用户名: 密码: 验证码:
卫星激光通信终端系统捕获瞄准跟踪技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
卫星激光通信是利用激光作为载波信号的一种重要的卫星通信方式,它是构成未来外层空间通信网络,星地通信网络的基础。本文结合卫星激光通信捕获、瞄准、跟踪过程,侧重研究了终端对对方终端位置的预测及搜索方案,针对对方光束位置提取过程中的图像处理问题,以及实现捕获瞄准跟踪过程的控制系统鲁棒稳定性、干扰抑制等问题进行了系统、深入地分析与设计:
     首先,针对激光通信链路的建立和保持过程,介绍了终端系统的各个组成单元,通过对典型终端机械结构及组成的分析,讨论了卫星激光通信终端系统的捕获、瞄准、跟踪过程以及相应的任务,并对扫瞄捕获过程中的捕获概率的约束因素进行了分析,通过对开关键控编码、曼彻斯特编码以及脉冲位置调制编码下的误码率大小进行了分析。
     其次,考虑到卫星平台轨道、姿态的运动对激光通信光束指向的影响和远距离通信过程中激光传输时间问题,采用坐标变换和直接建立相对运动微分方程组两种方案推导了摄动影响下的光通信终端天线的预测指向角,并对在轨卫星采用两种方案得到的预测指向角进行了仿真分析。由于在链路建立阶段需要通过扫瞄过程实现对目标的捕获,分析比较了三种扫瞄方案,提出了有效覆盖因子来表征单个光束投影的覆盖率,并结合预设重叠因子设计了常见扫瞄方式下的快速扫瞄与完全覆盖的扫瞄点放置方案,并获得了终端在扫瞄过程中应附加输入的扫瞄角变化规律,仿真显示确实能综合解决完全覆盖和快速完成扫瞄两个问题。
     再次,分析了探测器靶面上形成的光斑坐标与光束入射角的关系,并推导了终端天线和快速倾斜镜分别作为执行机构时相应的反馈角度提取方法。由于图像中混杂的噪声信号对光斑中心坐标计算有较大影响,提出了根据能量、面积的大小将灰度图象噪声分为孤立噪声点和恒星背景噪声两类进行滤波处理。在孤立噪声处理过程中提出了两种方案:一是利用Sobel算子结合梯度倒数形成动态模板加权平滑,然后通过最大类间方差法阈值分割实现噪声滤除;二是结合小波变换的时频局部性和神经网络的自学习能力,利用小波神经网络作为图像滤波器对噪声进行消除。而针对恒星背景噪声,提出了连通区域选择扩张方案和基于Canny算子边缘提取与K-均值聚类方案,对恒星背景噪声进行分离,结合孤立噪声与背景噪声滤波方法对灰度图像进行仿真处理,取得了良好的滤除效果。
     然后,针对光通信控制系统中终端天线与快速倾斜镜两个内回路的物理部件特性进行了分析,指出控制对象模型的不确定性;并分析了控制器由于量化误差、器件老化等因素可能引起的参数摄动;结合光通信系统的特点,总结了系统的内外部扰动信号,通过具体的仿真过程论证了扰动对系统的影响。针对终端天线回路的模型不确定性、控制器摄动和扰动信号的影响提出了鲁棒H∞控制器设计方法,对于快速倾斜镜回路由于时滞环节的影响,基于Lyapunov函数设计了时滞鲁棒H∞控制器,通过仿真分析验证了内回路对干扰和模型摄动的鲁棒性。
     最后,以终端天线与快速倾斜镜回路为基础构成了光通信捕获、瞄准、跟踪过程的捕获、瞄准阶段光通信终端控制系统,稳定性问题值得关注,基于终端天线与快速倾斜镜回路建立了光通信控制系统模型,通过时滞系统稳定性条件和矩阵测度稳定性条件分析了整个光通信控制系统的稳定性,并对终端天线与快速倾斜镜回路的设计进行了校验。为了完善整个设计过程,从时滞稳定性条件出发,采用公共的变换阵与锥补法推导了终端天线与快速倾斜镜回路鲁棒H∞状态反馈设计下确保整个系统稳定的约束设计方法。
Satellite laser communication which use laser as carrier signal is an importantsatellite communication solution. It is a critical technology of space communicationnetwork, satellite-ground communication network.For the acquisition,pointing,tracking(APT) process of laser communication, such problems:predicting and searching for theobject terminal,image process for beam pointing angle recovery and robust control systemdesign were analyzed systematically and deeply in this dissertation.
     According to the process of establishing or keeping the laser communication link,thesubsystems of satellite communication terminal were introduced in detail. Basing on themechanic structure and optical scheme of canonical terminals,the work ?ow and taskof satellite laser communication terminal was divided into three partition.And then theconstraint factors for acquisition probability and the bit error rate with OOK, Manchesterand pulse position module were discussed.
     Considering the in?uence of satellite platform relative motion to communicationbeam and the beam transmit time because of long communication distance,coordinatetransform and Hill equation which usually describes the relative motion for two aircraft,were used to deduce the predicted pointing angle.And they were both verified in low orbitsatellites simulation.In the process of creating the communication link, scanning searchwas applied to capture the target terminal.The valid coverage factor and pre-overlappingfactor was proposed for coverage rate of projection beam. And then the least scanningpoint algorithm that can cover the uncertain area was induced based on the commonestscanning method.And the in?uence of valid coverage factor and pre-overlapping factorto acquisition time was analyzed. Simulation proves that entirely coverage and the leastscanning time problems can be resolved .
     The laser feedback loop offer the incident light from the joint terminal in anothersatellite.The terminal internal frame and fast steering mirror(FSM) frame were used todeduce the error angle of terminal antenna or FSM depending on spot center coordinate.The center coordinate calculated from gray image gathered by detector.And the imageinterfuses noise inevitably in the collection process,so the noise was divided into twocategories-isolated spot noise and stellar background noise in the light of noise area and power.Wavelet neural network filter and smoothing filter which connected with Sobeloperator and threshold method were proposed for isolated spot noise.Different from theisolated noise,the stellar background noise possess bigger area and energy, the selectionconnected region method and edge extraction were used for separating the valid spot andnoise spot.Through the combination of isolated noise filter and background noise filter,the simulation shows the gray image can offer better spot center coordinates.
     Moreover,the actuators for laser communication control system, brush-less directcurrent(BLDC) motor for terminal antenna loop and piezoelectric ceramics for FSM loop,were discussed. And the analysis result show the uncertainty of normal models.Whencontroller perturbation which caused by chip aging and analogical to digital convertererror appears, the analysis indicates that may arise some parameter variable.The inner andexternal disturbance were generalized for control system.And the in?uence of disturbanceto system task was simulated. Based on these points, robust H∞controller was designedfor terminal antenna loop and FSM loop which contains time delay unit.Simulation provedthat terminal antenna and FSM loop are robust for model perturbation and disturbance.
     Because the laser communication control system which composed by coarse loopand fine loop realizes APT process,the system stability become a focus.The whole APTsystem model was set up,and the stability condition was proposed under time delay systemstability theorem and matrix measure method. The design of terminal antenna and FSMloop was verified through the condition.In order to consummate the whole design process,common transform matrix was used to design the whole system stability.And then thecone complementary method transform the stability criterion to linear matrix inequalityconstraint.
引文
1 V. W.S.Chan. Optical Satellite Networks[J]. Journal of Lightwave Technology,2003, 21(11):2811–2827.
    2 K. Wilson. Optical Communications for Deep Space Missions[J]. IEEE Commu-nications Magazine, 2000:134–139.
    3 X. Zhu, J. M.Kahn. Performance Bounds for Coded Free-space Optical Commu-nications Through Atmospheric Turbulence Channels[J]. IEEE Transactions onCommunications, 2003, 51(8):1233–1239.
    4 M. Rimskog, E. Kalvesten, N. Svedin. Optical Mems at Silex Microsystems[J].Proceedings of SPIE, 2004, 5346:101–106.
    5 M. Toyoshima, S. Yamakawa, T. Y. et al. Long-term Statistics of Laser Beam Prop-agation in an Optical Ground-to-geostationary Satellite Communications Link[J].Proceedings of SPIE, 2005, 53(2):842–850.
    6王建.基于DSP的卫星光通信计算机控制系统设计与研究[D].哈尔滨:哈尔滨工业大学,2004:2–3.
    7 K. Wilson, J. R.Lesh. GOPEX:a Laser Uplink to the Galileo Spacecraft on its Wayto Jupiter[J]. SPIE, 1993, 1866:138–145.
    8 D.L.Begley, W.Casey. Proposed Near-term,1 Gbps Space Laser CommunicationsDemonstration System[J]. SPIE, 1996, 2699:24–37.
    9 D. M. Boroson, C. C. Cheng, B. Edwards. Overview of the Mars Laser Com-munications Demonstration Project[J]. http://www.ieee.org/organizations/pubs/newsletters/leos/oct05/demonstration.html.
    10罗彤.星间光通信ATP中捕获,跟踪技术研究[D].成都:电子科技大学,2005:30–39.
    11 V. W.S.Chan, J.E.Kaufmann. Coherent Optical Intersatellite Crosslink System[J].SPIE, 1988, 988:325–335.
    12 MIT. MIT-NASA Team to Test First Interplanetary Laser Communication Link[J].http://web.mit.edu/newsoffice/2004/optical.html.
    13 MIT. High-availability Free-space Laser Communications Are Demonstrated[J].http://www.ll.mit.edu/news/freespace-lasercom.html.
    14 V.Y.Venediktow, V.A.Berenberg, N.A.Bezina. Novel Scheme of Dynamic Correc-tion Using Negative Optical Feedback[J]. SPIE, 1999, 3165:355–361.
    15 I.K.Issac, B. Riley, M.W.Nicholas. Lessons Learned from the STRV-2 Satellite-to-ground Lasercomm Experiment[J]. SPIE, 2001, 4272:1–15.
    16 K. Carter, M. Muccio. A One Way Laser Communications System That Is Capa-ble of the Transmission of Both Text and Sound[J]. http://instruct1.cit.cornell.edu/courses/ee476/FinalProjects/s2003/kmc29/index.htm.
    17 D. Buvat, G. Muller, P. P. et al. The Coarse Pointing Assembly for SILEX ProgramOr How to Achieve Outstanding Poingting Accuracy with Simple Hardware Asso-ciated with Consistent Control Laws[J]. SPIE.Free-Space Laser CommunicationTechnologies III, 1991, 1417:251–261.
    18 J.Lewis, P.Gatenby, G.Baister. The Optical Subsystem of the SOUT[J]. SPIE.Free-Space Laser Communication Technologies III, 1994, 2210:49–60.
    19 K.Pribil, C.Serbe. SLACOS YKS-an Optical High Data Rate Communication Sys-tem for Intersatellite Link Application[J]. SPIE, 1996, 2381:83–88.
    20 K.Kudielka, A.Marki, G. et al. Acquisition and Tracking Strategies of the OPTEL25 GEO Terminal[J]. IEEE, 2002:395–396.
    21 A.V.Bagrov, V.P.Lukin. Laser Optical Communication Systems with Space Trans-mitters[J]. Proc.SPIE, 2006, 6160:1–7.
    22 W.M.Neubert, W.R.Leeb, A.L.Scholtz. Experimental Implimentation of an OpticalMultiple-aperture Antenna for Space Communication[J]. SPIE, 1991, 1522:93–10.
    23易成林.自由空间光通信技术的发展现状与未来趋势[J].现代商贸工业,2007, 19(9):263–264.
    24刘丹平.空间光通信中高精度对准信息获取方法研究[D].成都:电子科技大学,2005:15–16.
    25倪飞,邓兴成,李贤.空间光通信ATP系统中光信号处理技术研究[J].激光杂志,2000,21(4):15–17.
    26段明浩,孔建坤,汤俊雄.采用原子滤波器的新型激光信标方案研究[J].光学学报,1997,17(10):1362–1367.
    27余水清,汤俊雄,肖海桥.采用原子滤波器可调谐特性的新型卫星光通信捕捉方案研究[J].电子学报,2001,29(3):423–425.
    28孙未,艾勇,黄海波等. 42.24Mbits/s多业务大气传输光通信系统的研制[J].红外与激光工程,2004,33(1):88–93.
    29曹阳,艾勇,黎明等.空间光通信精跟踪系统地面模拟实验[J].光电子.激光,2009, 20(1):40–43.
    30艾勇,陈晶,叶德茂等.空间光通信精跟踪系统地面模拟实验[J].无线光通信,2007, 20(7):55–57.
    31潘慧,艾勇,蒋海丽. ATP子系统中补偿大气衰减的一种优化设计[J].光电子技术,2004,24(3):192–197.
    32 S. Yu, H. Gao, J. M. et al. Selection of Acquisition Scan Methods in IntersatelliteOptical Communcations[J]. Chinese Journal of Lasers, 2002, B11(5):364–368.
    33李晓峰.星地激光通信链路原理与技术[M].北京:国防工业出版社,2007:263–265.
    34 T.I.King, H.H.Refai, J. et al. Control System Analysis for Ground/Air-to-Air LaserCommunications Using Simulation[C]//24th digital avionics systems conference.Washington D.C.,USA: IEEE, 2005:C.3–1–C.3–7.
    35 A.A.Portillo, G.G.Ortiz, C.Racho. Fine Pointing Control for Optical Communica-tions[C]//Montana,USA: IEEE Aerospace Conference, 2001:1–10.
    36 G. M.Carter. The Need for Dynamic Control in High Data-rate CommunicationSystems[J]. IEEE, 2002:45–46.
    37 M. Guelman, A. Kogan, A. K. et al. Acquisition and Pointing Control for Inter-satellite Laser Communications[J]. IEEE Trans. on Aerospace and Electronic Sys-tems, 2004, 40(4):1239–1247.
    38 M. Borrello. A Multi Stage Pointing Acquisition and Tracking (PAT) Control Sys-tem Approach for Air to Air Laser Communications[C]//2005 American ControlConference. Portland,USA: AACC, 2005:3975–3980.
    39 S.Dyne, P.Collins, D.Tunbridge. Satellite Mechanical Health Monitoring[J]. IEEColloquium on, 1992:1–8.
    40 S. Arnon, S. R.Rotman, N.S.Kopeika. Performance Limitations of Free-space Op-tical Communcation Satellite Networks Due to Vibrations:Direct Detection DigitalMode[J]. Opt.Eng, 1997, 36(11):3149–3158.
    41于思源,谭立英,马晶等.激光星间链路中振动补偿技术研究[J].光电子激光,2004, 15(4):472–476.
    42 J. E.Mcinroy, G. W.Neat, J. F.OBrien. A Robotic Approach to Fault-tolerant,precision Pointing[J]. IEEE Robotics & Automation Magazine, 1999:24–31.
    43李晓亮,门健,夏军利.大气抖动自由空间光通信信道研究[J].空军工程大学学报,2006,7(5):51–52.
    44唐涛,熊辉,魏急波等.大气光通信PAT子系统指标初步设计分析[J].红外与激光工程,2002,31(3):280–282.
    45高宠,马晶,谭立英等.大气光通信中大气闪烁时间平滑效应研究[J].光学学报,2006,26(4):481–486.
    46阎吉祥,俞信,张晓芳.湍流对地-空光通信系统性能的影响及自适应光学补偿[J].光学技术,2005,31(2):286–289.
    47刘剑锋,于思源,韩琦琦等.空间光通信的时间平滑实验研究[J].激光技术,2008, 32(1):11–14.
    48 P. Carlo, G.Marao, G. et al. Intersaellite Link for Earth Observation Satellites Con-stellation[C]//SpaceOps 2006 conference,AIAA. Rome,Italy: AIAA, 2006:1–12.
    49 M. Scheinfeld, N.S.Kopeika. Acquisition System for Microsatellites Laser Com-muncation in Space[J]. Free-Space Laser Communcation Technologies XII, 2000,3932:166–175.
    50于思源,马晶,谭立英.提高卫星光通信扫描捕获概率的方法研究[J].光电子.激光,2005,16(1):57–62.
    51陈云亮,于思源,马晶等.卫星间光通信中多场扫瞄捕获的仿真优化[J].中国激光,2004,31(8):975–978.
    52武凤,周彦平,于思源.基于空间成像的卫星光通信双向捕获技术[J].光电子.激光,2006,17(6):700–704.
    53 T. H. Ho, S. D.Milner, C. C.Davis. Fully Optical Real-time Pointing,acquisitionand Tracking System for Free Space Optical Link[J]. SPIE.Free-Space Laser Com-muncation Technologies XVII, 2005, 571:81–92.
    54李晓峰,邓科,张永健等.基于空间域的空间光通信系统接收信标光斑图像平滑处理[J].激光杂志,2004,25(5):51–53.
    55王亚丽,段锦,景文博等.空间光通信中激光光斑检测与特性分析[J].红外与激光工程,2007,36(增刊):166–170.
    56刘丹平,胡渝.提高光斑图像质心精度的去噪方法[J].光电工程, 2005,32(8):56–58.
    57王世峰,赵馨,佟首峰等.自由空间光通信中APT粗跟踪CCD相机的研制[J].兵工学报,2008,29(5):544–547.
    58李宏伟,王黎,高晓蓉. FSO图象传输质量的分析[J].铁道技术监督, 2007,35(5):35–38.
    59 R.M.Gagliardi and S.Karp原著,陈根祥等译.光通信技术与应用[M].北京:电子工业出版社,1998:117–120.
    60 H. Hemmati. Deep Space Optical Communications[M]. California: Prentice Hall,2005:351–412.
    61 H. Yang, Y. Hu, C. L. et al. Optimum Design for Optical Antenna of Space LaserCommunication System[J]. IEEE, 2006:2016–2019.
    62 M.Gobel, F. Pasquale, M.Federighi. Design of Multiwavelength Optical Commu-nication Systems Based on an Integrated Waveguide Amplifier Compensator[J].IEEE Photonics Technology Letters, 1996, 8(3):446–449.
    63王怡.空间光通信中的若干关键技术研究[D].哈尔滨:哈尔滨工程大学,2007:66–68.
    64 Yoshinori, D. Begley, R. M. et al. Conceptual Design of a Laser Communica-tions Demonstration Experiment for the Japanese Experiment Module on the In-ternational Space Station[C]//21st International Communications Satellite SystemsConference and Exhibit. Yokohama,Japan: American Institute of Aeronautics andAstronautics, 2003:1–7.
    65 G. C.Baister, P. V.Gatenby, J. L. et al. Small Optical Terminal Designs with aSoftmount Interface[J]. SPIE, 1997, 2990:172–182.
    66周进军,元秀华,李博.用ADN8830实现半导体激光器的自动温度控制[J].光学精密工程,2005,3(2):54–57.
    67 S. Arnon, N.S.Kopeika. Laser Satellite Communcation Network-vibration Effectand Possible Solutions[J]. Proceedings of the IEEE, 1997, 85(10):1646–1661.
    68 C. T, P. A. Formation Design in Eccentric Orbits Using Linearized Equations ofRelative Motion[J]. Journal of Guidance, Control and Dynamics, 2006, 29(1):147–153.
    69 W. F. Automated Rendezvous and Docking of Spacecraft[M]. Cambridge: Cam-bridge University Press, 2003:35–41.
    70 H. J. P. Inalhan G, Tillerson M. Relative Dynamics and Control of Spacecraft For-mations in Eccentric Orbits[J]. Journal of Guidance Control, and Dynamics, 2002,25(1):48–59.
    71邓正隆.惯性导航原理[M].第二版.,哈尔滨:哈尔滨工业大学出版社,1994:13–16.
    72章仁为.卫星轨道姿态动力学与控制[M].第一版.,北京:北京航空航天大学出版社,1998:2–4.
    73刘林.航天器轨道理论[M].第一版.,北京:国防工业出版社, 2000:75–77.
    74谷建军.编队卫星周期性相对运动轨道设计与构形保持研究[D].长沙:国防科技大学,2007:18–21.
    75张治国.卫星编队飞行相对姿态动力学与控制[D].长沙:清华大学, 2002:29–32.
    76朱勇,李玉权.星间激光通信中的瞄准、捕获和跟踪系统[J].军事通信技术,2003, 24(4):61–65.
    77张文涛.光通信APT中CCD多次采样的分析及驱动电路的设计[D].成都:成都电子科技大学,2002:31–34.
    78曹阳,艾勇,叶德茂等.基于DM642的信标光实时图像处理[J].空间光通信,2007, 10(7):53–56.
    79 A.J.Lowery. Transmission-line Laser Modelling of Semiconductor Laser AmplifiedOptical Communications Systems[J]. IEE Proceedings-J, 1992, 139(3):180–189.
    80韩琦琦,马晶,谭立英等.恒星背景噪声对星间激光链路跟瞄系统影响的仿真分析[J].光学技术,2006,32(3):444–448.
    81 W. D, V. A. Gradient Inverse Weighting Smoothing Schema and the Evaluation ofits Performance[J]. Computer Graphics and Image Processing, 1981, 15(1):1054–1065.
    82余杨,崔一平.基于取阈分解的形态学相关灰度图象识别算法改进研究[J].空间光通信,2004,25(5):65–68.
    83孟瑜,赵忠明,柳星春等.基于最大类间方差准则的变化区域提取[J].光电工程,2008,35(12):63–68.
    84孙志红,彭志涛,刘华等.高功率激光近场空域计算方法[J].中国激光, 2008,35(4):544–549.
    85王永波,陈继荣.二维Otsu阈值分割算法的改进及应用[J].计算机仿真, 2008,25(4):263–266.
    86田雨波.混合神经网络技术[M].第一版.,北京:科学出版社, 2009:298–299.
    87韩琦琦,马晶,谭立英等.卫星光通信中恒星背景噪声分析及抑制方法研究[J].光学技术,2005,31(3):330–334.
    88 Y. Ezra, U.Mahlab, M. et al. Application of All-optical Signal Processing in ModernOptical Communications[J]. ICTON2007,IEEE, 2007, Tu.B4.4:328–332.
    89 L.Pavel. Control Design for Trasient Power and Spectral Control in Optical Com-muncation Networks[J]. IEEE, 2003:415–423.
    90 A. Prokes, O. Wilfert. Analysis and Comparison of Various Free-space OpticalReceiver Confiurations[J]. Proc. of SPIE, 2006, 6399:1–10.
    91郭文强.数字图像处理[M].西安:西安电子科技大学出版社, 2009:164–165.
    92徐杰.数字图像处理[M].武汉:华中科技大学出版社, 2009:104–105.
    93 J. Canny. A Computational Approach to Edge Detection[J]. IEEE Transactions onPattern Analysis and Machine Intelligence, 1986, 8(6):679–698.
    94徐丽娜.神经网络控制[M].第二版.,北京:电子工业出版社, 2003:225–226.
    95万秋华,孙莹, .等.双读数系统的航天级绝对式光电编码器设计[J].光学精密工程,2009,17(1):52–57.
    96柳青峰.卫星光通信中光束指向闭环控制技术研究[D].哈尔滨:哈尔滨工业大学,2007:9–13.
    97范伟,余晓芬.压电陶瓷驱动器蠕变特性的研究[J].仪器仪表学报, 2006,27(11):1383–1386.
    98陈伯时.电力拖动自动控制系统[M].第二版.,北京:机械工业出版社,2004:255–257.
    99邵兵.激光星间通信终端精瞄微定位系统关键技术的研究[D].哈尔滨:哈尔滨工业大学,2006:30–44.
    100王岩,杨奇峰,郑燕红等.空间光通信系统可靠性设计与实现[J].微电子学与计算机,2010,27(9).
    101王广雄,张静,朱井泉.倒立摆的输出反馈控制:脆弱性和鲁棒性分析[J].电机与控制学报,2002,6(3):221–223.
    102 L.H.Keel, S.P.Bhattacharyya. Robust,Fragile,or Optimal[J]. IEEE Trans. on Auto-matic Control, 1997, 42(8):1098–1105.
    103 J.Paattilammi, P.M.Makila. Fragility and Robustness:a Case Study on Paper Ma-chine Headbox Control[J]. IEEE Control Systems Magazine, 2000:13–22.
    104 J.F.Whidborne, R. S.H.Istepanian, J. Wu. Reduction of Controller Fragility bySensitivity Minimization[J]. IEEE Transaction on Automatic Control, 2001,46(2):320–325.
    105 T. Norlander, P. M.Makila. Defragilization in Optimal Design and its Applicationto Fixed Structure Lq Controller Design[J]. IEEE Transaction on Systems Technol-ogy, 2001, 9(4):590–598.
    106刘金琨.先进PID控制MATLAB仿真[M].第一版.,北京:电子工业出版社,2004:378–379.
    107 S. J. C. Dyne, D. E. L. Tunbridge, P. P. Collins. The Vibration Environment on aSatellite in Orbit[J]. IEE Colloquium High Accuracy Platform Control in Space,1993:1–12.
    108 S. Arnon, S. R. Rotman, N. S. Kopeika. Bandwidth Maximization for SatelliteLaser Communication[J]. IEEE Trans. on Aerospace and Electronic Systems, 1999,35(2):675–681.
    109罗彤,李贤,胡渝.星间光通信中振动抑制的研究[J].宇航学报, 2002,23(3):77–80.
    110陈纯毅,杨华民,佟首峰等.空间光通信卫星平台振动实时模拟[J].系统仿真学报,2007,19(16):3834–3837.
    111 D. Giggenbach, A. Schex, B. Wandernoth. Prototype of a Coherent Tracking andDetection Receiver with Wide Band Vibration Compensation for Free-space LaserCommunications[J]. Free-Space Laser Communcation Technologies VIII, 1996,2699(PP.186):6/13–6/6.
    112 S. Lee, J. W.Alecander, M. Jeganathan. Pointing and Tracking SubsystemDesign for Optical Communcations Link between the International Space Sta-tion and Ground[J]. Free-Space Laser Communcation Technologies XII, 2000,3932(PP.2000):8/3–8/5.
    113 K. M. Zhou, P. P.Khargonekar, J. S. et al. Robust Stability and Performance of Un-certain Systems in State Space[C]//Proceedings of the 31st Conference on Decisinand Control. Tucson: IEEE, 1992:662–667.
    114俞立.鲁棒控制―线性矩阵不等式处理方法[M].北京:清华大学出版社,2002:75–77.
    115王广雄,张静.控制理论中的频率定理:Kalman-Yakubovich引理[J].电机与控制学报,2002,6(4):301–303.
    116 X. Li, C. E. Souza. Delay-dependent Robust Stability and Stabilization of Uncer-tain Linear Delay Systems:a Linear Matrix Inequality Approach[J]. IEEE Trans.onAutomatic Control, 1997, 42(8):1144–1148.
    117贾英民.鲁棒H∞控制[M].北京:科学出版社, 2007:198–200.
    118 Y. S. Moon, P. Park, W. H. K. et al. Delay-dependent Robust Stabilization of Uncer-tain State-delayed Systems[J]. International Journal of Control, 2001, 74(14):1447–1455.
    119 M.Vidyasagar. Nonlinear Systems Analysis[M]. 2nd ed., New Jersey: PrenticeHall, 1993:22–27.
    120袁宇浩,张庆灵,陈兵.基于矩阵测度的非线性广义时滞系统鲁棒模糊控制[J].控制与决策,2007,22(2):174–178.
    121邹洪波.切换线性系统稳定性若干问题研究[D].杭州:浙江大学, 2007:35–43.
    122宗广灯,武玉强,徐胜元.切换线性时滞系统的稳定性判据[J].控制理论与应用,2008,25(5):951–955.
    123 H. K.Khalil. Nonlinear Systems[M]. 3nd ed., New Jersey: Prentice Hall, 2002:322–323.
    124 J. Zhang, C. R.Knospe, P. Tsiotras. Toward Less Conservative Stability Analysisof Time-delay Systems[C]//Proceeding of the 38th Conference on Decision andControl. Arizona,USA: IEEE, 1999:2017–2022.
    125 L. E. Ghaoui, F. Oustry, M. AitRami. A Cone Complementarity Linearization Al-gorithm for Static Output-feedback and Related Problems[J]. IEEE Transactionson Automatic Control, 1997, 42(8):1171–1175.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700