7):1018~1025.
    101.张兴昌,邵明安.黄土丘陵区小流域土壤氮素流失规律.地理学报,2000b,55(5):617~626.
    102.张兴昌,邵明安.坡地土壤氮素与降雨!径流的相互作用机理及模型.地理科学进展,2000a, 19(2):128~135.
    103.张玉铭,张佳宝,胡春胜,李晓欣,朱安宁.华北太行山前平原农田土壤水分动态与氮素的淋溶损失.土壤学报,2006,43(1):17~25.
    104.张云贵,刘宏斌,李志宏,林葆,张夫道.长期施肥条件下华北平原农田硝态氮淋失风险.植物营养与肥料学报,2005,11(6):711~717.
    105.赵允格,邵明安.模拟降雨条件下成垄压实对硝态氮迁移的影响.植物营养与肥料学报,2003,9(1):45~49.
    106.甄兰.应用DNDC模型和GIS技术研究区域氮肥管理的环境效应[博士学位论文].北京:中国农业大学,2007.
    107.郑昭佩,宋德香,张俊成.小清河济南段水污染现状与防治对策.资源开发与市场,2008 24(12):1103~1106.
    108.中华人民共和国农业部.中国农业统计资料2004.北京:中国农业出版社,2005.
    109.钟茜,巨晓棠,张福锁.华北平原冬小麦/夏玉米轮作体系对氮素环境承受力分析.植物营养与肥料学报.2006,12(3):285~293.
    110.周顺利,张福锁,王兴仁.土壤硝态氮时空变异与土壤氮素表观盈亏研究Ⅰ:冬小麦.生态学报,2003,21(11):1782~1789.
    111.朱安宁,张佳宝.黄潮土的土壤水渗漏及硝态氮淋溶研究.农村生态环境,2003,19(1): 27~30.
    112.朱波,汪涛,况福虹,等.紫色土坡耕地硝酸盐淋失特征.环境科学学报,2008,28(3): 525~533.
    113.朱松.小流域非点源N,P污染排放估算及控制对策研究[硕士学位论文].杭州:浙江大学,2004.
    114.朱萱,鲁纪行,边金钟,等.农田径流非点源污染特征及负荷定量化方法探讨.环境科学,1985,6(5):6~11.
    115.朱兆良,孙波.中国农业面源污染控制对策研究.环境保护,2008,394(4):4~6.
    116.朱兆良.农田中氮肥的损失与对策.土壤与环境,2000,9(1):1~6.
    117.朱兆良.我国土壤供氮和化肥去向研究进展.土壤,1985,11(7):2~9.
    118.朱兆良.中国土壤氮素.北京:中国农业出版社,1998,160~211.
    119. Arnold J G, Allen P M, Bernhardt G A. A comprehensive surface-groan-water flow model. Hydrol., 1993, 142: 47~69.
    120. Ayoub A T. Fertilizers and the environment. Nutrient Cycling in Agroecosystems, 1999, 55: 117~121.
    121. Babu, Y J, Li C, Frolking S, Nayak D R, Adhya T K. Field validation of DNDC model for methane and nitrous oxide emissions from rice~based production systems of India. Nutrient Cycling in Agroecosystems, 2006, 74: 157~174.
    122. Bao Q, Mao X, Wang H. Progress in the research in aquatic environmental non-point source pollution in China. Journal of Environmental Sciences, 1997(3): 328~335.
    123. Beheydta D, Boeckxa P, Sleutelb S, Li C, Van Cleemputa O. Validation of DNDC for 22 long~term N2O field emission measurements. Atmospheric Environment, 2007, 41: 6196~6211.
    124. Bergstrom L, Brink N. Effects of differentiated applications of fertilizer N on leaching losses and distribution of inorganic N in the soil. Plant and Soil, 1986, 93: 333~345.
    125. Boers P C. Nutrient Emission from Agriculture in the Netherlands: Causes and Remedies.100 Water Sci. Technol., 1996, 33: 183~188.
    126. Booltink A, et al. Straw in corporation and immobilization of spring~applied nitrogen. Soil Use and Management, 1997, 13: 111~116.
    127. Bouwman A F, Van Drecht G, Van Derhoe K. Global and regional surface nitrogen balances in intensive agricultural production systems for the period 1970~2030. Pedosphere, 2005, 15(2): 137~155.
    128. Breemen N, Boyer E W, Goodale C L, et al. Where did all the nitrogen Fate of nitrogen inputs to large watersheds in the northeastern U. S. A. Biogeochemistry, 2002, 57/58: 267~293.
    129. Campbell CA, Read DWL, Biederbeck VO, Winkleman GE. The first 12 years of a long~term crop rotation study in southwestern Saskatchewan~Nitrate~N distribution in soil and N uptake by the plant.Can.J.Soil Sci., 1983, 63: 563~578.
    130. Campbell J L, J W Hornbeck, W H McDowell, et al. Applications of geographic information systems in watershed management planning in St. Lucia. Comouters and Electronics in Agriculture, 1996, 20: 229~250.
    131. Chen L D, Peng H J, Fu B J, et al. Seasonal variation of nitrogen-concentration in the surface water and its relationship with land use in a catchment ofnorthern China. Journal of Environ. Sciences, 2005, 17(2): 224~231.
    132. Chen X P, J C Zhou, X R Wang, A M Blackmer and F S Zhang. Optimal rates of Nitrogen fertilization for a winter wheat-corn cropping cystem in Northern China. Comm. in Soil Sci. Plant Anal., 2004, 35(3): 583~597.
    133. Crawford N H, Linsley R K. Digital simulation in hydrology: Stanford Watershed Model IV. Stanford, California: Dept Civil Engineering, Stanford University, 1996, 39: 210.
    134. Croll B T, Haves C R. Nitrate and water supplies in the United Kingdom. Environ. Poll., 1988, 50: 163~187.
    135. Darden R, Bingner R L. AGNPS 2001 input data preparation model, technical reference version 2. http://www. sedlab.olemiss.edu/AGNPS/regdownload.html, 2001.
    136. Dise N B, Matzner E, Gundersen P. Synthesis of nitrogen pools and fluxes from European forest ecosystems. Water Air Soil Pollut., 1998, 105: 143~154.
    137. Dissolved organic nitrogen budgets for upland, forested ecosystems in New England. Biogeochemistry, 2000, 49: 123~142.
    138. Fedra K. Atmospheric ammonia and ammonium transport in Europe and critical loads: a review. Nutrient Cycling in Agroecosystem, 1996, 51: 5~17.
    139. Frere M H, Onstad C A, Holtan H N. A agricultural chemical transport model (ACTMO). Agricultural Research Service, 1975, 3: 56.
    140. Frere M H. The nutrient submodel In:Kniessel W. G. ed. A Field Scale Model for Chemical, Run off and Erosion from Agricultural Management System. USDA, Cons, Res., Report 26, U S Gov. CREAMS: Print Office, Washington, D. C., 1980, 65~67.
    141. Frye W W. Soil erosion effects on properties and productivity of two Kentucky soils.SoilSci.Soc.Am.J., 1985, 46: 1051~1055.
    142. Gou J, Zheng X H, Wang M X. Modeling N2O emissions from agricultural fields in Southeast China. Advances in Atmospheric Sciences, 1999, 16(4): 581~592.
    143. Goulding K. Strategies for farmers and policy makers to control nitrogen losses whilst maintaining crop production. Science in China Ser. C Life Sciences, 2005, 48(s): 710~719.
    144. Haith D A. Land use and water quality in New York river. J. Env. Eng. Div. ASCE, 1976, 102(1): 1~15.
    145. Hallberg G R. From hoes to herbicides: Agriculture and groundwater quality. J. Soil Water Cons., 1986, 41(6): 357~364.
    146. Hansen E M, Djurhuus J. Nitrate leaching as affected by long term N fertilization on a coarse sand. Soil Use and Management, 1996, 12(4): 199~204.
    147. HEC (Hydrologic Engineering Center). storage,Treatment,overflow,Runoff Model,STORM,User,5Manuel,Generalized Computer Program. 1977.
    148. Hergert G W.Nitrate leaching through sandy soil as affected by sprinkler irrigation management. J.Environ.Qral., 1986, 15: 272~278.
    149. Howarth R W, Billen G, Swaney D, Townsend A, Jaworski N, Lajtha K, Downing J A. if isotopic ratios d15N and d18O can reveal the sources of nitrate discharged by the Mississippi River to the Gulf of Mexico. U.S. Geological Survey Open~File report 97~230, 18p, 1996.
    150. Isfan D, Zizka J, D Avignon A, Deschenes M. Relationships between nitrogen rate, plant nitrogen concentration, yield and residual soil nitrate~nitrogen in silage corn. Commun. Soil Sci. Plant Anal., 1995, 26: 2531~2557.
    151. Jin J Y, Jiang C. Spatial variability of soil nutrients and site~specific nutrient management in the P. R. China. Computers and Electronics in Agriculture, 2002, 36: 165~172.
    152. Kanwar R S, Colvin T S, Karlen D L. Ridge, mold-board, chisel and no-tillage effects on tile water quality beneath two cropping systems. Prod. Agric., 1997, 10: 277~234.
    153. Kessavalou A, Doran J W, Powers W L, et al. Bromide and nitrogen 15 tracers of nitrate leaching under irrigated corn in central Nebraska. J. Environ. Qual., 1996, 25: 1008~1014.
    154. Kronvang B. Diffuse Nutrient Losses in Denmark. Water Sci. Technol., 1996, 33: 81~87.
    155. Lal R. Research and development priorities in soil degradation. Advance in Soil Science, 1990 (2): 331~336.
    156. Legg J O, Meisinger J J. Soil nitrogen budgets. In: Stevenson F. J. ed. Nitrogen in Agricultural Soils. Am. Soc. Agron. Madison. Wis. Agrom., 1982, 22: 503~566.
    157. Li C, Farahbakhshazadb N, Jaynes D B. Modeling nitrate leaching with a biogeochemical model modified based on observations in a row~crop field in Iowa. Ecological Modeling, 2006, 196: 116~130.
    158. Li C. Modeling trace gas emissions from agricultural ecosystems. Nutr. Cycl. Agroecosys., 2000, 58, 259~276.
    159. Li C, Frolking S, Frolking T A. A model of nitrous oxide evolution from soil driven by rainfallevents: 1. Model structure and sensitivity. J. Geophys. Res., 1992a, 97, D9, 9759~9776.
    160. Li C, Frolking S, Frolking T A. A model of nitrous oxide evolution from soil driven by rainfall events: 2. model applications. J. Geophys. Res., 1992b, 97, D9, 9777~9783.
    161. Li C, Frolking S E, Harris R C. Modeling carbon biogeochemistry in agricultural soils. Global Biogeochemical Cycles, 1994, 8 (3), 237~254.
    162. Li C, Mosier A, Wassmann R, Cai Z, Zheng X, Huang Y, Tsuruta H, Boonjawat J, Lantin R. Modeling greenhouse gas emissions from rice~based production systems: sensitivity and upscaling. Global Biogeochem. Cycles, 2004, 18, GB1043, doi:10.1029/2003GB002045.
    163. Liu J D, Zhou X, Chen D, Ouyang Z Y, Wang X K, Achberger C. Simulation of temporal and spatial change of N2O emissions in the Yangtze River Delta. Journal of Environmental Science, 2005, 17(4): 686~690.
    164. Munn T, Whyte A, Timmeran P. The potential environment problem: SCOPE for the global prospect. AMBIO, 1999, 28(6): 128~135.
    165. Oenema O, Roest C. Nitrogen and phosphorus Losses from agriculture into surface waters: the effects of policies and measures in the Netherlands. Wat. Sci. Tech., 1998, 37(2): 19~30.
    166. Packer P, Leach S. Origin and significance of nitrite in water. In: Hill Med. Nitrates and Nitrites in Food and Water. Chichester: Ellis Horwood Press, 1991: 77~92.
    167. Pathak H, Li C, Wassmann R. Greenhouse gas emissions from Indian rice fields: calibration and upscaling using the DNDC model. BIogeoscience, 2005, 1: 1~11.
    168. Power, M. The predictive validation of ecological and environmental models. Ecol. Model, 1993, 68: 33~50.
    169. Qiu J, Wang L, Tang H. Studies on the situation of soil organic carbon storage in croplands in northeast of China. Agricultural Sciences in China, 2005, 4(8): 594~600.
    170. Qiu J, Li C, Wang L, Tang H, Li H, Van Ranst E. Modeling impacts of carbon sequestration on net greenhouse gas emissions from agricultural soils in China. Global Biogeochemical Cycle, 2009, 23, GB1007, doi:10.1029/2008GB003180.
    171. Qiu J, Li C, Wang L, et al. Combining Remote Sensing and Ground Census Data to Develop New Maps of the Distribution of Cropland in China. Geocarto International, 2003, 18(2): 3~13.
    172. Elmgren R, Caraco N, Jordan T F, et al. Regional nitrogen budgets and riverine N & P fluxes for the drainages to the North Atlantic Ocean: Natural and human influences. Biogeochemistry, 1996, 35: 75~139.
    173. Shaffer M J. Nitrogen modeling for soil management. Journal of Soil and Water Conservation, 2002: 417~424.
    174. Smith P, Smith J U, Powlson D S, et al. A comparison of the performance of nine soil organic matter models using datasets from seven long-term experiments. Geoderma, 1997, 81: 153~225.
    175. Tang H, Qiu J, Van Ranst E, et al. Estimations of soil organic carbon storage in cropland of China based on DNDC Model. Geoderma, 2006, 134: 200~206.
    176. Tonitto C, David M B, Drinkwater L E, Li C. Application of the DNDC model to tile~drainedIllinois agroecosystems: model calibration, validation, and uncertainty analysis. Nutr. Cycl. Agroecosyst. 2007. DOI 10.1007/s1070500690760.
    177. Walker S E, Mitchell J K, Hirschi M C, et al. Sensitivity analysis of the root zone water quality model. Trans. ASAE., 2000, 43 (4): 841~846.
    178. Wang L G, Qiu J J, Tang H J, Li H, Li C S, Van Ranst E. Modelling Soil Organic Carbon Dynamics in the Major Agricultural Regions of China. Geoderma, 2008, 147: 47~55.
    179. Watson C A, Atkinson D. Using nitrogen budgets to indicate nitrogen use efficiency and losses from whole farm system, a comparison of three methodological approaches.Nutrient Cycle Agro-ecosystem, 1999, 53: 259~267.
    180. Webster C P, Shepherd M A, Goulding K W, et al. Comparisons of methods for measuring the leaching of mineral nitrogen from arable land. J. Soil Sci., 1993, 44: 49~62.
    181. Weed A J, Kanwar R S. Nitrate and water present in and flowering from root~zone soil. Environ.Qual., 1996, 25(4): 709~719.
    182. Whipple W, Hunter J V. Nonpoint sources and planning for water pollution control. Journal of Water pollutant Control Fed., 1977, 49: 15~23.
    183. Whittemore R C. The BASINS model. Water Environment Technology, 1998, 10(12): 57~61.
    184. Young R A, Onstad C A, Bosch D D, et al. AGNPS: A non-point-source pollution model for evaluating agricultural watersheds. Soil and Water Conservation, 1989, (2): 168~173.
    185. Zhu Z L, Chen D L. Nitrogen fertilizer use in China contributions to food production, impacts on the environment strategies. Nutrient Cycling Agroecosystems, 2002, 63(2): 117~127.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700