用户名: 密码: 验证码:
发光纳米晶NaYF_4:Ln(Yb,Er,Tm,Eu)的合成和聚丙烯酸(PAA)修饰研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
稀土纳米材料,综合了稀土材料的光学特性和纳米材料的小尺寸效应,在生物标记领域有广阔的应用前景。六方晶型NaYF_4为基质,稀土共掺杂的荧光材料是发光效率最高的荧光材料之一。但NaYF_4本身水溶性不高,而合成过程中使用的表面活性剂等物质更使其难溶于极性溶剂,阻碍了其生物应用,所以对NaYF_4进行表面修饰十分重要。在本文中,首先低温油相合成了NaYF_4基质材料并进行稀土掺杂,然后选用聚丙烯酸(PAA)对其进行表面修饰,制备NaYF_4:Ln/PAA复合粒子。此外,为消除有机配体带来的荧光猝灭,合成了综合性能更佳的NaYF_4:Ln/NaYF_4/PAA纳米复合材料。本课题按照如下几个方面展开:
     首先,采用反胶束法在常温下制备了几乎纯六方晶型的基质材料NaYF_4纳米粒子,在此基础上掺杂稀土离子,制备了上转换发光的NaYF_4:Yb,Er(Tm)和下转换发光的NaYF_4:Eu。对稀土发光材料用X射线衍射(X-ray diffraction analysis,XRD),透射电子显微镜(transmissionelectron microscopy,TEM),傅里叶变换红外光谱(fourier transformspectroscopy,FTIR)和荧光光度计(fluorescence spectroscopy)进行表征。结果表明:NaYF_4基质材料是粒径在8 nm左右六方晶形纳米晶,稀土掺杂后荧光性能良好,但是纳米粒子外部被表面活性剂油酸钠所包裹,有进一步表面修饰的必要。
     其次,采用三种不同的方法进行表面修饰研究:①用配位交换法对NaYF_4:Ln进行表面修饰,该方法反应条件温和,过程简单,合成的NaYF_4:Ln/PAA复合粒子直径小,平均直径10 nm,但复合粒子的分散性欠佳,而且大幅降低材料的荧光性能;②用微乳液法对NaYF_4:Ln进行表面修饰,合成的NaYF_4:Ln/PAA复合粒子的分散性较好,平均直径15 nm,对上转换发光性能影响不大,但是降低下转换发光性能,反应过程复杂,能耗大;③用原位聚合法对NaYF_4:Ln进行表面修饰,形成了分散性良好的NaYF_4:Ln/PAA复合纳米微球,荧光性能佳,但是纳米粒子直径较大,平均100 nm左右,最小也有50 nm。综合来看,经过原位聚合法的到的复合粒子除了粒径较大外,综合性能最佳,最接近生物应用的要求。
     最后,为了减少聚合物带来的荧光猝灭,在表面修饰前,先用反胶束法合成NaYF_4:Ln/NaYF_4核壳粒子,NaYF_4壳消除了内部发光核NaYF_4:Ln的表面缺陷,使晶型更加完整。然后通过配位交换法来制备NaYF_4:Ln/NaYF_4/PAA纳米复合材料。荧光测试结果表明,NaYF_4:Ln/NaYF_4/PAA的荧光强度比NaYF_4:Ln/PAA明显增强。此外,重点探究了稀土掺杂量对复合材料荧光性能的影响。在上转换材料NaYF_4:Yb,Er(Tm)/NaYF_4/PAA中,改变敏化剂Yb~(3+)和激活剂Er~(3+)(Tm~(3+))的配合掺杂比,能够改变发光的颜色。在下转换材料中,Eu~(3+)直接被激发,通过改变Eu~(3+)浓度,找到荧光强度最强的掺杂量。
Rare-earth nano-materials can be applied in biological labeling field due to their distinguished optical property from rare-earth elements and small size effect from their nano-scale. As is known to all, lanthanide(Ln) co-doped hexagonal sodium yttrium fluoride (NaYF_4:Ln) is one of the most efficient fluorescent materials. However, NaYF_4 itself is poorly water-soluble, and the frequently used surfactants during the synthetic process make it more difficult to dissolve in polar solvents, which is unfavourable for the biological application. Therefore, it is necessary to carry out the surface modification of NaYF_4. In this paper, the co-doped NaYF_4 nanoparticles were produced initially and then modified by polyacrylic acid (PAA) to improve surface properties. Additionally, due to the significant role of the outside NaYF_4 layer, the nanocomposites NaYF_4:Ln/NaYF_4/PAA with better comprehensive performance were also synthesized to eliminate the fluorescence quenching effect mainly from organic ligands. The details are showed in the following parts.
     First, well-dispersed hexagonal NaYF_4 fluorescent matrix nanocrystals were synthesized by reversed micelle method, and then doped with lanthanide elements. NaYF_4 nanocrystals doped with Yb, Er (Tm) are up-converting phospors while doped with Eu are down-converting. X-ray diffraction (XRD) analysis, transmission electron microscopy (TEM), fourier transform spectroscopy (FTIR), and fluorescence spectroscopy were used to characterize the luminescent nanocrystals. The results indicated that NaYF_4 nanoparticles were hexaganol crystals with an average size of 8 nm. After doping with lanthanide elements, the materials performed good fluorescent property. However, the nanoparticles were proved to be capped with sodium oleate and need to be modified.
     Next part is relative to the study of surface modification. Three modifying methods were used:①Modifying NaYF_4:Ln by ligand exchange is a mild and simple reaction method. The synthesized NaYF_4:Ln /PAA composites were small, with an average size of 10 nm. But the dispersion and fluorescent property of the composites were in poor performance;②Then the NaYF_4:Ln nanoparticles were modified by microemulsion method. The synthesized NaYF_4:Ln/PAA composites with an average size of 15 nm were well-dispersed in aqueous such as water and alcohol. The surface modification almost had no influence on up-converting property but greatly reduced the down-converting luminescence. The reaction process is complex and high-energy-consumed;③In-situ polymerization is the third modification method. The products were well-dispersed NaYF_4:Ln/PAA nanospheres with an excellent fluorescence property. But these nanospheres were big, and the minimum was also about 50 nm. In a word, except the shortcoming of size, the composites synthesized by in-situ polymerization performed the best comprehensive property and were closest to the requirement of biological application among all the three methods.
     To reduce the fluorescence quenching effect caused by polymer, NaYF_4:Ln/NaYF_4 core-shell particles were finally synthesized through the reverse micelle method. NaYF_4 shell eliminated the surface defects of the internal light-emitting nuclear NaYF_4:Ln, thus perfecting its nanocrystal. Then NaYF_4:Ln/NaYF_4/PAA nanocomposites were produced by ligand exchange method. Fluorescence test results proved that the fluorescence intensity of NaYF_4:Ln/NaYF_4/PAA was higher than that of NaYF_4:Ln/PAA. In addition, the influence of rare-earth doping ratio on fluorescense property was explored in detail. For up-converting property, the change of the doping ratio between Yb~(3+) sensitizer and Er~(3+) (Tm~(3+)) activator altered the color of emission light. For down-converting property, Eu~(3+) was directly stimulated. The strongest fluorescence was found by regulating the concentration of Eu~(3+)
引文
[1]高界铭,张喜燕,周红平.稀土化合物纳米粉的研究进展.材料导报,2002,16(11):39-41
    [2]刘行仁.我国稀土发光材料科学技术发展回顾与展望.世界科技研究与发展,2003,25(1):79-83
    [3]A.K.Levine,F.C.Pallila.A new highly efficient red-emitting cathodoluminescent phosphor (YVO_4:Eu) for color television.Appl.Phys.Letters.,1964,5:118-120
    [4]G.Blasse,B.C.Grabmaier.Luminescent materials.Spring-Verlag Berlin Heidelberg,1994
    [5]江祖成,蔡汝秀,张华山.稀土元素分析化学.北京,科学出版社,2000,1-2
    [6]F.C.Pallila,A.K.Levine,YVO_4:Eu:a highly efficient red-emitting phosphor for high pressure mercury lamps,Appl.Optics.,1966,5:1467-1468
    [7]郝志然.稀土在无机晶体中的发光.发光与显示,1976,4:8-29
    [8]朱邦芬.黄昆对物理学的贡献.发光学报,2003,24(1):1-7
    [9]孙家跃,杜海燕,胡文祥.固体发光材料.北京,化学工业出版社,2003,155
    [10]G.Blasse.Luminescence of inorganic solids:From isolated centers to concentrated systems.Prog.Solid.State.Chem.,1988,18:79-171
    [11]P.A.M.Berdowski,G.Blasse.Luminescence and energy transfer migration in a two-dimensional system:NaEuTiO_4.J.Lumin.,1984,29:24 3-260
    [12]F.W.Tian,G.Fouassier,P.Hagenmuller.Influence of energy migration on the luminescence of Li_6Eu(BO_3)_3,a material with predominant one-dimensional interactions.J.Phys.Chem.Sol.,1987,48(3):245-248
    [13]M.Buijs,J.I.Vree,G.Blasse.Energy migration in one-dimensional Li_6Eu(BO_3)_3,Chem.Phys.Let.,1987,137(4):381-385
    [14]F.Kellendonk,G.Blasse.Luminescence and energy transfer in EuAl_3B_4O_(12).J.Chem.Phys.,1981,75(2):561-571
    [15]C.C.Toradi,C.Page,L.H.Brixner.Structure and luminescence of some CsLnW_2O_8.J.Solid State Chem.,1987,69(1):171-178
    [16]M.Buijs,A.Meijerink,G.Glasse.Energy transfer between Eu~(3+) ions in a lattice with two different crystallographic sites:Y_2O_3:Eu~(3+),Gd_2O_3:Eu~(3+) and Eu_2O_3.J.Lumin.,1987,37:9-20
    [17]M.Buijs,G.Blasse,L.H.Brixner.Nonresonant energy transfer in a system with two different rare-earth sites:β'-Gd_2(MoO_4)_3:Eu~(3+) and β'-Eu_2(MoO_4)_3.Phys.Rev.B,1986,34(12):8815-8821
    [18]J.P.M.Vanvliet,van der Voort D,G.Blasse.Luminescence and energy migration in Eu~(3+)-containing scheelites with diferent anions.J.Lumin.,1989,42:305-316
    [19]倪嘉绩,洪广言.稀土新材料及新流程进展.北京,科学出版社,1998,178-184
    [20]苏勉曾.化工百科全书,第四卷.北京,化学工业出版社,1993,1-39
    [21]M.Tanaka,Y.Nishisu,M.Kobaysshi.Optical characterization of spherical fine particles of glassy Eu~(3+) doped yttrium basic carbonates.J.Non-crystal.Solids.,2003,318:174-185
    [22]李强,高镰,严东生.稀土化合物纳米荧光材料研究的新进展.无机材料学报,2001,16(1):17-22
    [23]徐东勇,臧竞存.上转换激光和上转换发光材料的研究进展.人工晶体学报,2001,30(2):35-40
    [24]F.Heine,E.Heumann,T.Danger.Green Up-conversion Continuous Wave Er~(3+):LiYF_4 Laser at Room Temperature.Appl Phys Lett.,1994,65(4):383-386
    [25]D.N.Patel,R.B.Reddy,S.K.Nash-Stevenson.Diodepumped Violet Energy Up-conversion in BaF_2:Er~(3+).Appl Opt.,1998,37(33):7805-7812
    [26]G.S.Yi,G.M.Chow.Water-Soluble NaYF_4:Yb,Er(Tm)/NaYF_4/Polymer Core/ Shell/Shell
    Nanoparticles with Significant Enhancement of Upconversion Fluorescence.Chem.Mater.,2007,19:341-343
    [27]H.Fujiwara,K.Sasaki.Up-conversion Lasing of a Thulium-ion-doped Fluorozirconate Class Microsphere.J Appl Phys.,1999,85(5):2385
    [28]S.G.Grubb,K.Bennett,R.S.WmCannon.CW room-temperature blue Up-conversion Fiber Laser.Electronics Lett.,1992,28:1243
    [29]陈小波,李美仙.966nm半导体激光激发下ErYb:ZBLAN玻璃的上转换特征饱利现象.光谱学与光谱分析,2001,21(3):271
    [30]袁放成,阳效良,刘政威.氟氧化物玻璃中稀土ErYb与HoYb能量上转换特性研究.光谱学与光谱分析,2001,21(6):755
    [3l]曹玉琳.红外上转换材料住防伪技术中的应用.激光与红外,200l,31(6):89-93
    [32]陈述春,戴风妹.电子俘获材料的光!学性质及光存储机制研究.光学学报,1995,6:749
    [33]W.M.A.Smit,G.Biasse,Luminescence and energy migration in the garent Gd_3Li_3Te_2O_(12) doped with several rare earths and uranium.J.Solid.State.Chem.,1986,63(2):308-315
    [34]G.Blasge,H.S.Kiliaan,A.J.de Vries.Study of the energy transfer process in sensitized gadolinium phosphors.J.Less-Common Met.,1986,126:139-146
    [35]A.J.De Vries,B.P.Minks,G.Blasse.Evaluation of the energy migration in GdAl_3lB_4O_(12).J.Lumin.,1988,39(3):153-160
    [36]张林,张俊英,张中太.“量子切割”一种实现高效下转换的新途径.液晶与显示,2003,18(1):21-25
    [37]魏亚光,施朝淑,戚泽明.Gd_2O_3(Ce~(3+),Eu~(3+))微品中稀土离子间的级联能量传递,发光学报,2001,22(3):243-247
    [38]G.Wakefield,H.Keron,P.J.Dobson.Synthesis and properties of sub-50 nm europium oxide nanoparticles.J.Coloid Interface Sci.,1999,215:179-182
    [39]张思远.晶体中f~6组态的荧光和点对称性.发光与显示,1983,3:31-39
    [40]李建宇.稀土发光材料及其应用,第一版.北京二化!学工业出版社,2003,14-16
    [41]徐东勇,减竞存.上转换激光和上转换发光材料的研究进展.人工晶体学报,2001,30(2):203-210.
    [42]杨建虎,戴世勋,姜中宏.稀土离子的上转换发光及研究进展.物理学进展,2003,23(3):284-298
    [43]F.Heine,E.Heumann,T.Danger.Green upconversion continuous wave Er~(3+):LiYF_4 laser at room temperature.Appl.Phys.Lett.,1994,65:383-384
    [44]谭浩,宋峰,苏静.Er~(3+),Em~(3+)共掺的NaY(WO_4)_2晶体的光谱分析和上转换发光.物理学报,2004,53(2):631-635
    [45]陈晓波,刘凯,庄健.在Er,Yb:Y_2O_3的上转换发光研究.物理学报,2002,51(3):690-695
    [46]J.Silver,M.T.Martinez-Rubio,T.G.Ireland.The Effect of particle morphology and crystallite size on the upconversion luminescence properties of erbium and yterbium co-doped yttrium oxide phosphors.J.Phys.Chem.B,2001,105:948-953
    [47]S.Navaladian,B.Viswanathan,R.P.Viswanath,T.K.Varadarajan.Thermal decomposition as route for silver nanoparticles.Nanoscale Res Lett.,2007,2:44-48
    [48]R.Seoudia,S.Abd El Mongyb,A.A.Shabaka.Effect of polyvinyl alcohol matrices on the structural and spectroscopic studies of CdSe nanoparticles.Physica.B,2008,403:1781-1786
    [49]M.T.Fernandez-Argluelles,A.Yakovlev,Synthesis and Characterization of Polymer-Coated Quantum Dots with Integrated Acceptor Dyes as FRET-Based Nanoprobes.Nanoletter,2007, 7(9):2613-2617
    [50]T.Zhang,J.Ge,Y.Hu,Y.Yin.A Geueral Approach for Transferring Hydrophobic Nanocrystals into Water.Nanoletter,2007,7(10):3203-3207
    [51]V.Tsyalkovsky.Fluorescent Reactive Core-Shell Composite Nanoparticles with A High Surface Concentration of Epoxy Functionalities.Chem.Mater.,2008,20:317-325.
    [52]L.Chen,J.Zhu,Q.Li,S.Chen,Y.Wang.Controllable synthesis of functionalized CdS nanocrystals and CdS/PMMA nanocomposite hybrids.European Polymer Journal,2007,43:4593-4601
    [53]C.Luccardini.Size,Charge,and Interactions with Giant Lipid Vesicles of Quantum Dots Coated with an Amphiphilic Macromolecule.Langmuir,2006,22:2304-2310
    [54]R.Guo,L.Zhang,Z.Zhu,X.Jiang.Direct Facile Approach to the Fabrication of Chitosan-Gold Hybrid Nanospheres.Langmuir,2008,24(7):3459-3464
    [55]K.K.Jain.Post-genolnic applications of lab-on-a-chip and microarrays.TRENDS in Biotechnology,2002,20(5):1754-1761
    [56]A.E Grow,L.Wood.New biochip technology for label-free detection of pathogens and their toxins.Journal of Microbiological Methods,2003,53:221
    [57]F.Rijke,H.Zijhnans,S.Li.Upconverting Phosphor Reporters for Nucleic Acid Microarrays.Nature biotechnology,2001,19:273-276
    [58]D.A.Zarling.Up-converting reporters for biological and other assays using laser excitation techniques.US,1997,5:674
    [59]H.Zijlmans.Detection of cell and tissue surface antigens using up-converting phosphors:a new reporter technology.Anal Biochem,1999,267:30
    [60]T.Vo-Dinh.Development of a DNA biochip:principle and applications.Sensors and Actuators B,1998,51:52
    [6l]马立人,蒋中华.生物芯片.北京,化学工业出版社,2000
    [62]蒋中华,张津辉,等.生物分子固定化技术及应用.北京,化学工业出版社,1998
    [63]R.Tantra,J.Cooper.Imaging of protein arrays and gradients using soft lithography and biochip technology.Sensors and Actuators B,2002,82:233
    [64]T.Vo-Dinh,G.Griffin.Multi-functional biochip for medical diagnostics and pathogen detection.Sensors and Actuators B,2003,90:104
    [65]S.Kato,G.Lindergard.Utility of the Cryptosporidium oocyst wall protein(COWP) gene in a nested PCR approach for detection infection in cattle.Veterinary Parasitoloty,2003,111:153-159
    [66]G.Patra,P.Sylvester.Isolation of a specific chromosomic DNA sequence of Bacillus anthracis and its possible use in diagnosis.FEMS Immunol Med Microbiol,1996,15:223
    [67]T.Vo-Dinh.Development of a DNA biochip:principle and applications.Sensors and Actuators B,1998,51:52
    [68]D.S.Mehta,Lee C Y.Multipoint parallel excitation and CCD-based imaging system for high-throughput fluorescence detection of biochip micro-arrays.Optics Communications,2001,190:59
    [69]F.J.Steemers,J.A.Ferguson,D.R.Walt,et al.Screening unlabeled DNA targets with randomly ordered fiber-optic gene arrays.Nature Biotechnol,2000,18:91-94
    [70]D.R.Walt,et al.Bead-based fiber-optic arrays.Science,2000,287:451
    [71]农光舜等.上转换荧光纳米探针的合成及用于生物分析.广西师范大学学报(自然科学版)2003,10(4):250-251.
    [72]C.Li et al.Highly Uniform and Monodisperse d-NaYF4:Ln~(3+)(Ln) Eu,Tb,Yb/Er,and Yb/Tm)Hexagonal Microprism Crystals:Hydrothermal Synthesis and Luminescent Properties.Inorganic Chemistry,2007,16(46):6329-6335
    [73]L.Wang,Y.Li.Green upconversion nanocrystals for DNA detection Chem.Commun.,2006,2557-2559
    [74]D.K.Chatterjeea,A.J.Rufaihaha,Y.Zhang.Upconversion fluorescence imaging of cells and small animals using lanthanide doped nanocrystals.Biomaterials,2007,10:51-53
    [75]L.Wang,R.Yan.Fluorescence Resonant Energy Transfer Biosensor Based on Upconversion-LuminescentNanoparticles.Angew.Chem.Int.Ed.,2005,44:6054-6057
    [76]J.W.Stouwdam,F.C.J.Veggel.Near-infrared Emission of Redispersible Er~(3+),Nd~(3+),and Ho~(3+)Doped LaF_3 Nanoparticles.Nano letters,2002,2(7):733-737
    [77]X.Wang,J.Zhuang,Q.Peng.Hydrothermal Synthesis of Rare-Earth Fluoride Nanocrystals.Inorg Chem.,2006,45(17):6661-6660
    [78]Z.L.Wang,Z.W.Quan.A facile synethsis and photoluminescent properties of redispersible CeF_3,CeF_3:Tb~(3+),and CeF_3:Tb~(3+)/LaF_3(Core/Shell) nanoparticles.Chem.Mater.,2006,18(8):2030-2037
    [79]S.Q.Qiu,J.X.Dong,G.X.Chen.Synthesis of CeF_3 nanoparticles from water-in-oil microemulsions Powder Technol.2000,113(1):9-13
    [80]H.Zhang,H.F.Li,D.Q.Li.Synthesis and characterization of ultrafme CeF_3,nanoparticles modified by catanionic surfactant via a reverse micelles route.J.Colloid Interface Sci.,2006,302(2):509-515
    [81]B.Zhang,X.C.Ye,W.Dai.Biomolecule-Assisted Synthesis and Electrochemical Hydrogen Storage of Porous Spongelike Ni_3S_2 Nanostructures Grown Directly on Nickel Foils Chem.Eur J.,2006,12(8):2337-2342
    [82]L.Ma,W.X.Chen,Z.D.Xu.Complexing reagent-assisted microwave synthesis of uniform and monodisperse disk-like CeF_3 particles.Mater.Lett.,2008,62:17-18
    [83]S.Eiden-Assmann,G.Maret.CeF_3 nanoparticles:synthesis and characterization.Mater.Res.Bull.,2004,39(1):21-24
    [84]G.J.H.De,W.P.Qin,J.S.Zhang.Bright-green Upeonversion Emission of Hexagonal LaF_3:Yb,Er Nanocrystals.Chem.Lett.,2000,34(7):914-910
    [85]Z.L.Xiu,Z.S.Yang,M.K.Lu.Sythesis,structural and luminescence properties of Dy~(3+)-doped YPO_4 nanoerystals.Optical Materials,2006,29(4):431-434
    [86]L.Y.Wang;Y.D.Li.Controlled Synthesis and Luminescence of Lanthanide Doped NaYF_4Nanoerystals.Chem.Mater,.2007,19:727-734
    [87]G.Wang,W.Qin,J.Zhang,L.Wang.Controlled synthesis and luminescence properties from cubic to hexagonal NaYF_4:Ln~(3+)(Ln=Eu and Yb/Tm) microerystals Journal of Alloys and Compounds,2009,475:452-455
    [88]W.William,E.Chang,R.Drezek,V.L.Colvin.Water-soluble quantum dots for biomedical applications.Biochemical and Biophysical Research Communications,2006,348:781-786
    [89]K.Vermo"hlen,H.Lewandowski,H.D Narres,E.Koglin.Adsorption of polyacrylie acid on aluminium oxide:DRIFT spectroscopy and ab initio calculations Colloids and Surfaces A:Physieochem.Eng.Aspects.,2000,170:181-189
    [90]S.S.Wei,Y.Zhang,J.R Xu.The dynamic rheology behaviors of reactive polyacrylie acid/nano-Fe_3O_4 ethanol suspension.Colloids and Surfaces A:Physicochem.Eng.Aspects.,2007,296:51-56
    [91]P.Ghosh,A.Patra.Influence of Surface Coating on Physical Properties of TiO_2/Eu~(3+) Nanocrystals.J.Phys.Chem.C,.2007,111:7004-7010
    [92]H.Peng,H.W.Song,B.J.Chen,S.Z.Lu,S.H.Huang.Spectral Difference between Nanocrystalline and Bulk Y_2O_3:Eu~(3+).Chem.Phys.Lett,.2003,370:485-489
    [93]C.H.Yan,L.D.Sun,C.S.Liao,Y.X.Zhang,Y.Q.Liu,S.H.Huang.Eu~(3+) ion as Fluorescent Probe for Detecting the Surface Effect in Nanocrystals. Appl. Phys.Lett., 2003, 82(20):3511-3513
    
    [94] G. Wakefield, H. A. Keron, P. J. Dobson, J. L. Hutchison. Synthesis and Properties of Sub-50 nm Europium Oxide Nanoparticles. J. Colloid. Interface. Sci.,1999, 215:179-182
    
    [95] D. K. Williams, H. Yuan, B. M. Tissue. Size Dependence of Luminescence Spectra and Dynamics of Eu~(3+):Y_2O_3 Nanocrystals. J. Lumin., 1999, 83:297-300
    
    [96] K. Kompe, H. Borchert, J. Storz, A. Lobo, S. Adam, T. Moller, M. Haase. Green-Emitting CePO_4:Tb/LaPO_4 Core-Shell Nanoparticles with 70% Photo-luminescence Quantum Yield. Angew. Chem. Int. Ed., 2003, 42:5513-5516
    
    [97] J. W. Stouwdam, F. C. J. M. van Veggel. Improvement in the Luminescence Properties and Processability of LaF_3/Ln and LaPO_4/Ln Nanoparticles by Surface Modification. Langmuir, 2004, 20:11763-11771
    
    [98] G. X. Liu, G. Y. Hong, X. T. Dong, J. X. Wang. Silica-Coated Y_2O_3:Eu Nanoparticles and Their Luminescence Properties. J.Lumin., 2007, 126:702-706
    
    [99] M. M. Lezhnina, T. Justel, H. Katker, D. U. Wiecher, U. H. Kynast. Efficient Luminescence from Rare-Earth Fluoride Nanoparticles with Optically Functional Shells. Adv.Funct.Mater., 2006, 16:935-942
    
    [100] X. Chen, W. J. Wang. Microwave hydrothermal synthesis and upconversion properties of NaYF_4:Yb~(3+), Tm~(3+)with microtube morphology Mater. Lett., 2009, 63,1023-1026
    
    [101] G. Wang, W. Qin, J. Zhang. Controlled synthesis and luminescence properties from cubic to hexagonal NaYF_4:Ln~(3+) (Ln = Eu and Yb/Tm) microcrystals. Journal of Alloys and Compounds, 2009, 475:452-455

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700