用户名: 密码: 验证码:
硅基ZnO系薄膜及其发光器件
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
ZnO具有3.37 eV的直接宽禁带,在室温下有相当高的激子束缚能(60 meV),是潜在的电致紫外发光器件的半导体材料。当ZnO与CdO形成合金半导体Cd_xZnO_(1-x)O时,禁带宽度可以减小到~1.8 eV,因而可用于制备电致可见发光器件。本文在硅基上制备了基于ZnO缺陷发光的电致发光器件,研究了其发光性能;此外,利用反应磁控溅射法制备了Cd_xZnO_(1-x)O薄膜,研究了其光致发光随热处理条件的变化情况,为制备基于Cd_xZnO_(1-x)O薄膜的电致可见发光器件打下基础。本文得到了如下主要结果;
     以溶胶-凝胶法在重掺硼硅片(p~+-Si)衬底上制备含有ZnO晶粒的Zn_2SiO_4(Zn_2SiO_4:ZnO)薄膜,形成硅基Zn_2SiO_4:ZnO薄膜发光器件。该器件表现出良好的整流特性;在正向偏压下,器件产生与ZnO缺陷相关的电致发光,发光强度随着正向偏压的增大而不断增强,而反向偏压下器件不发光。基于该器件的能带结构,初步解释了上述载流子输运和电致发光的机理。
     利用直流反应磁控溅射生长了高度c轴取向生长的单一六方相Cd_xZnO_(1-x)O薄膜,研究了热处理对薄膜的晶体结构和光致发光的影响。结果表明:(a)经过不同温度(500-800℃)常规热处理,随着热处理温度的升高,Cd_xZnO_(1-x)O薄膜中Cd含量逐渐降低,且由于Cd的挥发而使薄膜出现孔洞,与此同时薄膜分相,而发光峰位由于薄膜中物相的变化而发生相应的变化。(b)经N_2气氛下500-700℃快速热处理(RTA)后的薄膜的光致发光强度显著提高。随着RTA温度的升高,Cd含量较低的薄膜始终保持单一六方相,近带边辐射发光峰位稍有蓝移;Cd含量较高的薄膜中含Cd的ZnO相与含Zn的CdO相共存,其PL谱中出现与这种物相相关的两个近带边辐射发光峰,且随着温度升高发光峰位蓝移。
ZnO possesses a 3.37 eV direct bandgap and a considerably high exciton binding energy of 60 meV at temperature, thus being a promising material for ultraviolet (UV) electroluminescence (EL) devices. When ZnO is alloyed with CdO to be Cd_xZnO_(1-x)O, its bandgap energy can be as low as~1.8 eV. Therefore, Cd_xZnO_(1-x)O alloys are expected to be employed in the visible EL devices. In this thesis, EL devices based on ZnO-containing films have been fabricated on silicon substrates, being addressed with their EL performances. Moreover, Cd_xZnO_(1-x)O films have been prepared by reactive magnetron sputtering. The evolution of their photoluminescence (PL) with the subsequent anneals has been investigated. The primary results in this thesis are listed in the following.
     The Zn_2SiO_4 films containing ZnO grains (Zn_2SiO_4:ZnO films) were prepared on heavily boron-doped silicon (p~+-Si) substrates by sol-gel method, thus forming Si-based Zn_2SiO_4:ZnO film light-emitting devices. Such devices exhibit well-defined rectifying characteristics. Under forward bias, the devices generate EL related to the defects in ZnO and, moreover, the EL intensity increases with the forward bias voltage. While, the devices do not exhibit EL under reverse bias. Based on the energy band structure of the devices, we have tentatively explained the mechanisms of the aforementioned electrical transportation and EL.
     Highly c-axis oriented Cd_xZnO_(1-x)O films have been prepared by reactive magnetron sputtering. Based on the investigation on the effect of heat treatments on the crystallinity and PL of the films, it has been shown that: (a) After the conventional furnace annealing at 500-800℃, the Cd contents in the films are notably decreased. To be worse, quite a few of voids are formed in the films due to the volatilization of Cd. In the meantime, phase segregation occurs in the films and the PL peaks change notably with the evolution of phases in the films. (b) After the rapid thermal annealing (RTA) at 500-700℃in N_2 ambient, the PL intensities of the films increase significantly. With the increase of RTA temperature, for the low-Cd-content films, they are of single hexagonal phase and the near-band-edge (NBE) emission peak is somewhat blue-shifted. While, for the high-Cd-content films, there are two NBE peaks related to Cd-containing ZnO and Zn-containing CdO respectively in their PL spectra. Moreover, the two NBE peaks are blue-shifted with the increase of RTA temperature.
引文
[1] S. J. Pearton, D. P. Norton, K. Ip, Y. W. Heo and T. Steiner, "Recent progress in processing and properties of ZnO", Prog. Mater. Sci., 2005, 50 (3), 293-340.
    [2] U. Ozgur, Y. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Dogan, V. Avrutin, S. J. Cho and H. Morkoc, "A comprehensive review of ZnO materials and devices", J. Appl. Phys., 2005, 98 (4), 041301.
    [3] D. C. Look, "Recent advances in ZnO materials and devices", Mater. Sci. Eng. B, 2001, 80 (1-3), 383-387.
    [4] D. C. Reynolds, D. C. Look, B. Jogai, C. W. Litton, G. Cantwell and W. C. Harsch, "Valence-band ordering in ZnO", Phys. Rev. B., 1999, 60 (4), 2340-2344.
    [5] Y. F. Chen, D. M. Bagnall, H. J. Koh, K. T. Park, K. Hiraga, Z. Q. Zhu and T. Yao, "Plasma assisted molecular beam epitaxy of ZnO on c-plane sapphire: Growth and characterization", J. Appl. Phys., 1998, 84 (7), 3912-3918.
    [6] D. C. Look, D. C. Reynolds, J. R. Sizelove, R. L. Jones, C. W. Litton, G. Cantwell and W. C. Harsch, "Electrical properties of bulk ZnO", Solid State Commun., 1998, 105 (6), 399-401.
    [7] D. C. Look, D. C. Reynolds, C. W. Litton, R. L. Jones, D. B. Eason and G. Cantwell, "Characterization of homoepitaxial p-type ZnO grown by molecular beam epitaxy", Appl. Phys. Lett., 2002, 81 (10), 1830-1832.
    [8] A. Ohtomo and A. Tsukazaki, "Pulsed laser deposition of thin films and superlattices based on ZnO", Semicond. Sci. Technol., 2005,20 (4), S1-S12.
    [9] S. Heinze, A. Krtschil, J. Bl(?)sing, T. Hempel, P. Veit, A. Dadgar, J. Christen and A. Rrost, "Homoepitaxial growth of ZnO by metalorganic vapor phase epitaxy in two-dimensional growth mode",J. Cryst. Growth., 2007,308 (1), 170-175.
    [10] T. Ive, T. Ben-Yaacov, C. G. Van de Walle, U. K. Mishra, S. P. DenBaars and J. S. Speck, "Step-flow growth of ZnO(0001) on GaN(0001) by metalorganic chemical vapor epitaxy",J. Cryst. Growth., 2008, 310 (15), 3407-3412.
    [11] A. Janotti and C. G. Van de Walle, "Fundamentals of zinc oxide as a semiconductor", Rep. Prog. Phys., 2009, 72 (12), 126501-126529.
    [12] A. Mang, K. Reimann and S. R(?)benacke, "Band gaps, crystal-field splitting, spin-orbit coupling, and exciton binding energies in ZnO under hydrostatic pressure", Solid State Commun., 1995, 94 (4), 251-254.
    [13] D. C. Reynolds, D. C. Look and B. Jogai, "Optically pumped ultraviolet lasing from ZnO", Solid State Commun., 1996, 99 (12), 873-875.
    [14] D. M. Bagnall, Y. F. Chen, Z. Zhu, T. Yao, S. Koyama, M. Y. Shen and T. Goto, "Optically pumped lasing of ZnO at room temperature", Appl. Phys. Lett, 1997, 70 (17), 2230-2232.
    [15] H. Cao, Y. G. Zhao, S. T. Ho, E. W. Seelig, Q. H. Wang and R. P. H. Chang, "Random Laser Action in Semiconductor Powder", Phys. Rev. Lett., 1999, 82 (11), 2278-2281.
    [16] M. H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo and P. Yang, "Room-Temperature Ultraviolet Nanowire Nanolasers", Science, 2001, 292 (5523),1897-1899.
    [17] A. Tsukazaki, A. Ohtomo, T. Onuma, M. Ohtani, T. Makino, M. Sumiya, K. Ohtani, S. F. Chichibu, S. Fuke, Y. Segawa, H. Ohno, H. Koinuma and M. Kawasaki, "Repeated temperature modulation epitaxy for p-type doping and light-emitting diode based on ZnO", Nat. Mater., 2005, 4 (1), 42-46.
    [18] Y. R. Ryu, W. J. Kim and H. W. White, "Fabrication of homostructural ZnO p-n junctions", J. Cryst. Growth., 2000,219 (4), 419-422.
    [19] L. J. Mandalapu, Z. Yang, F. X. Xiu, D. T. Zhao and J. L. Liu, "Homojunction photodiodes based on Sb-doped p-type ZnO for ultraviolet detection", Appl Phys. Lett.,2006, 88 (9), 092103-092103.
    [20] S. Chu, M. Olmedo, Z. Yang, J. Kong and J. Liu, "Electrically pumped ultraviolet ZnO diode lasers on Si", Appl. Phys. Lett., 2008,93 (18), 181106-181103.
    [21] A. Kobayashi, O. F. Sankey and J. D. Dow, "Deep Energy-Levels of Defects in the Wurtzite Semiconductors A1N, CdS, CdSe, ZnS, and ZnO", Phys. Rev. B, 1983, 28 (2),946-956.
    [22] A. Kobayashi, O. F. Sankey, S. M. Volz and J. D. Dow, "Semiempirical Tight-Binding Band Structures of Wurtzite Semiconductors - AlN, CdS, CdSe, ZnS, and ZnO", Phys.Rev. B, 1983,28 (2), 935-945.
    [23] C. R. Gorla, N. W Emanetoglu, S. Liang, W. E. Mayo, Y. Lu, M. Wraback and H. Shen,"Structural, optical, and surface acoustic wave properties of epitaxial ZnO films grown on (01-12) sapphire by metalorganic chemical vapor deposition", J. Appl. Phys., 1999, 85 (5),2595-2602.
    [24] B. P. Zhang, N. T. Binh, Y. Segawa, K. Wakatsuki and N. Usami, "Optical properties of ZnO rods formed by metalorganic chemical vapor deposition", Appl. Phys. Lett., 2003, 83(8), 1635-1637.
    [25] M. N. Kamalasanan and S. Chandra, "Sol-gel synthesis of ZnO thin films", Thin Solid Films, 1996,288(1-2), 112-115.
    [26] K. Sakurai, M. Kanehiro, K. Nakahara, T. Tetsuhiro, S. Fujita and S. Fujita, "Effects of oxygen plasma condition on MBE growth of ZnO", J. Cryst. Growth., 2000, 209 (2-3),522-525.
    [27] T. Yamamoto, T. Shiosaki and A. Kawabata, "Characterization of ZnO piezoelectric films prepared by rf planar-magnetron sputtering",J. Appl. Phys., 1980, 51 (6), 3113-3120.
    [28] J. G. E. Gardeniers, Z. M. Rittersma and G. J. Burger, "Preferred orientation and piezoelectricity in sputtered ZnO films", J. Appl. Phys., 1998,83 (12), 7844-7854.
    [29] O. Schmidt, A. Geis, P. Kiesel, C. G. Van de Walle, N. M. Johnson, A. Bakin, A. Waag and G. H. D(?)hler, "Analysis of a conducting channel at the native zinc oxide surface", Superlattices and Microstructures, 2006,39 (1-4), 8-16.
    [30] D. C. Look, "Quantitative analysis of surface donors in ZnO", Surf. Sci., 2007, 601 (23),5315-5319.
    [31] M. C. Larciprete, D. Haertle, A. Belardini, M. Bertolotti, F. Sarto and P. G(?)nter, "Characterization of second and third order optical nonlinearities of ZnO sputtered films", Appl. Phys. B: Lasers and Optics, 2006, 82 (3), 431-437.
    [32] D. I. Florescu, L. G. Mourokh, F. H. Pollak, D. C. Look, G. Cantwell and X. Li, "High spatial resolution thermal conductivity of bulk ZnO (0001)", J. Appl. Phys., 2002, 91 (2),890-892.
    [33] (?). (?)zg(?)r, X. Gu, S. Chevtchenko, J. Spradlin, S. Cho, H. Morkoc, F. Pollak, H. Everitt, B. Nemeth and J. Nause, "Thermal conductivity of bulk ZnO after different thermal treatments", J. Electron. Mater., 2006, 35 (4), 550-555.
    [34] K. Maeda, M. Sato, I. Niikura and T. Fukuda, "Growth of 2 inch ZnO bulk single crystal by the hydrothermal method", Semicond Sci. Technol., 2005, 20 (4), S49-S54.
    [35] E. Ohshima, H. Ogino, I. Niikura, K. Maeda, M. Sato, M. Ito and T. Fukuda, "Growth of the 2-in-size bulk ZnO single crystals by the hydrothermal method", J. Cryst. Growth., 2004, 260 (1-2), 166-170.
    [36] D. C. Reynolds, C. W. Litton, D. C. Look, J. E. Hoelscher, B. Claflin, T. C. Collins, J. Nause and B. Nemeth, "High-quality, melt-grown ZnO single crystals", J. Appl. Phys., 2004, 95 (9), 4802-4805.
    [37] J. Nause and B. Nemeth, "Pressurized melt growth of ZnO boules", Semicond. Sci. Technol., 2005, 20 (4), S45-S48.
    [38] T. Ive, T. Ben-Yaacov, A. Murai, H. Asamizu, C. G. V. d. Walle, U. Mishra, S. P. DenBaars and J. S. Speck, "Metalorganic chemical vapor deposition of ZnO(0001) thin films on GaN(0001) templates and ZnO(0001) substrates", Phys. Status Solidi C, 2008, 5(9), 3091-3094.
    [39] A. Dadgar, N. Oleynik, J. Bl(?)sing, S. Deiter, D. Forster, F. Bertram, A. Diez, M. Seip, A. Greiling, J. Christen and A. Krost, "Heteroepitaxy and nitrogen doping of high-quality ZnO", J. Cryst. Growth., 2004,272 (1-4), 800-804.
    [40] H. Kordi Ardakani, "Electrical conductivity of in situ "hydrogen-reduced" and structural properties of zinc oxide thin films deposited in different ambients by pulsed excimer laser ablation", Thin Solid Films, 1996, 287 (1-2), 280-283.
    [41] F. Quaranta, A. Valentini, F. R. Rizzi and G. Casamassima, "Dual-ion-beam sputter deposition of ZnO films", J. Appl. Phys., 1993, 74 (1), 244-248.
    [42] F. Tuomisto, K. Saarinen, D. C. Look and G. C. Farlow, "Introduction and recovery of point defects in electron-irradiated ZnO", Phys. Rev. B, 2005, 72 (11), 085206.
    [43] D. C. Look, J. W. Hemsky and J. R. Sizelove, "Residual Native Shallow Donor in ZnO", Phys. Rev. Let., 1999, 82 (12), 2552-2555.
    [44] I. S. Jeong, J. H. Kim and S. Im, "Ultraviolet-enhanced photodiode employing n-ZnO/p-Si structure",Appl. Phys. Lett., 2003, 83 (14), 2946-2948.
    [45] S. E. Nikitins, Y. A. Nikolaev, I. K. Polushina, V. Y. Rud, Y. V. Rud and E. I. Terukov, "Photoelectric Phenomena in ZnO:Al-p-Si Heterostructures", Semiconductors, 2003, 37(11), 1291-1295.
    [46] Y. I. Alivov, J. E. Van Nostrand, D. C. Look, M. V. Chukichev and B. M. Ataev, "Observation of 430 nm electroluminescence from ZnO/GaN heterojunction light-emitting diodes", Appl. Phys. Lett., 2003, 83 (14), 2943-2945.
    [47] Q. X. Yu, B. Xu, Q. H. Wu, Y. Liao, G Z. Wang, R. C. Fang, H. Y. Lee and C. T. Lee, "Optical properties of ZnO/GaN heterostructure and its near-ultraviolet light-emitting diode", Appl. Phys. Lett., 2003, 83 (23), 4713-4715.
    [48] Y. I. Alivov, E. V. Kalinina, A. E. Cherenkov, D. C. Look, B. M. Ataev, A. K. Omaev, M.V. Chukichev and D. M. Bagnall, "Fabrication and characterization of n-ZnO/p-AlGaN heterojunction light-emitting diodes on 6H-SiC substrates", Appl. Phys. Lett., 2003, 83(23), 4719-4721.
    [49] H. Ohta, K. Kawamura, M. Orita, M. Hirano, N. Sarukura and H. Hosono, "Current injection emission from a transparent p-n junction composed of p-SrCu_2O_2/n-ZnO", Appl.Phys. Lett., 2000, 77 (4), 475-477.
    [50] A. Kudo, H. Yanagi, K. Ueda, H. Hosono, H. Kawazoe and Y. Yano, "Fabrication of transparent p-n heterojunction thin film diodes based entirely on oxide semiconductors",Appl. Phys. Lett., 1999, 75 (18), 2851-2853.
    [51] H. Ohta, M. Hirano, K. Nakahara, H. Maruta, T. Tanabe, M. Kamiya, T. Kamiya and H. Hosono, "Fabrication and photoresponse of a pn-heterojunction diode composed of transparent oxide semiconductors,p-NiO and n-ZnO", Appl. Phys. Lett., 2003, 83 (5),1029-1031.
    [52] V. M. Mirgorodskii, S. I. Radautsan and A. E. Tsurkan, "Study on Fundamental Optical-Absorption in Crystals of (Aginte2)3x-(In2te3)2(1-X) Solid-Solutions", Opt.Spektrosk., 1975,39 (3), 519-524.
    [53] H. Ohta, H. Mizoguchi, M. Hirano, S. Narushima, T. Kamiya and H. Hosono, "Fabrication and characterization of heteroepitaxial p-n junction diode composed of wide-gap oxide semiconductors p-ZnRh_2O_4/n-ZnO", Appl Phys Lett, 2003, 82 (5),823-825.
    [54] D. C. Look and B. Claftin, "P-type doping and devices based on ZnO", Phys. Status Solidi B, 2004, 241 (3), 624-630.
    [55] Y. I. Alivov, U. Ozgur, S. Dogan, D. Johnstone, V. Avrutin, N. Onojima, C. Liu, J. Xie, Q. Fan and H. Morkoc, "Photoresponse of n-ZnO/p-SiC heterojunction diodes grown by plasma-assisted molecular-beam epitaxy", Appl. Phys. Lett., 2005, 86 (24), 241108.
    [56] I. T. Drapak, "Visible Luminescence of a ZnO-Cu_2O Heterojunction", Sov. Phys.Semicond., 1968, 2 (4), 513.
    [57] A. Osinsky, J. W. Dong, M. Z. Kauser, B. Hertog, A. M. Dabiran, P. P. Chow, S. J. Pearton, O. Lopatiuk and L. Chernyak, "MgZnO/AlGaN heterostructure light-emitting diodes", Appl. Phys. Lett., 2004, 85 (19), 4272-4274.
    [58] Y. I. Alivov, U. Ozgur, S. Dogan, C. Liu, Y. Moon, X. Gu, V. Avrutin, Y. Fu and H. Morkoc, "Forward-current electroluminescence from GaN/ZnO double heterostructure diode", Solid State Electron., 2005,49 (10), 1693-1696.
    [59] P. L. Chen, X. Y. Ma and D. R. Yang, "Ultraviolet electroluminescence from ZnO/p-Si heterojunctions", J. Appl. Phys., 2007,101 (5), 053103.
    [60] B. W. Thomas and D. Walsh, "Metal-Insulator-Semiconductor Electroluminescent Diodes in Single-Crystal Zinc Oxide", Electron. Lett., 1973, 9 (16), 362-363.
    [61] T. Minami, M. Tanigawa, Yamanish.M and T. Kawamura, "Observation of Ultraviolet-Luminescence from ZnO Mis Diodes", Jpn. J. Appl. Phys., 1974, 13 (9),1475-1476.
    [62] H. T. Wang, B. S. Kang, J. J. Chen, T. Anderson, S. Jang, F. Ren, H. S. Kim, Y. J. Li, D. P. Norton and S. J. Pearton, "Band-edge electroluminescence from n+-implanted bulk ZnO", Appl. Phys. Lett., 2006, 88 (10), 102107.
    [63] D. K. Hwang, M. S. Oh, J. H. Lim, Y. S. Choi and S. J. Park, "ZnO-based light-emitting metal-insulator-semiconductor diodes", Appl. Phys. Lett., 2007, 91 (12), 121113.
    [64] Y. I. Alivov, D. C. Look, B. M. Ataev, M. V. Chukichev, V. V. Mamedov, V. I. Zinenko, Y. A. Agafonov and A. N. Pustovit, "Fabrication of ZnO-based metal-insulator-semiconductor diodes by ion implantation", Solid State Electron., 2004,48 (12), 2343-2346.
    [65] P. L. Chen, X. Y. Ma and D. R. Yang, "Fairly pure ultraviolet electroluminescence from ZnO-based light-emitting devices", Appl. Phys. Lett, 2006, 89 (11), 111112.
    [66] X. Y. Ma, P. L. Chen, D. S. Li, Y. Y. Zhang and D. R. Yang, "Electrically pumped ZnO film ultraviolet random lasers on silicon substrate", Appl. Phys. Lett., 2007, 91 (25),251109.
    [67] A. Ohtomo, M. Kawasaki, T. Koida, K. Masubuchi, H. Koinuma, Y. Sakurai, Y. Yoshida, T. Yasuda and Y. Segawa, "Mg_xZn_(1-x)O as a Ⅱ-Ⅵ widegap semiconductor alloy", Appl.Phys. Lett., 1998, 72 (19), 2466-2468.
    [68] A. Ohtomo, K. Tamura, M. Kawasaki, T. Makino, Y. Segawa, Z. K. Tang, G. K. L. Wong, Y. Matsumoto and H. Koinuma, "Room-temperature stimulated emission of excitons in ZnO/(Mg, Zn)O superlattices", Appl. Phys. Lett., 2000, 77 (14), 2204-2206.
    [69] Y. Jin, B. Zhang, S. Yang, Y. Wang, J. Chen, H. Zhang, C. Huang, C. Cao, H. Cao and R.P. H. Chang, "Room temperature UV emission of Mg_xZn_(1-x)O films", Solid State Commun., 2001,119(6), 409-413.
    [70] T. Gruber, C. Kirchner, R. Kling, F. Reuss and A. Waag, "ZnMgO epilayers and ZnO-ZnMgO quantum wells for optoelectronic applications in the blue and UV spectral region", Appl. Phys. Lett., 2004,84 (26), 5359-5361.
    [71] T. Gruber, C. Kirchner, R. Kling, F. Reuss, A. Waag, F. Bertram, D. Forster, J. Christen and M. Schreck, "Optical and structural analysis of ZnCdO layers grown by metalorganic vapor-phase epitaxy", Appl. Phys. Lett., 2003, 83 (16), 3290-3292.
    [72] A. Janotti and C. G Van de Walle, "Absolute deformation potentials and band alignment of wurtzite ZnO, MgO, and CdO", Phys. Rev. B, 2007, 75 (12), 121201.
    [73] T. Makino, Y. Segawa, M. Kawasaki, A. Ohtomo, R. Shiroki, K. Tamura, T. Yasuda and H. Koinuma, "Band gap engineering based on Mg_xZn_(1-x)O and Cd_yZn_(1-y)O ternary alloy films",Appl. Phys. Lett., 2001, 78 (9), 1237-1239.
    [74] O. Vigil, L. Vaillant, F. Cruz, G. Santana, A. Morales-Acevedo and G. Contreras-Puente, "Spray pyrolysis deposition of cadmium-zinc oxide thin films", Thin Solid Films, 2000,361, 53-55.
    [75] J. Ishihara, A. Nakamura, S. Shigemori, T. Aoki and J. Temmyo, "Zn_(1-x)Cd_xO systems with visible band gaps", Appl. Phys. Lett., 2006, 89 (9), 091914.
    [76] A. V. Thompson, C. Boutwell, J. W. Mares, W. V. Schoenfeld, A. Osinsky, B. Hertog, J. Q. Xie, S. J. Pearton and D. P. Norton, "Thermal stability of CdZnO/ZnO multi-quantum-wells", Appl. Phys. Lett., 2007, 91 (20), 201921.
    [77] A. Nakamura, T. Ohashi, K. Yamamoto, J. Ishihara, T. Aoki, J. Temmyo and H. Gotoh, "Full-color electroluminescence from ZnO-based heterojunction diodes", Appl. Phys. Lett., 2007, 90 (9), 093512.
    [78] L. Li, Z. Yang, J. Y. Kong and J. L. Liu, "Blue electroluminescence from ZnO based heterojunction diodes with CdZnO active layers", Appl. Phys. Lett., 2009, 95 (23), 232117-232113.
    [79] J. W. Mares, M. Falanga, A. V. Thompson, A. Osinsky, J. Q. Xie, B. Hertog, A. Dabiran, P. P. Chow, S. Karpov and W. V. Schoenfeld, "Hybrid CdZnO/GaN quantum-well light emitting diodes", J. Appl. Phys., 2008,104 (9), 093107.
    [80] Y. I. Alivov, X. Bo, S. Akarca-Biyikli, Q. Fan, J. Xie, N. Biyikli, K. Zhu, D. Johnstone and H. Morkoc, "Effect of annealing on electrical properties of radio-frequency-sputtered ZnO films", J. Electron. Mater., 2006, 35 (4), 520-524.
    [81] D. K. Hwang, M. S. Oh, J. H. Lim and S. J. Park, "ZnO thin films and light-emitting diodes", J. Phys. D Appl. Phys., 2007,40 (22), R387-R412.
    [82] Y. Akanuma, I. Yamakawa, Y. Sakuma, T. Usuki and A. Nakamura, "Scanning tunneling microscopy study of interfacial structure of InAs quantum dots on InP(001) grown by a double-cap method", Appl. Phys. Lett., 2007, 90 (9), 093112.
    [83] P. L. Chen, X. Y. Ma, D. S. Li, Y. Y. Zhang and D. R. Yang, "Bidirectional direct-current electroluminescence from i-Mg_xZn_(1-x)O/n-ZnO/SiO_x double-barrier heterostructures on Si",Appl. Phys. Lett., 2009,94 (6), 061110.
    [84] P. L. Chen, X. Y. Ma, D. S. Li, Y. Y. Zhang and D. R. Yang, "Electric-field-induced random lasing from ZnO and Mg_(0.1)Zn_(0.9)O films optically pumped with an extremely low intensity", Opt. Express, 2009,17 (21), 18513-18517.
    [85] J. Ishihara, M. Inoue, M. Kobayashi, S. Tanaka, S. Yamamoto, H. Iso, S. Tsugane and J. Ffq, "Impact of the revision of a nutrient database on the validity of a self-administered food frequency questionnaire (FFQ)", J. Epidemiol., 2006,16 (3), 107-116.
    [86] Y. R. Ryu, J. A. Lubguban, T. S. Lee, H. W. White, T. S. Jeong, C. J. Youn and B. J. Kim,"Excitonic ultraviolet lasing in ZnO-based light emitting devices", Appl. Phys. Lett., 2007,90(13), 131115.
    [87] Q. Y. Zhang, K. Pita and C. H. Kam, "Sol-gel derived zinc silicate phosphor films for full-color display applications", J. Phys. Chem. Solids, 2003, 64 (2), 333-338.
    [88] K. Akutsu, H. Obana, M. Okihashi, M. Kitagawa, H. Nakazawa, Y. Matsuki, T. Makino, H. Oda and S. Hori, "GC/MS analysis of polybrominated diphenyl ethers in fish collected from the Inland Sea of Seto, Japan", Chemosphere, 2001, 44 (6), 1325-1333.
    [89] K. S. Sohn, B. H. Cho, H. J. Chang and H. D. Park, "Effect of Co-doping on the photoluminescence behavior of Zn_2SiO_4 : Mn phosphors", J. Electrochem. Soc., 1999,146 (6), 2353-2356.
    [90] M. Cich, K. Kim, H. Choi and S. T. Hwang, "Deposition of (Zn,Mn)_2 SiO_4for plasma display panels using charged liquid cluster beam", Appl. Phys. Lett., 1998, 73 (15), 2116-2118.
    [91] H. X. Zhang, C. H. Kam, Y. Zhou, X. Q. Han, S. Buddhudu, Y. L. Lam and C. Y. Chan, "Deposition and photoluminescence of sol-gel derived Tb~(3+): Zn_2SiO_4 films on SiO_2/Si",Thin Solid Films, 2000,370 (1-2), 50-53.
    [92] K. Abe, I. Matsumura, A. Imamaki and M. Hirano, "Removal of inorganic nitrogen sources from water by the algal biofilm of the aerial microalga Trentepohlia aurea", World J. Microb. Biot., 2003,19 (3), 325-328.
    [93] T. Makino, K. Saito, A. Ohtomo, M. Kawasaki, R. T. Senger and K. K. Bajaj, "Monte Carlo simulation of localization dynamics of excitons in ZnO and CdZnO quantum well structures", J. Appl. Phys., 2006, 99 (6), 066108.
    [94] H. S. Kang, J. W. Kim, J. H. Kim, S. Y. Lee, Y. Li, J. S. Lee, J. K. Lee, M. A. Nastasi, S. A. Crooker and Q. X. Jia, "Optical property and Stokes' shift of Zn_(1-x)Cd_xO thin films depending on Cd content", J. Appl. Phys., 2006, 99 (6), 066113.
    [95] X. J. Wang, I. A. Buyanova, W. M. Chen, M. Izadifard, S. Rawal, D. P. Norton, S. J. Pearton, A. Osinsky, J. W. Dong and A. Dabiran, "Band gap properties of Zn_(1-x)Cd_xO alloys grown by molecular-beam epitaxy", Appl. Phys. Lett., 2006,89 (15), 151909.
    [96] S. Sadofev, S. Blumstengel, J. Cui, J. Puls, S. Rogaschewski, P. Schafer and F.Henneberger, "Visible band-gap ZnCdO heterostructures grown by molecular beam epitaxy", Appl. Phys. Lett., 2006,89 (20), 201907.
    [97] I. A. Buyanova, X. J. Wang, G. Pozina, W. M. Chen, W. Lim, D. P. Norton, S. J. Pearton, A. Osinsky, J. W. Dong and B. Hertog, "Effects of hydrogen on the optical properties of ZnCdO/ZnO quantum wells grown by molecular beam epitaxy", Appl. Phys. Lett., 2008,92 (26), 261912.
    [98] J. Zuniga-Perez, V. Munoz-Sanjose, M. Lorenz, G Benndorf, S. Heitsch, D. Spemann and M. Grundmann, "Structural characterization of a-plane Zn_(1-x)Cd_xO (0 ≤ x ≤ 0.085) thin films grown by metal-organic vapor phase epitaxy", J. Appl. Phys., 2006, 99 (2), 023514.
    [99] C. W. Sun, P. Xin, Z. W. Liu and Q. Y. Zhang, "Room-temperature photoluminescence of ZnO/MgO multiple quantum wells on Si (001) substrates", Appl. Phys. Lett., 2006, 88(22), 221914.
    [100] K. Sakurai, T. Takagi, T. Kubo, D. Kajita, T. Tanabe, H. Takasu, S. Fujita and S. Fujita, "Spatial composition fluctuations in blue-luminescent ZnCdO semiconductor films grown by molecular beam epitaxy", J. Cryst. Growth., 2002, 237, 514-517.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700