用户名: 密码: 验证码:
铕掺杂富硅氧化硅薄膜的光电性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
硅基光源是硅基光电子的重要组成部分,也是硅基光电子发展所面临的首要问题之一,但由于晶体硅的间接带隙特性,使得其不适合应用于光学有源器件中。稀土离子,由于具有荧光强度高,单色性好,性能稳定等特性而受到广泛关注。因而硅基稀土发光器件有可能用于硅基光电子所需光源。本文就稀土铕掺杂的富硅氧化硅薄膜的光学和电学性能进行研究,探索其作为硅基光源的途径。
     铕掺杂的富硅氧化硅薄膜是通过电子束蒸发法(EBE)进行制备,铕的掺杂剂量是通过蒸发源中的掺杂剂量进行控制。通过对薄膜制备条件以及后续热处理过程与发光特性(PL)间的关系进行了详细研究,并将薄膜制备成MOS器件,实现其电致发光,并探索了提高电致发光强度的途径,我们得出以下结论:
     第一,通过电子束蒸发法,能够制备得到致密的铕掺杂富硅氧化硅薄膜。通过控制铕掺杂富硅氧化硅薄膜沉积过程中的衬底温度,我们发现随着薄膜沉积时衬底温度的升高,原生薄膜的PL逐渐减弱,而热处理后薄膜的PL强度逐渐增强。
     第二,发现了在薄膜的沉积过程中,Eu的价态发生了Eu~(3+)-Eu~(2+)的转变。Eu在蒸发源中以Eu~(3+)存在,在沉积的原生薄膜中大部分为Eu~(2+)。这是由于沉积到衬底上的SiO通过夺取Eu_2O_3中的O原子,转变成SiO_2,同时Eu自身被还原为Eu~(2+)。
     第三,当热处理温度低于800℃时,铕掺杂富硅氧化硅薄膜PL积分强度随热处理温度的升高而逐渐降低,而当热处理温度高于800℃时,PL积分强度随热处理温度的升高而逐渐增强。样品在1100℃的积分强度几乎为未经热处理样品的11倍,为800℃时的72倍。这种荧光增强是由于薄膜在热处理过程中微结构的变化引起的,并且同时伴随荧光机制的转变。将热处理温度固定为PL强度最强的1100℃,研究了PL强度随热处理时间的变化关系,在时间低于90 min时,PL强度随热处理时间的延长而逐渐增强,当时间再延长时,PL积分强度基本不变。而随后通过荧光寿命测试,我们发现随着热处理温度的升高,荧光寿命在800℃处呈现了一个明显的由ns到us级别的转变过程。分别对应于氧化硅基体缺陷态的发光和Eu~(2+)的4f~65d-4f~7(~8S_(7/2))能级跃迁,并且进一步设计实验验证了高于800℃后的强宽带发光来自于Eu~(2+),随后我们通过TEM,SAED,XRD对薄膜的微观结构进行了表征,发现了随着薄膜热处理温度的升高,EuSiO_3多晶的团簇在薄膜中形成,结晶度不断提高。因此我们认为热处理过程中荧光机制的转变是由薄膜的微结构变化引起。
     第四,我们还将铕掺杂富硅氧化硅薄膜制作成ITO/EuSiO/P-Si/Al MOS器件结构,成功实现了薄膜的电致发光。但是器件注入电流相对较大,我们认为是常规热处理形成的较大EuSiO_3颗粒,注入的电子通过颗粒间进行传导,当遇到缺陷复合中心时,电子空穴对发生辐射复合,而发射可见光。我们针对此结构进行了改进,采用p/p~+衬底取代p型衬底,以使得衬底和电极间形成欧姆接触;采用RTP取代常规热处理,以形成更小更均匀的颗粒团簇;通过在铕硅氧薄膜上添加SiO_2层,实现了增大电场,降低注入电流的目的。相较没有添加SiO_2的电致发光器件,在更低的注入电流和偏压下能够实现Eu~(2+)的4f~65d-4f~7能级跃迁而发出的更强电致发光。
Light emitter is one of most important issues silicon-based photonics now facing. Because of the indirect band gap of silicon, making it be not suitable for optical active devices. However, rare-earth (RE) ions have attracted great interest all over the world for its high luminescence intensity, monochromatic and stable performance at room temperature. Therefore, RE-doped silicon based light emitting materials and devices may be the choice of light source of silicon photonics. In this work, photoluminescence (PL) and electroluminescence (EL) performance of Europium (Eu)-doped silicon rich oxide (SRO) thin films have been investigated, to expore its ways as the light emitterof silicon photonics.
     Eu-doped SRO films have been prepared by electron beam evaporation (EBE). The dose of Eu was controlled by controlling the dose in the evaporation source. The influence of sample preparation and followed heat treatment on the PL performance is studied in detail. While the main results are summarized as follow:
     1) Dense and uniform Eu-doped SRO films can be prepared by the method of EBE. We found PL intensity was dependent on temperature of substrate during deposition process. On the other hand, the PL of as-deposited sample can be increased by post-annealing.
     2) A reduction process of Eu~(3+) has been taken place during the film deposition. Eu~(3+) in the evaporation source was reduced to Eu~(2+) in the film during deposition, while SiO get O from Eu_2O_3 to form SiO_2.
     3) The luminescence and structure evolution of Eu-doped SRO films were investigated after post-annealing. PL shows significant intensity enhancement after 1100℃annealing. This enhancement is associated with the formation of europium silicate (EuSiO_3), which is confirmed by x-ray photoelectron spectroscopy (XPS), x-ray diffraction (XRD) and transmission electron microscopy (TEM) results. During annealing, the luminescence mechanism transfers from light emitting of defect related state in SRO film to an energy level transition between 4f~65d and 4f~7(~8S_(7/2)) of Eu~(3+).
     4) Eu-doped SRO films have been used to produce the ITO/Eu_xSi_yO_z/p-Si/AI MOS device structures to realize its EL. The MOS devices emitted visible light originated from radiative recombination of defect related state in SRO film. However, the EuSiO_3 particles formed during high temperature annealing provided a channel for carries and resulted in a large injection current. After improving the device structure, more intense EL from the 4f~65d-4f~7 energy levels of Eu~(2+) was emitted from device with a lower injected current.
引文
[1] http://nano-taiwan.sinica.edu.tw/2008_WinterSchool/index.htm.
    [2] F. Masuoka, Flash Memory Technology, Proc. Of Int. Elec. Devices and materials symposium, 83, Hsinchu, Taiwan, (1996).
    [3] K. P. Homewood and M .A. Lourenco. Light from Si via dislocation loops.Materials Today, 8(1), 36-39 (2005).
    [4]王阳元韩汝琦,硅微电子技术物理极限的挑战,世界科技研究与发展,1998年20卷3期,P 39-48.
    [5] M. Salib, L. Liao, R. Jones et al., Silicon Photonics, Intel Technology Journal 8, 143 (2004).
    [6] DAVID A. B. MILLER, Rationale and Challenges for Optical Interconnects to Electronic Chips, Proc. IEEE 88 (6), 728 (2000).
    [7] P. Dumon, W. Bogaerts, V. Wiaux et al., Low-loss SOI photonic wires and ring resonators fabricated with deep UV lithography, IEEE Photon. Technol. Lett., 16, 1328 (2004).
    [8] Y. Vlasov and S. McNab, Losses in single-mode silicon-on-insulator strip waveguides and bends, Opt. Express 12, 1622 (2004).
    [9] K. K. Lee, D. R. Lim, L. C. Kimerling et al., Fabrication of ultralow-loss Si/SiO_2 waveguides by roughness reduction, Opt. Lett. 26, 1888 (2001).
    [10] W. M. J. Green, M. J. Rooks, L. Sekaric et al., Ultra-compact, low RF power, 10 Gb/s silicon Mach-Zehnder modulator, Opt. Express 15, 17106 (2007).
    [11] Q. Xu, B. Schmidt, S. Pradhan et al., Micrometre-scale silicon electro-optic modulator, Nature 435, 325 (2005).
    [12] R. Jones, H. Rong, A. Liu et al., Net continuous wave optical gain in a low loss silicon-on-insulator waveguide by stimulated Raman scattering, Opt. Express 13,519(2005).
    [13] Q. Xu, V. Almeida, and M. Lipson, Time-resolved study of Raman gain in highly confined silicon-on-insulator waveguides, Opt. Express 12, 4437 (2004).
    [14] Y. Vlasov, W. M. J. Green, and F. Xia, High-throughput silicon nanophotonic wavelength-insensitive switch for on-chip optical networks, Nature Photonics 2, 242 (2008).
    [15] D. Ahn, C.-y. Hong, J. Liu et al., High performance, waveguide integrated Ge photodetectors, Opt. Express 15, 3916 (2007).
    [16] L. Vivien, M. Rouviere, J.-M. Fedeli et al., High speed and high responsivity germanium photodetector integrated in a Silicon-On-Insulator microwaveguide, Opt. Express 15, 9843 (2007).
    [17] S. Chan and P. M. Fauchet, Silicon microcavity light emitting devices Opt. Mater. 17, 31 (2001).
    [18] H. Rong, A. Liu, R. Jones et al., An all-silicon Raman laser, Nature 433, 292 (2005).
    [19] M. J. Chen, J. L. Yen, J. Y. Li et al., Stimulated emission in a nanostructured silicon pn junction diode using current injection, Appl. Phys. Lett. 84, 2163 (2004).
    [20] K. D. Hirschman, L. Tsybeskov, S. P. Duttagupta et al., Silicon-based visible light-emitting devices integrated into microelectronic circuits, Nature 384, 338(1996).
    [21] L. Pavesi, Routes toward silicon-based lasers, Materials Today, January (2005).
    [22] P. Jonsson, H. Bleichner, and E. Nordlander, The ambipolar Auger coefficient: Measured temperature dependence in electron irradiated and highly injected n-type silicon, J. Appl. Phys. 81, 2256 (1997).
    [23] Schroder, D. K., et al., Transparent gate silicon photodetectors, IEEE Trans. Electron. Dev. 25, 254 (1978).
    [24] J. R. Haynes and H. B. Briggs. Radiation produced in germanium and silicon by electron-hole recombination. Physical Review, 86, 647 (1952).
    [25] L.T.Canham, Silicon quantum wire array fabrication by electrochemical and chemical dissolution of wafers, Applied Physics Letters 57, 1046-1048 (1990).
    [26] A.GCullis and L.T.Canham, Visible light emission due to quantum size effects in highly porous crystalline silicon , Nature 353, 335-338 (1991).
    [27] N. Koshida and H. Koyama, Visible electroluminescence from porous silicon, Appl. Phys. Lett. 60, 347 (1992).
    [28] M. V. Wolkin, J. Jorne, P. M Fauchet, G. Allan, and C. Delerue, Electronic States and Luminescence in Porous Silicon Quantum Dots: The Role of Oxygen, Phys. Rev. Lett. 82, 197 (1999).
    [29] L. T. Canham, T. I. Cox, A. Loni, and A. J. Simons, Progress towards silicon optoelectronics using porous silicon technology Appl. Surf. Sci. 102, 436 (1996).
    [30] B. Bulakh, N. Korsunska, L. Khomenkova, T. Stara, Y. Venger, T. Kryshtab and A. Kryvko, Structural and luminescent characteristics of macro porous silicon, J Mater Sci: Mater Electron 20: 226-229, (2009).
    [31] Kevin P. Homewood, and Manon A. Louren, Light from Si via dislocation loops, Materials Today, 34-39, (2005)
    [32] G. Z. Pan, R. P. Ostroumov, L.P. Ren, Y.G. Lian, K.L. Wang, Silicon light emissions from boron implant-induced defect engineering, J. Non-Crystalline Solids 352 2506 - 2509, (2006).
    [33] A. Fojtik, J. Valenta, I. Pelant, M. Kalal, and P. FialaOn the road to silicon-nanoparticle laser, Journal of Materials Processing Technology 181, 88-92 (2007).
    [34] S. Guha, M. D. Pace, D. N. Dunn, and I. L. Singer, Visible light emission from Si nanocrystals grown by ion implantation and subsequent annealing, Appl. Phys. Lett. 70, 1207(1997).
    [35] L. S. Liao, X. M. Bao, X. Q. Zheng, N. S Li, and N.B. Min, Blue luminescence from Si~+ -implanted SiO_2 films thermally grown on crystalline silicon, Appl. Phys. Lett. 68, 850-852 (1996).
    [36] L. Nikolova, R. G. Saint-Jacques, C. Dahmoune, and G. G. Ross, Si nanoparticle formation in SiO_2 by Si ion implantation: Effect of energy and fluence on size distribution and on SiO_2 composition, Surf. Coat. Technol. 203, 2501-2505 (2009).
    [37] H. Zhang, L. Lin, and S. Jiang, Fabrication of nc-Si/SiO2 structure by thermal oxidation method and its luminescence characteristics, Chinese Optics Letters 7, 332-334, (2009).
    [38] F. Iacona, G. Franzo, and C. Spinella, Correlation between luminescence and structural properties of Si nanocrystals, J. Appl. Phys. 87, 1295 (2000).
    [39] Z.-X. Ma, X. B. Liao, J. He, W. C. Cheng, G. Z. Yue, Y. Q. Wang, and G.-L. Kong, Annealing behaviors of photoluminescence from SiOx:H, J. Appl. Phys. 83, 7934(1998).
    [40] L. Tsybeskov, S. P. Duttagupta, K. D. Hirschman, and P. M. Fauchet, Stable and efficient electroluminescence from a porous silicon-based bipolar device, Appl. Phys. Lett. 68, 2058 (1996).
    [41] M. Wang, M. Xie, L. Ferraioli, Z. Yuan, D. Li, D. Yang,, and L. Pavesi, Light emission properties and mechanism of low-temperatureprepared amorphous SiNX films. I. Room-temperature band tailstates photoluminescence, J. Appl. Phys. 104, 083504 (2008).
    [42] G. R. Lin, and C. J. Lin, improved blue-green electroluminescence of metal-oxide-semiconductor diode fabricated on multirecipe Si-implanted and annealed SiO_2/Si substrate J. Appl. Phys. 95, 8484 (2004).
    [43] Y. Xiao, M. J. Heben, J. M. McCullough, Y. S. Tsuo, J. I. Pankove, and S. K. Deb, Enhancement and stabilization of porous silicon photoluminescence by oxygen incorporation with a remote-plasma treatment, Appl. Phys. Lett. 62, 1152 (1993).
    [44] E. C. Cho, M. A. Green, J. Xia, R. Corkish, P. Reece, and M. Gal, Clear quantum-confined luminescence from crystalline silicon/SiO2 single quantum wells, Appl. Phys. Lett. 84, 2286 (2004).
    [45] H. Tagaki, H. Ogawa, Y. Yamazaki, A. Ishizaki, and T. Nakagiri, Quantum size effects on photoluminescence in ultrafine Si particles, Appl. Phys. Lett. 56, 2379 (1990).
    [46] X. Zhao, O. Schoenfeld, J. L. Kusano, Y. Aoyagi, and T. Sugano, Jpn. Observation of Direct Transitions in Silicon Nanocrystallites, J. Appl. Phys. 33, 89901 (1994).
    [47] S. Tong, X. Liu, L. Wang, F. Yan, and X. Bao, Raman scattering of alternating nanocrystalline silicon/amorphous silicon multilayers, Appl. Phys. Lett., 69,523(1996).
    [48] J. Y. Zhang, X. M. Bao, N. S. Li, and H. Z. Song, Photoluminescence study of defects in Si~+ ion implanted thermal SiO_2 films, J. Appl. Phys., 83, 3609 (1998).
    [49] M. Wang, D. Yang, D. Li, Z. Yuan, and D. Que, Correlation between luminescence and structural evolution of Si-rich silicon oxide film annealed at different temperatures, J. Appl. Phys. 101, 103504 (2007).
    [50] Keisuke Sato, Kenji Hirakuri, Improved luminescence properties of nanocrystalline silicon based electroluminescent device by annealing, Thin Solid Films, 515, 778-781 (2006)
    [51] K. Sato, K. Hirakuri, Influence of Oxidized Layer on Operating Voltage and Luminance of Nanocrystalline Silicon Electroluminescent Device, J. Nanosci. Nanotechnol. 6 200-204 (2006).
    [52] M. J. Chen, J. L. Yen, J. Y. Li, J. F. Chang, S. C. Tsai, and C. S. Tsai, Stimulated emission in a nanostructured silicon pn junction diode using current injection, Appl. Phys. Lett. 84, 2163 (2004).
    [53] M. Bolduc, G. Genard, M. Yedji, D. Barba, F. Martin, G. Terwagne, and G. G. Ross, Influence of nitrogen on the growth and luminescence of silicon nanocrystals embedded in silica, J. Appl. Phys. 105, 013108 (2009).
    [54] M. Yedji, M. Bolduc, G. Genard, G. Terwagne, and G.G. Ross, "Fabrication and nuclear analysis of isotopic ~(14)N and ~(15)N ion-implanted silicon standards", Nuclear Instruments and Methods in Physics Research B 266 2060-2064 (2008).
    [55] G. Liu and B. Jacquier, Spectroscopic Properties of Rare Earths in Optical materials Springer, Berlin, (2005), p. 122.
    [56] http://www.files.chem.vt.edu/chem-dept/tissue/lanthanides/index.html.
    [57] 李建宇, 稀土发光材料及其应用, 化学工业出版社, 北京 2003 年10 月第一版.
    [58] H. Ennen, J. Schneider, G. Pomrenke, and A. Axmann, 1.54 um luminescence of erbium-implanted III-V miconductors and silicon, Appl. Phys. Lett. 43,943-945(1983).
    [59] D. Pacifici, G. Franzo, F. Iacona, S. Boninelli, A. Irrera, M. Miritello, and F. Priolo, Er doped Si nanostructures, Materials Science and Engineering B, 105, 197-204 (2003).
    [60] J. M. Sun, W. Skorupa, T. Dekorsy, and M. Helm, Efficient ultraviolet electroluminescence from a Gd-implanted silicon metal-oxide-semiconductor device, Appl. Phys. Lett. 85, 3387-3389 (2004).
    [61] E. E. Nyein, U. Hommerich, J. Heikenfeld, D. S. Lee, A.J.Steckl, and J. M. Zavada, Spectral and time-resolved photoluminescence studies of Eu-doped GaN, Appl. Phys. Lett. 82, 1655-1657 (2003)
    [62] E. Desurvire, Erbium-Doped Fiber Amplifiers, Principles and Applications, Wiley, New York, (1994).
    [63] Priolo, F., et al., Excitation and nonradiative deexcitation processes of Er~(3+) in crystalline Si, Phys. Rev. B, 57,4443 (1998).
    [64] A. J. Kenyon, P. F. Trwoga, M. Federighi and C. W. Pitt, Optical properties of PECVD erbium-doped silicon-rich silica: evidence for energy transfer between silicon microclusters and erbium ions, J. Phys., Condens. Matter 6, 319-324 (1994).
    [65] Lorenzo Pavesi, Routes toward silicon-based lasers, Materials Today, 8, 18-25(2005).
    [66] F. Priolo, G. Franzo, D. Pacifici, and V. Vinciguerra, Role of the energy transfer in the optical properties of undoped and Er-doped interacting Si nanocrystals, J. Appl. Phys. 89, 264 (2001).
    [67] A. J. Kenyon, C. E. Chryssou, and C. W. Pitt, Luminescence from erbium-doped silicon nanocrystals in silica: Excitation mechanisms J. Appl. Phys. 91, 367 (2002).
    [68] F. Iacona, D. Pacifici, A. Irrera, M. Miritello, G. Franzo, F. Priolo, D. Pacifici, A. Irrera, M. Miritello, G. Franzo, and F. Priolo, Appl. Phys. Lett. 81, 3242 (2002).
    [69] S. J. Han, J. W. Song, C. H. Yang, S. H. Park, J. H. Park, and Y. H. Jeong, K. W. Rhie, A key to room-temperature ferromagnetism in Fe-doped ZnO:Cu, Appl. Phys. Lett. 81, 3720 (2002).
    [70] G. Franz 6 ; V. Vinciguerra; F. Priolo, PHILOSOPHICMAALG AZINBE, 8, 719-728 (2000).
    [71] L. Rebohle, J. Lehmann, S. Prucnal, A. Kanjilal, A. Nazarov, I. Tyagulskii, W. Skorupa, and M. Helm, Blue and red electroluminescence of Europium-implanted metal-oxide-semiconductor structures as a probe for the dynamics of microstructure, Appl. Phys. Lett. 93, 071908 (2008).
    [72] M. E. Castagna, S. Coffa, M. Monaco, A. Muscara, L. Caristia, S. Lorenti and A. Messina, High efficiency light emitting devices in silicon, Materials Science and Engineering B 105, 83-90 (2003).
    [73] M. Yoshihara, A. Sekiya, T. Morita, K. Ishii, S. Shimoto, S. Sakai and Y Ohki, Rare-earth-doped SiO_2 films prepared by plasma-enhanced chemical vapaor deposition, J. Phys. D: Appl. Phys. 30, 1908-1912 (1997).
    [74] A.Polman, D.C.Jacobson, D.J.Eaglesham, R.C.Kistler, and J.M.Poate, Optical doping of waveguide materials by MeV Er implantation, J. Appl. Phys. 70, 3778-3784 (1991).
    [75] T. Suehiro, N. Hirosaki, R. J. Xie, K. Sakuma, M. Mitomo,M. Ibukiyama, and S. Yamada, One-step preparation of Ca-SiAlON:Eu~(2+) fine powder phosphors for white light-emitting diodes, Appl. Phys. Lett. 92, 191904 (2008).
    [76] S. Tyagulskiy, I. Tyagulskyy, A. Nazarov, V. Lysenko, L. Rebohle, J. Lehmann, W. Skorupa, Electroluminescence, charge trapping and quenching in Eu implantes SiO_2-Si structures, Microelectronic Engineering 86 1954-1956 (2009).
    [77] L. Kepinski, D. Hreniak, W. Strek, Microstructure and luminescence properties of nanocrystalline cerium silicates, J. Alloys Comp. 341, 203-207 (2002).
    [78] V. Jokanovi, M. D. Dramicanin, Z. Andri, B. Jokanovi, Z. Nedi, A. M. Spasic. Luminescence properties of SiO_2:Eu~(3+) nanopowders: Multi-step nano-designing, J. Alloys Comp. 453 253-260 (2008).
    [79] L. Rebohle, J. Lehmann, S. Prucnal, A. Kanjilal, A. Nazarov, I. Tyagulskii, W. Skorupa, and M. Helm, Blue and red electroluminescence of Europium-implanted metal-oxide-semiconductor structures as a probe for the dynamics of microstructure, Appl. Phys. Lett. 93, 071908 (2008).
    [80] H. Isshiki, MJ.A. de Dood, A. Polman, T. Kimura, Self-assembled infrared-luminescent Er-Si-O crystallites on silicon, Appl. Phys. Lett. 85 4343(2004).
    [81] E. Kaldis, P. Streit, P. Wachter, Luminescence properties of the monoclinic phase of ferromagnetic Eu(Ⅱ)SiO, J.Phys. Chem. Solids Pergamon Press, 32,159-165(1971).
    [82] RAU R. C, Rare Earth Research Ⅱ, Proceeding of the third Rare earth conference, Florida, April 21-24 (1963).
    [83] Y. C. Shin, E. H. Kim, S. J. Leem and T. G. Kim, Optical Properties of Europium-Silicate Thin Films Fabricated on Different SiO_x Intermediate Layer, J.Korean Phys. Soc. 50, 1764-1768 (2007).
    [84] J. Qi ,T. Matsumoto, M. Tanaka, and Y. Masumoto, Europium silicate thin films on Si substrates fabricated by a radio frequency sputtering method, J. Phys. D:Appl. Phys. 33 2074-2078 (2000).
    [85] D. Pacifici, G. Franzo, F.Iacona, S.Boninelli, A.Irrera, M.Miritello, and F.Priolo, Er doped Si nanostructures, Materials Science and Engineering B 105,197-204(2003).
    [86]徐玮,于军,王晓晶,袁俊明,雷青松,衬底温度对ZnO:Al薄膜结构和性能的影响,半导体技术,34 665-668(2009).
    [87] QIAO Yanmin (乔艳敏), ZHANG Xinbo (张鑫博), YE Xiao (叶晓), CHEN Yan (陈艳), GUO Hai (郭海), Upconversion properties of Y_2O_3:Er films prepared by sol-gel method, Journal of Rare Earths, 27, (2009).
    [88] L. C. Gupta, E. V. Sampathkumaran, R. Vijayaraghavan, Varsha Prabhawalkar, P. D. Prabhawalkar, and B. D. Padalia, 3d core-level x-ray photoelectron spectroscopy of EuCu_2Si_2, a mixed-valence system, Phys. Rev. B 23,4283 (1981).
    [89] H. Liu , V.S. Vikhnina, L. F. Fonseca, A. Mahfoud, G. A. Nery, O. Resto and Z. S. Weisz, Two-photon excitation induced transient valence switching in Eu-doped Si/SiO_2 nanocomposites, Proc. of SPIE 4797, 256-263 (2003).
    [90] B. I, K. O. Thermochemical Properties of Inorganic Substances. Berlin: Springer, 1973; Supplement (1997).
    [91] K. O, et al. Thermochemical Properties of Inorganic Substances. 2nd ed. Berlin: Springer-Verlag (1991).
    [92] A. Irrera, M. Miritello, D. Pacifici, G. Franz, F. Priolo, F. Iacona, D. Sanfilippo, G. Di Stefano, and P. G. Fallica, Electroluminescence properties of SiOx layers implanted with rare earth ions, Nucl. Instrum. Methods Phys. Res. B 216, 222-227 (2004).
    [93] F. Priolo, C. D. Presti, G. Franz o, A. Irrera, I. Crupi, F. Iacona, G. DiStefano, A. Piana, D. Sanfilippo, and P. G. Fallica, Carrier-induced quenching processes on the erbium luminescence in silicon nanocluster devices, Phys. Rev. B 73,113302(2006).
    [94] J. M. Sun, W. Skorupa, T. Dekorsy, M. Helm, and A. M. Nazarov, On the mechanism of electroluminescence excitation in Er-doped SiO_2 containing silicon nanoclusters, Opt. Mater. 27, 1050-1054 (2005).
    [95] J. M. Sun, W. Skorupa, T. Dekorsy, M. Helm, L. Rebohle, and T. Gebel, Bright green electroluminescence from Tb~(3+) in silicon metal-oxide-semiconductor devices, J. Appl. Phys. 97, 123513 (2005).
    [96] G. Liu and B. Jacquier, Spectroscopic Properties of Rare Earths in Optical Materials, 122, Springer, Berlin, (2005).
    [97] Z. Yuan, D. Li, M. Wang, P. Chen, D. Gong, L. Wang, and D. Yang. Photoluminescence of Tb~(3+) doped SiNx films grown by plasma-enhanced chemical vapor deposition. J. Appl. Phys. 100, (2006).
    [98] D. Navarro-Urrios, Y. Lebour, O. Jambois, B. Garrido, A. Pitanti, N. Daldosso, L. Pavesi, J. Cardin, K. Hijazi, L. Khomenkova, F. Gourbilleau, and R. Rizk, Optically active Er~(3+) ions in SiO_2 codoped with Si nanoclusters, J. Appl. Phys. 106, 093107(2009).
    [99]刘丰珍,朱美芳,刘涛,李秉程,共溅射和离子注入制备的SiO_2(Eu)薄膜中Eu~(3+)到Eu~(2+)的转变,物理学报,50,No.3,March(2001).
    [100] C. Cannas, M. Mainas, A Musinu, G. Piccaluga, S Enzo, M. Bazzoni, A.Speghini, M. Bettinelli, Structural investigations and luminescence properties of nanocrystalline europium-doped yttrium silicates prepared by a sol-gel technique, Optical Materials 29 585-592 (2007).
    [101] O. P. Y. Moll,. J. Perriere, E. Millon, R. M. Defourneau, D. Defourneau, B. Vincent, A. Essahlaoui,.A. Boudrioua, W. Seiler, Structural and optical properties of rare-earth-doped Y_2O_3 waveguides grown by pulsed-laser deposition, J. Appl.Phys, 92 (2002).
    [102] A Taguchi, H Nakagome, K Takahei, Thermal quenching mechanism of Yb intra-4f-shell luminescence in InP, J. Appl. Phys. 70, 5604-5607 (1991).
    [103] S. Prucnal, J. M. Sun, W. Skorupa, and M. Helm, Switchable two-color electroluminescence based on a Si metal-oxide-semiconductor structure doped with Eu, Appl. Phys.Lett. 90, 181121, (2007).
    [104] T. Motohiro, T. Kachi, F. Miura, Y. Takeda, S. Hyodo, and S. Noda, Jpn.. Excitation Spectra of the Visible Photoluminescence of Anodized Porous Silicon, J.Appl. Phys. 31, 207-209 (1992).
    [105]刘金声.离子束沉积薄膜技术及应用.北京:国防工业出版社,(2003).
    [106] http://en.wikipedia.org/wiki/Streak_camera.
    [107] A. Conde-Gallardo, M. Garcia-Rocha, and I. Hernandez-Calderon, R. Palomino-Merino, Photoluminescence properties of the Eu3+ activator ion in the TiO2 host matrix, Appl. Phys. Lett., 78,3436 (2001).
    [108] T. Cao, G. Chen, W. L (?), H. Zhou, J. Li, Z. Zhu, Z. You, Y Wang, C. Tu, Intense red and cyan luminescence in europium doped silicate glasses, J.Non-Crystalline Solids 355 2361-2364 (2009).
    [109] G. Blasse, B.C. Grabmaier, Luminescence Materials, Springer, Berlin,(1994).
    [110] F. Iacona, G. Franzo` and C. Spinella, Correlation between luminescence and structural properties of Si nanocrystals, J. Appl. Phys. 87, 1295 (2000).
    [111] F. Iacona, S. Lombardo, and S. U. Campisano, Characterization by x-ray photoelectron spectroscopy of the chemical structure of semi-insulating polycrystalline silicon thin films, J. Vac. Sci. Technol. B 14,2693 (1996).
    [112] J. Qi, T. Matsumoto, M. Tanaka and Y. Masumoto, Europium silicate thin films on Si substrates fabricated by a radio frequency sputtering method, J. Phys. D: Appl. Phys. 33, 2074-2078 (2000).
    [113] JOHN M. HASCHKE, Reactions of Strontium, Lanthanum, and Europium Iodides. Direct Preparation of Phosphorus Triiodide from Phosphates, Inorg. Chem. 15, 508-511 (1976).
    [114] J. M. Sun, L. Rebohle, S. Prucnal, M. Helm, and W. Skorupa, Giant stability enhancement of rare-earth implanted SiO_2 light emitting devices by an additional SiON protection layer, Appl. Phys. Lett. 92, 071103 (2008).
    [115] S. Prucnal, J. M. Sun, H. Reuther, W. Skorupa, and Ch. Buchal, Strong Improvement of the Electroluminescence Stability of SiO_2:Gd Layers by Potassium Co-implantation, Electrochem. Solid-State Lett. 10, J30-J32 (2007).
    [116] J. M. Sun, G. Z. Zhong, X. W. Fan, G. Z. Fu, and C. W. Zheng, Electroluminescence from ITO/SiO_2/Ta_2O-5/Al multiple-layer structure excited by hot electrons, J. Non-Cryst. Solids 212, 192 (1997).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700