用户名: 密码: 验证码:
基于石墨烯或类石墨氮化碳复合光催化剂的制备、表征及其光催化性能的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
环境污染与能源危机是当今人类所面临的两个重大问题。光催化技术作为一门新兴的催化技术,为人类解决环境污染与能源危机提供了可能。光催化剂在光降解有机污染物、光解水制氢等方面表现出了广阔的应用前景。然而,单一组份光催化剂的太阳能利用率低下,光生电子-空穴复合率高,量子效率低以及催化剂回收困难等问题限制了其应用。因此,通过对光催化剂进行改性,拓展其光吸收范围以实现对太阳能的充分利用,抑制光生载流子复合,提高其催化活性,已成为材料、化学与环境等学科的研究热点。层状结构材料如石墨烯以及类石墨氮化碳等具有优异的物理、化学性质而受到科研工作者的广泛关注。以石墨烯与类石墨氮化碳作为载体材料,构筑纳米复合光催化材料,不仅可保留各自的优异性能,而且还可能产生协同效应。金属氧化物与石墨烯构筑的复合光催化剂能够提高材料的导电性能与吸附性能,从而提高光催化活性。此外,类石墨氮化碳上负载氧化物之后,能够有效地抑制其光生电子-空穴复合。本论文主要是基于石墨烯或类石墨氮化碳复合光催化剂的制备、表征及光催化性能的研究,主要内容如下:
     (1)采用水热法以及水-乙醇混合溶剂热法,分别了制备了石墨烯负载SnO2纳米棒以及负载SnO2纳米片复合材料。通过XRD、电镜、XPS以及TGA等多种表征手段对复合物体系的组成﹑形貌以及光催化性质进行了表征分析。相比于P25与单独SnO2,复合材料对RhB的降解具有更高的催化活性。通过分析电化学阻抗谱与紫外-可见光谱,探讨了材料催化性能增强的原因。石墨烯与SnO2之间的协同效应,使该复合物导电性能以及对染料RhB的吸附性能大大提高。
     (2)采用热缩聚方法,以三聚氰胺与SnO2纳米颗粒为反应原料,成功地制备了SnO2/g-C3N4复合物。该复合物在可见光下对RhB具有良好的催化活性,其表观动力学常数为1.37h-1,是单独g-C3N4的4.54倍。光催化机理实验表明,该复合物对RhB的降解主要是通过空穴的氧化作用实现的,并且在体系中排除了光敏化现象。与此类似的,采用分两步制备了氮化碳负载SnO2纳米颗粒复合物,该复合物能够有效的保持了热处理后g-C3N4的大比表面积。同时,所合成的材料可以较容易的回收与重复使用。
     (3)通过对热缩聚法制备的g-C3N4进行热处理,其比表面积大大增加。以热处理后的g-C3N4与硝酸铟为原料,机械混合后煅烧得到了氮化碳负载In2O3纳米颗粒复合物。分别利用XRD、DRS、SEM、TEM以及BET等手段对材料的组成、光学性质、形貌以及比表面积进行了表征与分析。该复合物在可见光下不仅对有色染料RhB,同时对于无色的4-硝基酚也具有很高的催化降解活性。光催化机理实验表明,该复合物对RhB的降解主要是通过空穴与超氧自由基的氧化作用实现的。
     (4)基于氮化碳与半导体材料的物理化学特性和相对能带位置,设计并制备了BaTiO3/g-C3N4复合物。BaTiO3导带电位负于RhB的激发态电位,该复合物可以避免在降解RhB过程中出现光敏化现象。同时相比于SnO2,BaTiO3的导带位置足够负,能够与溶解氧发生反应生成其它氧化物种,进而更加有效地利用这部分电子,使其参与光催化反应。
     总之,异质结光催化材料有效地解决了光催化剂的可见光吸收和光催化过程中的光生电子空穴分离的问题,开辟了一条探索新型高效可见光光催化材料的新途径。
Environment pollution and energy crisis are two of the most serious problems facinghumanity today. As a hot research issue, photocatalytic technology provides a possible routeto solve the environmental pollution and energy crisis. The fast development in thephotocatalytic technology field has suggested the great potential of photocatalysts for theremoval of organic pollutants and water splitting. However, the limited utilization of sunlightand high recombination rate of the photogenerated electron-hole pairs of the many reportedphotocatalysts have restricted the applications of photocatalysis. So far, various approacheshave been introduced to improve the photocatalytic activity for photocatalysts, such as doping,loading metals as a co-catalyst and coupling with other semiconductors.
     Two-dimensional materials with layed structure, such as graphene and graphitic-likecarbon nitride have draw much attentions due to their excellent physical and chemicalproperties. Nanocomposite photocatalysts based on metal oxides and graphene or g-C3N4possess the properties of individual components or even with a synergistic effect. The highphotocatalytic activity of the catalysts could be a result of the adsorption of contaminantmolecules form the supporter. Nanocomposite photocatalysts also can accelerate theinterfacial electron-transfer process and suppresses the recombination of electrons and holes,thus improving the photocatalytic activity. In this dissertation, we focus on the synthesis,characterization and photocatalytic activity of graphene-or graphitic carbon nitride-basedphotocatalysts. The main points of this thesis are summaried as follows:
     (1) SnO2nanorods-GR and SnO2nanosheets-GR composites were prepared viahydrothermal and solvothermal process respectively. The samples were characterized bypowder X-ray diffraction, scanning electron microscopy, transmission electron microscopy,UV-vis diffuse reflection spectroscopy, X-ray photoelectron spectroscopy andthermogravimetric analysis. By incorporation of graphene, SnO2-GR show enhancedphotocatalytic activity towards the decomposition of Rhodamine B. The mechanism of theirhigh photocatalytic activity is mainly ascribed to the synergy effect between SnO2andgraphene, resulting in the superior adsorption and the improved electric conductivity.
     (2) Composite photocatalysts based on g-C3N4and SnO2nanoparticles were prepared byheating the mixture of SnO2nanoparticles and melamine in a muffle furnace. Theas-synthesized samples were characterized by X-ray diffraction, scanning electron microscopy,transmission electron microscopy, ultraviolet-visible light absorbance spectra, FT-IR and TG analysis. The significantly enhanced photocatalytic activity of the composite photocatalystswas attributed to the enhancement of electron-hole separation at the interface. It was foundthat holes (h+) was the main reactive species in the photocatalytic degradation of RhB.Furthermore, the dye-sensitised photocatalysis would not happen in this system, althoughRhB was active to visible light.
     (3) A novel photocatalyst In2O3/g-C3N4(HT) was prepared through a simple method. Thecomposite catalysts displayed higher photocatalytic performance towards the decompositionof RhB and4-NP, which can be attributed to superior adsorption from g-C3N4and the synergyeffect between In2O3and g-C3N4. The highest photocatalytic activity of In2O3/g-C3N4(HT)composite was obtained with19.0wt%In2O3content. It was found that holes (h+) andsuperoxide (O2-) were the main reactive species in the photocatalytic degradation of RhB. Inaddition, The In2O3/g-C3N4(HT) composite catalysts are stable during the reaction and can beused repeatedly.
     (4) BaTiO3/g-C3N4was prepared based on bandgap engineering between carbon nitrideand BaTiO3semiconductor. The dye-sensitised photocatalysis did not happen inBaTiO3/g-C3N4, due to the lowest unoccupied molecular orbital (LUMO) potential of RhBwas more positive than the CB of BaTiO3. Under visible light irradiation, g-C3N4was excitedto form the photo-generated electron-hole pairs. The most excited electrons in the CB ofg-C3N4were quickly transferred to the CB of BaTiO3.The excited electrons further react withthe absorbed O2to form O2-and H2O2. Thus, more electrons react with the absorbed O2, andthe higher photocatalytic activity was achieved.
     In summary, construction of heterostructured semiconductor photocatalysts is a promisingway to enhance the separation rate of electons-holes and improve the photocatalyticperformance.
引文
[1] Novoselov K. S., Geim A. K., Morozov S. V., et al., Electric Field Effect in AtomicallyThin Carbon Films[J]. Science,2004,306(5696):666-669.
    [2] Hummers W. S., Offeman R. E., Preparation of Graphitic Oxide[J]. J. Am. Chem. Soc.,1958,80(6):1339-1339.
    [3] Bao C., Song L., Xing W., et al., Preparation of graphene by pressurized oxidation andmultiplex reduction and its polymer nanocomposites by masterbatch-based melt blending[J]. J.Mater. Chem.,2012,22(13):6088-6096.
    [4] Zhang Y., Gomez L., Ishikawa F. N., et al., Comparison of Graphene Growth onSingle-Crystalline and Polycrystalline Ni by Chemical Vapor Deposition[J]. J. Phys. Chem.Lett.,2010,1(20):3101-3107.
    [5] Ruan G., Sun Z., Peng Z., et al., Growth of Graphene from Food, Insects, and Waste[J].Acs Nano,2011,5(9):7601-7607.
    [6] Wang H., Sun F., Zhang Y., et al., Photochemical growth of nanoporous SnO2at theair-water interface and its high photocatalytic activity[J]. J. Mater. Chem.,2010,20(27):5641-5645.
    [7] Comini E., Faglia G., Sberveglieri G., et al., Stable and highly sensitive gas sensors basedon semiconducting oxide nanobelts[J].Appl. Phys. Lett.,2002,81(10):1869-1871.
    [8] Xue X., Chen Z., Ma C., et al., One-Step Synthesis and Gas-Sensing Characteristics ofUniformly Loaded Pt@SnO2Nanorods[J]. J. Phys. Chem. C.,2010,(114):3968-3972.
    [9] Hwang I.-S., Choi J.-K., Woo H.-S., et al., Facile Control of C2H5OH SensingCharacteristics by Decorating Discrete Ag Nanoclusters on SnO2Nanowire Networks[J]. AcsAppl. Mater. Inter.,2011,3(8):3140-3145.
    [10] Zhang J., Liu X., Wu S., et al., Au nanoparticle-decorated porous SnO2hollow spheres: anew model for a chemical sensor[J]. J Mater Chem,2010,20(31):6453-6459.
    [11] Zhang J., Wang S., Xu M., et al., Polypyrrole-Coated SnO2Hollow Spheres and TheirApplication forAmmonia Sensor[J]. J. Phys. Chem. C,2009,113(5):1662-1665.
    [12] He L., Jia Y., Meng F., et al., Development of sensors based on CuO-doped SnO2hollowspheres for ppb level H2S gas sensing[J]. J. Mater. Sci.,2009,44(16):4326-4333.
    [13] Wang Z., Li Z., Sun J., et al., Improved Hydrogen Monitoring Properties Based onp-NiO/n-SnO2Heterojunction Composite Nanofibers[J]. J. Phys. Chem. C,2010,114(13):6100-6105.
    [14] Idota Y., Kubota T., Matsufuji A., et al., Tin-Based Amorphous Oxide: A High-CapacityLithium-Ion-Storage Material[J]. Science,1997,276(5317):1395-1397.
    [15] Courtney I. A., Dahn J., Electrochemical and in situ X-ray diffraction studies of thereaction of lithium with tin oxide composites[J]. J. Electrochem. Soc.,1997,114(6):2045-2052.
    [16] Wang Y., Lee J. Y., Zeng H. C., Polycrystalline SnO2nanotubes prepared via infiltrationcasting of nanocrystallites and their electrochemical application[J]. Chem. Mater.,2005,17(15):3899-3903.
    [17] Wang C., Zhou Y., Ge M., et al., Large-scale synthesis of SnO2nanosheets with highlithium storage capacity[J]. J.Am. Chem. Soc.,2009,132(1):46-47.
    [18] Wang R., Xu C., Sun J., et al., Solvothermal-Induced3D MacroscopicSnO2/Nitrogen-Doped Graphene Aerogels for High Capacity and Long-Life LithiumStorage[J].Acs Appl. Mater. Inter.,2014,6(5):3427-3436.
    [19] Wu S., Cao H., Yin S., et al., Amino Acid-Assisted Hydrothermal Synthesis andPhotocatalysis of SnO2Nanocrystals[J]. J. Phys. Chem. C,2009,113(41):17893-17898.
    [20] Wang G., Lu W., Li J., et al., V-Shaped Tin Oxide Nanostructures Featuring a BroadPhotocurrent Signal: An Effective Visible-Light-Driven Photocatalyst[J]. Small,2006,2(12):1436-1439.
    [21] Wang C., Shao C., Zhang X., et al., SnO2Nanostructures-TiO2NanofibersHeterostructures: Controlled Fabrication and High Photocatalytic Properties[J]. Inorg. Chem.,2009,48(15):7261-7268.
    [22] Zhang L., Zhang H., Huang H., et al., Ag3PO4/SnO2semiconductor nanocomposites withenhanced photocatalytic activity and stability[J]. New J. Chem.,2012,36(8):1541-1544.
    [23] Zhang J., Xiong Z., Zhao X. S., Graphene-metal-oxide composites for the degradation ofdyes under visible light irradiation[J]. J. Mater. Chem.,2011,21(11):3634-3640.
    [24] Lambert T. N., Chavez C. A., Hernandez-Sanchez B., et al., Synthesis andCharacterization of Titania-Graphene Nanocomposites[J]. J. Phys. Chem. C,2009,113(46):19812-19823.
    [25] Wang D., Kou R., Choi D., et al., Ternary Self-Assembly of Ordered MetalOxide-Graphene Nanocomposites for Electrochemical Energy Storage[J]. Acs Nano,2010,4(3):1587-1595.
    [26] Zhang Y., Pan C., TiO2/graphene composite from thermal reaction of graphene oxide andits photocatalytic activity in visible light[J]. J. Mater. Sci.,2011,46(8):2622-2626.
    [27] Xu T., Zhang L., Cheng H., et al., Significantly enhanced photocatalytic performance ofZnO via graphene hybridization and the mechanism study[J]. Appl. Catal. B: Environ.,2011,101(3-4):382-387.
    [28] Liu J., Bai H., Wang Y., et al., Self-Assembling TiO2Nanorods on Large Graphene OxideSheets at a Two-Phase Interface and Their Anti-Recombination in PhotocatalyticApplications[J].Adv. Funct. Mater.,2010,20(23):4175-4181.
    [29] Yang Y., Liu T., Fabrication and characterization of graphene oxide/zinc oxide nanorodshybrid[J].Appl. Surf. Sci.,2011,257(21):8950-8954.
    [30] Chang H., Sun Z., Ho K. Y.-F., et al., A highly sensitive ultraviolet sensor based on afacile in situ solution-grown ZnO nanorod/graphene heterostructure[J]. Nanoscale,2011,3(1):258-264.
    [31] Gao E., Wang W., Shang M., et al., Synthesis and enhanced photocatalytic performanceof graphene-Bi2WO6composite[J]. Phys. Chem. Chem. Phys.,2011,13(7):2887-2893.
    [32] Ai Z., Ho W., Lee S., Efficient Visible Light Photocatalytic Removal of NO withBiOBr-Graphene Nanocomposites[J]. J. Phys. Chem. C,2011,115(51):25330-25337.
    [33] Wang P., Ao Y., Wang C., et al., A one-pot method for the preparation ofgraphene-Bi2MoO6hybrid photocatalysts that are responsive to visible-light and haveexcellent photocatalytic activity in the degradation of organic pollutants[J]. Carbon,2012,50(14):5256-5264.
    [34] Perera S. D., Mariano R. G., Vu K., et al., Hydrothermal Synthesis of Graphene-TiO2Nanotube Composites with Enhanced Photocatalytic Activity[J]. ACS Catal.,2012,2(6):949-956.
    [35] Chen L.-Y., Zhang W.-D., Xu B., et al., A Facile Hydrothermal Strategy for Synthesis ofSnO2Nanorods-Graphene Nanocomposites for High Performance Photocatalysis[J]. J.Nanosci. Nanotechnol.,2012,12(9):6921-6929.
    [36] Xu C., Sun J., Gao L., Direct growth of monodisperse SnO2nanorods on graphene ashigh capacity anode materials for lithium ion batteries[J]. J. Mater. Chem.,2012,22(3):975-979.
    [37] Zhang Z., Zou R., Song G., et al., Highly aligned SnO2nanorods on graphene sheets forgas sensors[J]. J. Mater. Chem.,2011,21(43):17360-17365.
    [38] Zhong C., Wang J., Chen Z., et al., SnO2-Graphene Composite Synthesized via anUltrafast and Environmentally Friendly Microwave Autoclave Method and Its Use as aSuperiorAnode for Lithium-Ion Batteries[J]. J. Phys. Chem. C,2011,115(50):25115-25120.
    [39] Xia G., Li N., Li D., et al., Graphene/Fe2O3/SnO2Ternary Nanocomposites as aHigh-Performance Anode for Lithium Ion Batteries[J]. Acs Appl. Mater. Inter.,2013,5(17):8607-8614.
    [40] Song H., Zhang L., He C., et al., Graphene sheets decorated with SnO2nanoparticles: insitu synthesis and highly efficient materials for cataluminescence gas sensors[J]. J. Mater.Chem.,2011,21(16):5972-5977.
    [41] Meng F.-L., Li H.-H., Kong L.-T., et al., Parts per billion-level detection of benzeneusing SnO2/graphene nanocomposite composed of sub-6nm SnO2nanoparticles[J]. Anal.Chim.Acta,2012,736:100-107.
    [42] Cui S., Wen Z., Mattson E. C., et al., Indium-doped SnO2nanoparticle-graphenenanohybrids: simple one-pot synthesis and their selective detection of NO2[J]. J. Mater. Chem.A,2013,1(14):4462-4467.
    [43] Teter D. M., Hemley R. J., Low-compressibility carbon nitrides[J]. Science,1996,271(5245):53-55.
    [44] Kroke E., Schwarz M., Horath-Bordon E., et al., Tri-s-triazine derivatives. Part I. Fromtrichloro-tri-s-triazine to graphitic C3N4structures[J]. New J. Chem.,2002,26(5):508-512.
    [45] Groenewolt M., Antonietti M., Synthesis of g-C3N4Nanoparticles in Mesoporous SilicaHost Matrices[J].Adv. Mater.,2005,17(14):1789-1792.
    [46] Li X.-H., Wang X., Antonietti M., Mesoporous g-C3N4nanorods as multifunctionalsupports of ultrafine metal nanoparticles: hydrogen generation from water and reduction ofnitrophenol with tandem catalysis in one step[J]. Chemi. Sci.,2012,3(6):2170-2174.
    [47] Meng Y., Shen J., Chen D., et al., Photodegradation performance of methylene blueaqueous solution onAg/g-C3N4catalyst[J]. Rare Metals,2011,30(1):276-279.
    [48] Cui Y., Ding Z., Liu P., et al., Metal-free activation of H2O2by g-C3N4under visible lightirradiation for the degradation of organic pollutants[J]. Phys. Chem. Chem. Phys.,2012,14(4):1455-1462.
    [49] Xiang Q., Yu J., Jaroniec M., Preparation and Enhanced Visible-Light PhotocatalyticH2-Production Activity of Graphene/C3N4Composites[J]. J. Phys. Chem. C,2011,115(15):7355-7363.
    [50] Yan S. C., Li Z. S., Zou Z. G., Photodegradation Performance of g-C3N4Fabricated byDirectly Heating Melamine[J]. Langmuir,2009,25(17):10397-10401.
    [51] Yan S. C., Lv S. B., Li Z. S., et al., Organic-inorganic composite photocatalyst of g-C3N4and TaON with improved visible light photocatalytic activities[J]. Dalton. Trans.,2010,39(6):1488-1491.
    [52] Dong F., Wu L., Sun Y., et al., Efficient synthesis of polymeric g-C3N4layered materialsas novel efficient visible light driven photocatalysts[J]. J. Mater. Chem.,2011,21(39):15171-15174.
    [53] Zou X.-X., Li G.-D., Wang Y.-N., et al., Direct conversion of urea into graphitic carbonnitride over mesoporous TiO2spheres under mild condition[J]. Chem. Commun.,2011,47(3):1066-1068.
    [54] Xu J., Li Y., Peng S., et al., Eosin Y-sensitized graphitic carbon nitride fabricated byheating urea for visible light photocatalytic hydrogen evolution: the effect of the pyrolysistemperature of urea[J]. Phys. Chem. Chem. Phys.,2013,15(20):7657-7665.
    [55] Hong J., Xia X., Wang Y., et al., Mesoporous carbon nitride with in situ sulfur doping forenhanced photocatalytic hydrogen evolution from water under visible light[J]. J. Mater.Chem.,2012,22(30):15006-15012.
    [56] Dong F., Sun Y., Wu L., et al., Facile transformation of low cost thiourea intonitrogen-rich graphitic carbon nitride nanocatalyst with high visible light photocatalyticperformance[J]. Catal. Sci. Technol.,2012,2(7):1332-1335.
    [57] Zhang G., Zhang J., Zhang M., et al., Polycondensation of thiourea into carbon nitridesemiconductors as visible light photocatalysts[J]. J. Mater. Chem.,2012,(22):8083-8091.
    [58] Zhang Y., Liu J., Wu G., et al., Porous graphitic carbon nitride synthesized via directpolymerization of urea for efficient sunlight-driven photocatalytic hydrogen production[J].Nanoscale,2012,4(16):5300-5303.
    [59] Gillan E. G., Synthesis of Nitrogen-Rich Carbon Nitride Networks from an EnergeticMolecularAzide Precursor[J]. Chem. Mater.,2000,12(12):3906-3912.
    [60] Komatsu T., Nakamura T., Polycondensation/pyrolysis of tris-s-triazine derivativesleading to graphite-like carbon nitrides[J]. J. Mater. Chem.,2001,11(2):474-478.
    [61] Niu P., Zhang L., Liu G., et al., Graphene-Like Carbon Nitride Nanosheets for ImprovedPhotocatalyticActivities[J].Adv. Funct. Mater.,2012,22(22):4763-4770.
    [62] Wang Y., Wang X., Antonietti M., Polymeric Graphitic Carbon Nitride as aHeterogeneous Organocatalyst: From Photochemistry to Multipurpose Catalysis toSustainable Chemistry[J].Angew. Chem. Int. Ed.,2012,51(1):68-89.
    [63] Sano T., Tsutsui S., Koike K., et al., Activation of graphitic carbon nitride (g-C3N4) byalkaline hydrothermal treatment for photocatalytic NO oxidation in gas phase[J]. J. Mater.Chem.A,2013,1(21):6489-6496.
    [64] Xu Y.-S., Zhang W.-D., Anion exchange strategy for construction of sesame-biscuit-likeBi2O2CO3/Bi2MoO6nanocomposites with enhanced photocatalytic activity[J]. Appl. Catal. B:Environ.,2013,140-141:306-316.
    [65] Wang X., Maeda K., Thomas A., et al., A metal-free polymeric photocatalyst forhydrogen production from water under visible light[J]. Nat. Mater.,2009,8(1):76-80.
    [66] Zhang Y., Thomas A., Antonietti M., et al., Activation of Carbon Nitride Solids byProtonation: Morphology Changes, Enhanced Ionic Conductivity, and PhotoconductionExperiments[J]. J.Am. Chem. Soc.,2008,131(1):50-51.
    [67] Liu G., Niu P., Sun C., et al., Unique Electronic Structure Induced High Photoreactivityof Sulfur-Doped Graphitic C3N4[J]. J. Am. Chem. Soc.,2010,132(33):11642-11648.
    [68] Yan S. C., Li Z. S., Zou Z. G., Photodegradation of Rhodamine B and Methyl Orangeover Boron-Doped g-C3N4under Visible Light Irradiation[J]. Langmuir,2010,26(6):3894-3901.
    [69] Li J., Shen B., Hong Z., et al., A facile approach to synthesize novel oxygen-dopedg-C3N4with superior visible-light photoreactivity[J]. Chem. Commun.,2012,48(98):12017-12019.
    [70] Gao J., Zhou Y., Li Z., et al., High-yield synthesis of millimetre-long, semiconductingcarbon nitride nanotubes with intense photoluminescence emission and reproduciblephotoconductivity[J]. Nanoscale,2012,4(12):3687-3692.
    [71] Zhang J., Zhang M., Lin S., et al., Molecular doping of carbon nitride photocatalysts withtunable bandgap and enhanced activity[J]. J. Catal.,2014,310:24-30.
    [72] Zhang J., Zhang G., Chen X., et al., Co-Monomer Control of Carbon NitrideSemiconductors to Optimize Hydrogen Evolution with Visible Light[J]. Angew. Chem. Int.Ed.,2012,51(13):3183-3187.
    [73] Huang J., Ho W., Wang X., Metal-free disinfection effects induced by graphitic carbonnitride polymers under visible light illumination[J]. Chem. Commun.,2014,50(33):4338-4340.
    [74] Wang D.-P., Tang Y., Zhang W.-D., A carbon nitride electrode for highly selective andsensitive determination of lead(II)[J]. MicrochimicaActa,2013,180(13-14):1303-1308.
    [75] She X., Xu H., Xu Y., et al., Exfoliated graphene-like carbon nitride in organic solvents:enhanced photocatalytic activity and highly selective and sensitive sensor for the detection oftrace amounts of Cu2+[J]. J. Mater. Chem.A,2014,2(8):2563-2570.
    [76] Goettmann F., Thomas A., Antonietti M., Metal-Free Activation of CO2by MesoporousGraphitic Carbon Nitride[J].Angew. Chem. Int. Ed.,2007,46(15):2717-2720.
    [77] Su Q., Sun J., Wang J., et al., Urea-derived graphitic carbon nitride as an efficientheterogeneous catalyst for CO2conversion into cyclic carbonates[J]. Catal. Sci. Technol,2014,4:1556-1562.
    [78] Kiskan B., Zhang J., Wang X., et al., Mesoporous Graphitic Carbon Nitride as aHeterogeneous Visible Light Photoinitiator for Radical Polymerization[J]. ACS Macro Lett.,2012,1(5):546-549.
    [79] Yang J.-H., Kim G., Domen K., et al., Tailoring the Mesoporous Texture of GraphiticCarbon Nitride[J]. J. Nanosci. Nanotechnol.,2013,13(11):7487-7492.
    [80] Yang S., Zhou W., Ge C., et al., Mesoporous polymeric semiconductor materials ofgraphitic-C3N4: general and efficient synthesis and their integration with synergistic AgBrNPs for enhanced photocatalytic performances[J]. RSCAdv.,2013,3(16):5631-5638.
    [81] Zheng Y., Jiao Y., Chen J., et al., Nanoporous Graphitic-C3N4@Carbon Metal-FreeElectrocatalysts for Highly Efficient Oxygen Reduction[J]. J. Am. Chem. Soc.,2011,133(50):20116-20119.
    [82] Li X.-H., Zhang J., Chen X., et al., Condensed Graphitic Carbon Nitride Nanorods byNanoconfinement: Promotion of Crystallinity on Photocatalytic Conversion[J]. Chem. Mater.,2011,23(19):4344-4348.
    [83] Xu J., Zhang L., Shi R., et al., Chemical exfoliation of graphitic carbon nitride forefficient heterogeneous photocatalysis[J]. J. Mater. Chem.A,2013,1(46):14766-14772.
    [84] Shi Y., Wan Y., Zhao D., Ordered mesoporous non-oxide materials[J]. Chem. Soc. Rev.,2011,40(7):3854-3878.
    [85] Dong G., Zhao K., Zhang L., Carbon self-doping induced high electronic conductivityand photoreactivity of g-C3N4[J]. Chem. Commun.,2012,48(49):6178-6180.
    [86] Zhang Y., Mori T., Ye J., et al., Phosphorus-Doped Carbon Nitride Solid: EnhancedElectrical Conductivity and Photocurrent Generation[J]. J. Am. Chem. Soc.,2010,132(18):6294-6295.
    [87] Ge L., Han C., Xiao X., et al., Enhanced visible light photocatalytic hydrogen evolutionof sulfur-doped polymeric g-C3N4photocatalysts[J]. Mater. Res. Bull.,2013,48(10):3919-3925.
    [88] Zhang L., Chen X., Guan J., et al., Facile synthesis of phosphorus doped graphitic carbonnitride polymers with enhanced visible-light photocatalytic activity[J]. Mater. Res. Bull.,2013,48(9):3485-3491.
    [89] Li X. F., Zhang J., Shen L. H., et al., Synthesis and characterization of nanocrystallinehexagonal boron carbo-nitride under high temperature and high pressure[J]. J. Phys.: Condens.Matter,2007,19(42):425235-425240.
    [90] Wang Y., Zhang J., Wang X., et al., Boron-and Fluorine-Containing Mesoporous CarbonNitride Polymers: Metal-Free Catalysts for Cyclohexane Oxidation[J]. Angew. Chem. Int. Ed.,2010,49(19):3356-3359.
    [91] Lu X., Wang H., Yang Y., et al., Synthesis, Al3+/Mg2+Intercalation and Structure Study ofGraphite-like Carbon Nitride[J]. J. Mater. Sci. Technol.,2011,27(3):245-251.
    [92] Chen X., Zhang J., Fu X., et al., Fe-g-C3N4-Catalyzed Oxidation of Benzene to PhenolUsing Hydrogen Peroxide and Visible Light[J]. J. Am. Chem. Soc.,2009,131(33):11658-11659.
    [93] Ding Z., Chen X., Antonietti M., et al., Synthesis of Transition Metal-Modified CarbonNitride Polymers for Selective Hydrocarbon Oxidation[J]. ChemSusChem,2011,4(2):274-281.
    [94] Ding G., Wang W., Jiang T., et al., Highly Selective Synthesis of Phenol from Benzeneover a Vanadium-Doped Graphitic Carbon Nitride Catalyst[J]. ChemCatChem,2013,5(1):192-200.
    [95] Bing Y., Qiuye L., Hideo I., et al., Hydrogen production using zinc-doped carbon nitridecatalyst irradiated with visible light[J]. Sci. Technol. Adv. Mat.,2011,12(3):034401.
    [96] Tang Y., Jiang Z., Xing G., et al., Efficient Ag@AgCl Cubic Cage Photocatalysts Profitfrom Ultrafast Plasmon-Induced Electron Transfer Processes[J]. Adv. Funct. Mater.,2013,23(23):2932-2940.
    [97] Han L., Wang P., Zhu C., et al., Facile solvothermal synthesis of cube-like Ag@AgCl: ahighly efficient visible light photocatalyst[J]. Nanoscale,2011,3(7):2931-2935.
    [98] Li J., Guo Z., Zhu Z., Ag/Bi2WO6plasmonic composites with enhanced visiblephotocatalytic activity[J]. Ceram. Int.,2014,40(5):6495-6501.
    [99] Zhou Y., Zhang Q., Lin Y., et al., One-step hydrothermal synthesis of hierarchicalAg/Bi2WO6composites: In situ growth monitoring and photocatalytic activity studies[J]. Sci.China Chem.,2013,56(4):435-442.
    [100] Ge L., Han C., Liu J., et al., Enhanced visible light photocatalytic activity of novelpolymeric g-C3N4loaded with Ag nanoparticles[J]. Appl. Catal. A: Gen,2011,409-410:215-222.
    [101] Chang C., Fu Y., Hu M., et al., Photodegradation of bisphenol A by highly stablepalladium-doped mesoporous graphite carbon nitride (Pd/mpg-C3N4) under simulated solarlight irradiation[J].Appl. Catal. B: Environ.,2013,142-143:553-560.
    [102] Yu J., Wang S., Cheng B., et al., Noble metal-free Ni(OH)2-g-C3N4compositephotocatalyst with enhanced visible-light photocatalytic H2-production activity[J]. Catal. Sci.Technol.,2013,3(7):1782-1789.
    [103] Chen Z., Sun P., Fan B., et al., In-Situ Template-Free Ion-Exchange Process to PrepareVisible-Light-Active g-C3N4/NiS Composite Photocatalysts with Enhanced HydrogenEvolutionActivity[J]. J. Phys. Chem. C,2014,118(15):7801-7807.
    [104] Shen J., Yang H., Shen Q., et al., Template-free preparation and properties ofmesoporous g-C3N4/TiO2nanocomposite photocatalyst[J]. CrystEngComm,2014,16(10):1868-1872.
    [105] Zhang J., Wang Y., Jin J., et al., Efficient Visible-Light Photocatalytic HydrogenEvolution and Enhanced Photostability of Core/Shell CdS/g-C3N4Nanowires[J]. Acs Appl.Mater. Inter.,2013,5(20):10317-10324.
    [106] Wang Y., Shi R., Lin J., et al., Enhancement of photocurrent and photocatalytic activityof ZnO hybridized with graphite-like C3N4[J]. Energy Environ. Sci.,2011,4(8):2922-2929.
    [107] Chen J., Shen S., Guo P., et al., In-situ reduction synthesis of nano-sized Cu2O particlesmodifying g-C3N4for enhanced photocatalytic hydrogen production[J]. Appl. Catal. B:Environ.,2014,152-153:335-341.
    [108] Chang C., Zhu L., Wang S., et al., Novel Mesoporous Graphite Carbon Nitride/BiOIHeterojunction for Enhancing Photocatalytic Performance Under Visible-Light Irradiation[J].Acs Appl. Mater. Inter.,2014.6(7):5083-5093.
    [109] Jiang D., Chen L., Zhu J., et al., Novel p-n heterojunction photocatalyst constructed byporous graphite-like C3N4and nanostructured BiOI: facile synthesis and enhancedphotocatalytic activity[J]. Dalton Trans.,2013,42(44):15726-15734.
    [110] Ge L., Han C., Liu J., Novel visible light-induced g-C3N4/Bi2WO6compositephotocatalysts for efficient degradation of methyl orange[J]. Appl. Catal. B: Environ.,2011,108-109:100-107.
    [111] Li Q., Yue B., Iwai H., et al., Carbon Nitride Polymers Sensitized with N-DopedTantalicAcid for Visible Light-Induced Photocatalytic Hydrogen Evolution[J]. J. Phys. Chem.C,2010,114(9):4100-4105.
    [112] Fu J., Tian Y., Chang B., et al., BiOBr-carbon nitride heterojunctions: synthesis,enhanced activity and photocatalytic mechanism[J]. J. Mater. Chem.,2012,22(39):21159-21166.
    [113] Fu J., Chang B., Tian Y., et al., Novel C3N4-CdS composite photocatalysts withorganic-inorganic heterojunctions: in situ synthesis, exceptional activity, high stability andphotocatalytic mechanism[J]. J. Mater. Chem.A,2013,1(9):3083-3090.
    [114] Pan C., Xu J., Wang Y., et al., Dramatic Activity of C3N4/BiPO4Photocatalyst withCore/Shell Structure Formed by Self-Assembly[J]. Adv. Funct. Mater.,2012,22(7):1518-1524.
    [115] Wang Y., Bai X., Pan C., et al., Enhancement of photocatalytic activity of Bi2WO6hybridized with graphite-like C3N4[J]. J. Mater. Chem.,2012,22(23):11568-11573.
    [116] Wang Y., Wang Z., Muhammad S., et al., Graphite-like C3N4hybridized ZnWO4nanorods: Synthesis and its enhanced photocatalysis in visible light[J]. CrystEngComm,2012,14(15):5065-5070.
    [117] Bai X., Wang L., Zong R., et al., Photocatalytic Activity Enhanced via g-C3N4Nanoplates to Nanorods[J]. J. Phys. Chem. C,2013,117(19):9952-9961.
    [118] Ye S., Qiu L.-G., Yuan Y.-P., et al., Facile fabrication of magnetically separable graphiticcarbon nitride photocatalysts with enhanced photocatalytic activity under visible light[J]. J.Mater. Chem.A,2013,1(9):3008-3015.
    [119] Zhou X., Jin B., Chen R., et al., Synthesis of porous Fe3O4/g-C3N4nanospheres ashighly efficient and recyclable photocatalysts[J]. Mater. Res. Bull.,2013,48(4):1447-1452.
    [120] Zhang S., Li J., Zeng M., et al., In Situ Synthesis of Water-Soluble Magnetic GraphiticCarbon Nitride Photocatalyst and Its Synergistic Catalytic Performance[J]. Acs Appl. Mater.Inter.,2013,5(23):12735-12743.
    [121] Huang L., Xu H., Zhang R., et al., Synthesis and characterization of g-C3N4/MoO3photocatalyst with improved visible-light photoactivity[J].Appl. Surf. Sci.,2013,283:25-32.
    [122] He Y., Zhang L., Wang X., et al., Enhanced photodegradation activity of methyl orangeover Z-scheme type MoO3-g-C3N4composite under visible light irradiation[J]. RSC Adv.,2014,4(26):13610-13619.
    [123] Deng F., Min L., Luo X., et al., Visible-light photocatalytic degradation performancesand thermal stability due to the synergetic effect of TiO2with conductive copolymers ofpolyaniline and polypyrrole[J]. Nanoscale,2013,5(18):8703-8710.
    [124] Shang M., Wang W., Sun S., et al., Efficient Visible Light-Induced PhotocatalyticDegradation of Contaminant by Spindle-like PANI/BiVO4[J]. J. Phys. Chem. C,2009,113(47):20228-20233.
    [125] Xiong P., Chen Q., He M., et al., Cobalt ferrite-polyaniline heteroarchitecture: amagnetically recyclable photocatalyst with highly enhanced performances[J]. J. Mater. Chem.,2012,22(34):17485-17493.
    [126] Zhang S., Zhao L., Zeng M., et al., Hierarchical nanocomposites of polyanilinenanorods arrays on graphitic carbon nitride sheets with synergistic effect for photocatalysis[J].Catal. Today,2014,224:114-121.
    [127] Ge L., Han C., Liu J., In situ synthesis and enhanced visible light photocatalyticactivities of novel PANI-g-C3N4composite photocatalysts[J]. J. Mater. Chem.,2012,22(23):11843-11850.
    [128] Sui Y., Liu J., Zhang Y., et al., Dispersed conductive polymer nanoparticles on graphiticcarbon nitride for enhanced solar-driven hydrogen evolution from pure water[J]. Nanoscale,2013,5(19):9150-9155.
    [129] Yan H., Huang Y., Polymer composites of carbon nitride and poly(3-hexylthiophene) toachieve enhanced hydrogen production from water under visible light[J]. Chem. Commun.,2011,47(12):4168-4170.
    [130] Gawande S., Thakare S. R., Ternary Polymer Composite of Graphene, Carbon Nitride,and Poly(3-hexylthiophene): an Efficient Photocatalyst[J]. ChemCatChem,2012,4(11):1759-1763.
    [131] Zhang X., Yu L., Zhuang C., et al., Highly Asymmetric Phthalocyanine as a Sensitizerof Graphitic Carbon Nitride for Extremely Efficient Photocatalytic H2Production underNear-Infrared Light[J].ACS Catal.,2013,4(1):162-170.
    [132] Min S., Lu G., Enhanced Electron Transfer from the Excited Eosin Y to mpg-C3N4forHighly Efficient Hydrogen Evolution under550nm Irradiation[J]. J. Phys. Chem. C,2012,116(37):19644-19652.
    [133] Wang Y., Hong J., Zhang W., et al., Carbon nitride nanosheets for photocatalytichydrogen evolution: remarkably enhanced activity by dye sensitization[J]. Catal. Sci. Technol.,2013,3(7):1703-1711.
    [134] Takanabe K., Kamata K., Wang X., et al., Photocatalytic hydrogen evolution ondye-sensitized mesoporous carbon nitride photocatalyst with magnesium phthalocyanine[J].Phys. Chem. Chem. Phys.,2010,12(40):13020-13025.
    [135] Li Y., Zhang H., Liu P., et al., Cross-Linked g-C3N4/rGO Nanocomposites with TunableBand Structure and Enhanced Visible Light Photocatalytic Activity[J]. Small,2013,9(19):3336-3344.
    [136] Dai K., Lu L., Liu Q., et al., Sonication assisted preparation of grapheneoxide/graphitic-C3N4nanosheet hybrid with reinforced photocurrent for photocatalystapplications[J]. Dalton Trans.,2014,43(17):6295-6299.
    [137] Min Y., Qi X. F., Xu Q., et al., Enhanced reactive oxygen species on a phosphatemodified C3N4/graphene photocatalyst for pollutant degradation[J]. CrystEngComm,2014,16(7):1287-1295.
    [138] Xu Y., Xu H., Wang L., et al., The CNT modified white C3N4composite photocatalystwith enhanced visible-light response photoactivity[J]. Dalton Trans.,2013,42(21):7604-7613.
    [1] Zhang W.-D., Xu B., Hong Y.-X., et al., Electrochemical oxidation of salicylic acid atwell-aligned multiwalled carbon nanotube electrode and its detection, J. Solid StateElectrochem.,2010,14(9):1713-1718.
    [2] Wu H.-X., Cao W.-M., Li Y., et al., In situ growth of copper nanoparticles on multiwalledcarbon nanotubes and their application as non-enzymatic glucose sensor materials,Electrochim. Acta,2010,55(11):3734-3740.
    [3] Xu B., Ye M.-L., Yu Y.-X., et al., A highly sensitive hydrogen peroxide amperometricsensor based on MnO2-modified vertically aligned multiwalled carbon nanotubes, Anal. Chim.Acta,2010,674(1):20-26.
    [4] Yang J., Zhang W.-D., Gunasekaran S., An amperometric non-enzymatic glucose sensorby electrodepositing copper nanocubes onto vertically well-aligned multi-walled carbonnanotube arrays, Biosens. Bioelectron.,2010,26(1):279-284.
    [5] Park J. H., Ko J. M., Park O. O., Carbon nanotube/RuO2nanocomposite electrodes forsupercapacitors, J. Electrochem. Soc.,2003,150(7):A864-A867.
    [6] Zhang S., Peng C., Ng K. C., et al., Nanocomposites of manganese oxides and carbonnanotubes for aqueous supercapacitor stacks, Electrochim.Acta,2010,55(25):7447-7453.
    [7] Xu B., Zhang W.-D., Modification of vertically aligned carbon nanotubes with RuO2for asolid-state pH sensor, Electrochim.Acta,2010,55(8):2859-2864.
    [8] Mermin N. D., Crystalline Order in Two Dimensions, Phys. Rev.,1968,176:250-254.
    [9] Novoselov K. S., Geim A. K., Morozov S., et al., Electric field effect in atomically thincarbon films, Science,2004,306(5659):666-669.
    [10] Gautam M., Jayatissa A. H., Gas sensing properties of graphene synthesized by chemicalvapor deposition, Mater. Sci. Eng. C,2011,31(7):1405-1411.
    [11] Liu W., Li H., Xu C., et al., Synthesis of high-quality monolayer and bilayer graphene oncopper using chemical vapor deposition, Carbon,2011,49(13):4122-4130.
    [12] Li X., Cai W., An J., et al., Large-Area Synthesis of High-Quality and Uniform GrapheneFilms on Copper Foils, Science,2009,324(5932):1312-1314.
    [13] Reina A., Jia X., Ho J., et al., Large Area, Few-Layer Graphene Films on ArbitrarySubstrates by Chemical Vapor Deposition, Nano Lett.,2008,9(1):30-35.
    [14] Gomez De Arco L., Zhang Y., Schlenker C. W., et al., Continuous, Highly Flexible, andTransparent Graphene Films by Chemical Vapor Deposition for Organic Photovoltaics, ACSNano,2010,4(5):2865-2873.
    [15] Li B., Cao H., ZnO@graphene composite with enhanced performance for the removal ofdye from water, J. Mater. Chem.,2011,21(10):3346-3349.
    [16] Zhang L.-S., Jiang L.-Y., Yan H.-J., et al., Mono dispersed SnO2nanoparticles on bothsides of single layer graphene sheets as anode materials in Li-ion batteries, J. Mater. Chem.,2010,20(26):5462.
    [17] Fan W., Lai Q., Zhang Q., et al., Nanocomposites of TiO2and Reduced Graphene Oxideas Efficient Photocatalysts for Hydrogen Evolution, J. Phys. Chem. C,2011,115(21):10694-10701.
    [18] Xu P., Dong L., Neek-Amal M., et al., Self-Organized Platinum Nanoparticles onFreestanding Graphene, ACS Nano,2014,8(3):2697-2703.
    [19] Lu T., Pan L., Li H., et al., Reduced graphene oxide-carbon nanotubes composite filmsby electrophoretic deposition method for supercapacitors, J. Electroanal. Chem.,2011,661(1):270-273.
    [20] Lu X., Dou H., Yang S., et al., Fabrication and electrochemical capacitance ofhierarchical graphene/polyaniline/carbon nanotube ternary composite film, Electrochim. Acta,2011,56(25):9224-9232.
    [21] Huang X., Zhou X., Zhou L., et al., A Facile One-Step Solvothermal Synthesis ofSnO2/Graphene Nanocomposite and Its Application as an Anode Material for Lithium-IonBatteries, ChemPhysChem,2011,12(2):278-281.
    [22] Liu J., Liu L., Bai H., et al., Gram-scale production of graphene oxide-TiO2nanorodcomposites: Towards high-activity photocatalytic materials, Appl. Catal. B: Environ.,2011,106(1):76-82.
    [23] Gao E., Wang W., Shang M., et al., Synthesis and enhanced photocatalytic performanceof graphene-Bi2WO6composite, Phys Chem Chem Phys,2011,13(7):2887-2893.
    [24] Zhou F., Shi R., Zhu Y., Significant enhancement of the visible photocatalyticdegradation performances of γ-Bi2MoO6nanoplate by graphene hybridization, J. Mol. Catal.A: Chem.,2011,340(1):77-82.
    [25] Ding S., Chen J. S., Luan D., et al., Graphene-supported anatase TiO2nanosheets for fastlithium storage, Chem. Commun.,2011,47(20):5780-5782.
    [26] Ding S., Luan D., Boey F. Y. C., et al., SnO2nanosheets grown on graphene sheets withenhanced lithium storage properties, Chem. Commun.,2011,47(25):7155-7157.
    [27] Hummers W. S., Offeman R. E., Preparation of Graphitic Oxide, J. Am. Chem. Soc.,1958,80(6):1339-1339.
    [28] Fan X., Peng W., Li Y., et al., Deoxygenation of exfoliated graphite oxide under alkalineconditions: a green route to graphene preparation, Adv. Mater.,2008,20(23):4490-4493.
    [29] Huang H., Ong C., Guo J., et al., Pt surface modification of SnO2nanorod arrays for COand H2sensors, Nanoscale,2010,2(7):1203-1207.
    [30] Zhang B., Yu X., Ge C., et al., Novel3-D superstructures made up of SnO2@C core-shellnanochains for energy storage applications, Chem. Commun.,2010,46(48):9188-9190.
    [31] Zhao Y., Li J., Ding Y., et al., A nanocomposite of SnO2and single-walled carbonnanohorns as a long life and high capacity anode material for lithium ion batteries, RSC Adv.,2011,1(5):852-856.
    [32] Li Z., Zhao Q., Fan W., et al., Porous SnO2nanospheres as sensitive gas sensors forvolatile organic compounds detection, Nanoscale,2011,3(4):1646-1652.
    [33] Ramasamy E., Lee J., Ordered mesoporous Zn-doped SnO2synthesized byexotemplating for efficient dye-sensitized solar cells, Energy Environ. Sci.,2011,4(7):2529-2536.
    [34] Zhang D. F., Sun L. D., Yin J. L., et al., Low-Temperature Fabrication of HighlyCrystalline SnO2Nanorods, Adv. Mater.,2003,15(12):1022-1025.
    [35] Liu Y., Zheng C., Wang W., et al., Production of SnO2nanorods by redox reaction, J.Cryst. Growth,2001,233(1):8-12.
    [36] Chen Y., Cui X., Zhang K., et al., Bulk-quantity synthesis and self-catalytic VLS growthof SnO2nanowires by lower-temperature evaporation, Chem. Phys. Lett.,2003,369(1):16-20.
    [37] Zhang Y., Kolmakov A., Chretien S., et al., Control of catalytic reactions at the surface ofa metal oxide nanowire by manipulating electron density inside it, Nano Lett.,2004,4(3):403-407.
    [38] Wang Z., Zhang H., Li N., et al., Laterally confined graphene nanosheets andgraphene/SnO2composites as high-rate anode materials for lithium-ion batteries, Nano Res.,2010,3(10):748-756.
    [39] Zhang M., Lei D., Du Z., et al., Fast synthesis of SnO2/graphene composites by reducinggraphene oxide with stannous ions, J. Mater. Chem.,2011,21(6):1673-1676.
    [40] Song H., Zhang L., He C., et al., Graphene sheets decorated with SnO2nanoparticles: insitu synthesis and highly efficient materials for cataluminescence gas sensors, J. Mater. Chem.,2011,21(16):5972-5977.
    [41] Wang W., Hao Q., Lei W., et al., Graphene/SnO2/polypyrrole ternary nanocomposites assupercapacitor electrode materials, RSCAdv.,2012,2(27):10268-10274.
    [42] Kar A., Kundu S., Patra A., Surface defect-related luminescence properties of SnO2nanorods and nanoparticles, J. Phys. Chem. C,2010,115(1):118-124.
    [43] McAllister M. J., Li J.-L., Adamson D. H., et al., Single sheet functionalized graphene byoxidation and thermal expansion of graphite, Chem. Mater.,2007,19(18):4396-4404.
    [44] Wan L., Li J., Feng J., et al., Anatase TiO2films with2.2eV band gap prepared bymicro-arc oxidation, Mater. Sci. Eng.: B,2007,139(2):216-220.
    [45] Liu Z., Robinson J. T., Sun X., et al., PEGylated nanographene oxide for delivery ofwater-insoluble cancer drugs, J.Am. Chem. Soc.,2008,130(33):10876-10877.
    [46] Liu Q., Liu Z., Zhang X., et al., Polymer photovoltaic cells based on solution-processablegraphene and P3HT,Adv. Funct. Mater.,2009,19(6):
    [1] Yu Y., Xu D., Single-crystalline TiO2nanorods: Highly active and easily recycledphotocatalysts,Appl. Catal. B: Environ.,2007,73:166-171.
    [2] Wu S., Cao H., Yin S., et al., Amino Acid-Assisted Hydrothermal Synthesis andPhotocatalysis of SnO2Nanocrystals, J. Phys. Chem. C,2009,113(14):17893-17898.
    [3] Daneshvar N., Salari D., Khataee A. R., Photocatalytic degradation of azo dye acid red14in water on ZnO as an alternative catalyst to TiO2, J. Photochem. Photobiol. A-Chem.,2004,162(2-3):317-322.
    [4] Wang C., Shao C., Zhang X., et al., SnO2Nanostructures-TiO2NanofibersHeterostructures: Controlled Fabrication and High Photocatalytic Properties, Inorg. Chem.,2009,48(15):7261-7268.
    [5] Zhang H., Lv X. J., Li Y. M., et al., P25-Graphene Composite as a High PerformancePhotocatalyst, ACS Nano,2010,4(1):380-386.
    [6] Yu Y., Yu J. C., Yu J. G., et al., Enhancement of photocatalytic activity of mesoporous TiO2by using carbon nanotubes,Appl. Catal. A:Gen.,2005,289:186-196.
    [7] Yu Y., Yu J. C., Chan C. Y., et al., Enhancement of adsorption and photocatalytic activityof TiO2by using carbon nanotubes for the treatment of azo dye, Appl. Catal. B:Environ.,2005,61:1-11.
    [8] Machida M., Mochimaru T., Tatsumoto H., Lead(II) adsorption onto the graphene layer ofcarbonaceous materials in aqueous solution, Carbon,2006,44(13):2681-2688.
    [9] Ramesha G. K., Vijaya Kumara A., Muralidhara H. B., et al., Graphene and grapheneoxide as effective adsorbents toward anionic and cationic dyes, J. Colloid Interface Sci.,2011,3361(1):270-277.
    [10] Sun H., Cao L., Lu L., Magnetite/reduced graphene oxide nanocomposites: One stepsolvothermal synthesis and use as a novel platform for removal of dye pollutants, Nano Res.,2011,4(6):550-562.
    [11] Xu T., Zhang L., Cheng H., et al., Significantly enhanced photocatalytic performance ofZnO via graphene hybridization and the mechanism study,Appl.Catal. B: Environ.,2011,101:382-387.
    [12] Mermin N. D., Crystalline Order in Two Dimensions, Phys. Rev.,1968,176:250-254.
    [13] Novoselov K. S., Geim A. K., Morozov S. V., et al., Electric Field Effect in AtomicallyThin Carbon Films, Science,2004,306(5659):666-669.
    [14] Günther S., D nhardt S., Wang B., et al., Single Terrace Growth of Graphene on a MetalSurface, Nano Lett.,2011,11(5):1895-1900.
    [15] Kosynkin D. V., Higginbotham A. L., Sinitskii A., et al., Longitudinal unzipping ofcarbon nanotubes to form graphene nanoribbons, Nature,2009,458(7240):872-876.
    [16] Jiao L., Zhang L., Wang X., et al., Narrow graphene nanoribbons from carbon nanotubes,Nature,2009,458(7420):877-880.
    [17] Jin Z., McNicholas T. P., Shih C.-J., et al., Click Chemistry on Solution-DispersedGraphene and Monolayer CVD Graphene, Chem.Mater.,2011,23(14):3362-3370.
    [18] Hummers W. S., Offeman R. E., Preparation of Graphitic Oxide, J. Am. Chem. Soc.,1958,80(6):1339-1339.
    [19] Zhou F., Shi R., Zhu Y., Significant enhancement of the visible photocatalyticdegradation performances of γ-Bi2MoO6nanoplate by graphene hybridization, J. Mol. Catal.A: Chem.,2011,340(1-2):77-82.
    [20] Li B., Cao H., ZnO@graphene composite with enhanced performance for the removal ofdye from water, J. Mater. Chem,2011,21(10):3346-3349.
    [21] Fan X., Peng W., Li Y., et al., Deoxygenation of Exfoliated Graphite Oxide underAlkaline Conditions: A Green Route to Graphene Preparation, Adv. Mater.,2008,20(23):4490-4493.
    [22] Gao E., Wang W., Shang M., et al., Synthesis and enhanced photocatalytic performanceof graphene-Bi2WO6composite, PCCP,2011,13(7):2887-2893.
    [23] Zhao B., Zhang G., Song J., et al., Bivalent tin ion assisted reduction for preparinggraphene/SnO2composite with good cyclic performance and lithium storage capacity,Electrochim. Acta,2011,56(21):7340-7346.
    [24] Paek S.-M., Yoo E., Honma I., Enhanced Cyclic Performance and Lithium StorageCapacity of SnO2/Graphene Nanoporous Electrodes with Three-Dimensionally DelaminatedFlexible Structure, Nano Lett.,2008,9(1):72-75.
    [25] Yao J., Shen X., Wang B., et al., In situ chemical synthesis of SnO2-graphenenanocomposite as anode materials for lithium-ion batteries, Electrochem. Commun.,2009,11(10):1849-1852.
    [26] Song H., Zhang L., He C., et al., Graphene sheets decorated with SnO2nanoparticles: insitu synthesis and highly efficient materials for cataluminescence gas sensors, J. Mater. Chem.,2011,21(16):5972-5977.
    [27] Zhang Z., Zou R., Song G., et al., Highly aligned SnO2nanorods on graphene sheets forgas sensors, J. Mater. Chem.,2011,21(43):17360-17365.
    [28] Lu T., Zhang Y., Li H., et al., Electrochemical behaviors of graphene-ZnO andgraphene-SnO2composite films for supercapacitors, Electrochim Acta,2010,55(13):4170-4173.
    [29] Fenghua L., Jiangfeng S., Huafeng Y., et al., One-step synthesis of graphene/SnO2nanocomposites and its application in electrochemical supercapacitors, Nanotechnology,2009,20(45):455602.
    [30] Humaira S., Kemp K. C., Vimlesh C., et al., Graphene-SnO2composites for highlyefficient photocatalytic degradation of methylene blue under sunlight, Nanotechnology,2012,23(35):355705.
    [31] Chen L.-Y., Zhang W.-D., Xu B., et al., A Facile Hydrothermal Strategy for Synthesis ofSnO2Nanorods-Graphene Nanocomposites for High Performance Photocatalysis, J. Nanosci.Nanotechnol.,2012,12(9):6921-6929.
    [32] Zhang C., Peng X., Guo Z., et al., Carbon-coated SnO2/graphene nanosheets as highlyreversible anode materials for lithium ion batteries, Carbon,2012,50(5):1897-1903.
    [33] Wang C., Du G., St hl K., et al., Ultrathin SnO2Nanosheets: Oriented AttachmentMechanism, Nonstoichiometric Defects, and Enhanced Lithium-Ion Battery Performances, J.Phys. Chem. C,2012,116(16):4000-4011.
    [34] Wan L., Li J. F., Feng J. Y., et al., Anatase TiO2films with2.2eV band gap prepared bymicro-arc oxidation, Mater. Sci. Eng. B,2007,139(2-3):216-220.
    [35] Kim M.-H., Kwon Y.-U., Semiconducting Divalent Metal Oxides as Blocking LayerMaterial for SnO2-Based Dye-Sensitized Solar Cells, J. Phys. Chem. C,2011,115(46):23120-23125.
    [1] Yan S. C., Li Z. S., Zou Z. G., Photodegradation Performance of g-C3N4Fabricated byDirectly Heating Melamine[J]. Langmuir,2009,25(17):10397-10401.
    [2] Yan S. C., Li Z. S., Zou Z. G., Photodegradation of Rhodamine B and Methyl Orange overBoron-Doped g-C3N4under Visible Light Irradiation[J]. Langmuir,2010,26(6):3894-3901.
    [3] Lee E. Z., Lee S. U., Heo N.-S., et al., A fluorescent sensor for selective detection ofcyanide using mesoporous graphitic carbon(iv) nitride[J]. Chem. Commun.,2012,48(33):3942-3944.
    [4] Cheng C., Huang Y., Tian X., et al., Electrogenerated Chemiluminescence Behavior ofGraphite-like Carbon Nitride and Its Application in Selective Sensing Cu2+[J]. Anal. Chem.,2012,84(11):4754-4759.
    [5] Cheng C., Huang Y., Wang J., et al., Anodic Electrogenerated ChemiluminescenceBehavior of Graphite-Like Carbon Nitride and Its Sensing for Rutin[J]. Anal. Chem.,2013,85(5):2601-2605.
    [6] Yan H., Soft-templating synthesis of mesoporous graphitic carbon nitride with enhancedphotocatalytic H2evolution under visible light[J]. Chem. Commun.,2012,48(28):3430-3432.
    [7] Kim M., Hwang S., Yu J.-S., Novel ordered nanoporous graphitic C3N4as a support forPt-Ru anode catalyst in direct methanol fuel cell[J]. J. Mater.Chem.,2007,17(17):1656-1659.
    [8] Schmidt C. L., Jansen M., New directions in carbonitride research: synthesis of resin-likedense-packed C3N4using a hydrogen-free precursor[J]. J. Mater. Chem.,2010,20(20):4183-4192.
    [9] Veith G. M., Baggetto L., Adamczyk L. A., et al., Electrochemical and Solid-StateLithiation of Graphitic C3N4[J]. Chem. Mater.,2013,25(3):503-508.
    [10] Martha S., Nashim A., Parida K. M., Facile synthesis of highly active g-C3N4for efficienthydrogen production under visible light[J]. J. Mater. Chem.A,2013,1(26):7816-7824.
    [11] Liebig J. v.,About some nitrogen compounds,Ann. Pharm,1834,10(10).
    [12] Groenewolt M., Antonietti M., Synthesis of g-C3N4Nanoparticles in Mesoporous SilicaHost Matrices[J].Adv. Mater.,2005,17(14):1789-1792.
    [13] Liu G., Niu P., Sun C., et al., Unique Electronic Structure Induced High Photoreactivityof Sulfur-Doped Graphitic C3N4[J]. J. Am. Chem. Soc.,2010,132(33):11642-11648.
    [14] Zhang Y., Mori T., Niu L., et al., Non-covalent doping of graphitic carbon nitridepolymer with graphene: controlled electronic structure and enhanced optoelectronicconversion[J]. Energy Environ. Sci.,2011,4(11):4517-4521.
    [15] Xiang Q., Yu J., Jaroniec M., Preparation and Enhanced Visible-Light PhotocatalyticH2-Production Activity of Graphene/C3N4Composites[J]. J. Phys. Chem. C,2011,115(15):7355-7363.
    [16] Yan S., Lv S., Li Z., et al., Organic-inorganic composite photocatalyst of g-C3N4andTaON with improved visible light photocatalytic activities[J]. Dalton Trans.,2010,39(6):1488-1491.
    [17] Liu J., Zhang T., Wang Z., et al., Simple pyrolysis of urea into graphitic carbon nitridewith recyclable adsorption and photocatalytic activity[J]. J. Mater. Chem.,2011,21(38):14398-14401.
    [18] Zhang Y., Liu J., Wu G., et al., Porous graphitic carbon nitride synthesized via directpolymerization of urea for efficient sunlight-driven photocatalytic hydrogen production[J].Nanoscale,2012,4(17):5300-5303.
    [19] Dong F., Wu L., Sun Y., et al., Efficient synthesis of polymeric g-C3N4layered materialsas novel efficient visible light driven photocatalysts[J]. J. Mater. Chem.,2011,21(39):15171-15174.
    [20] Hong J., Xia X., Wang Y., et al., Mesoporous carbon nitride with in situ sulfur doping forenhanced photocatalytic hydrogen evolution from water under visible light[J]. J. Mater.Chem.,2012,22(30):15006-15012.
    [21] Dong F., Sun Y., Wu L., et al., Facile transformation of low cost thiourea intonitrogen-rich graphitic carbon nitride nanocatalyst with high visible light photocatalyticperformance[J]. Catal. Sci. Technol.,2012,2(7):1332-1335.
    [22] Zhang G., Zhang J., Zhang M., et al., Polycondensation of thiourea into carbon nitridesemiconductors as visible light photocatalysts[J]. J. Mater. Chem.,2012,22(16):8083-8091.
    [23] Wang X., Maeda K., Thomas A., et al., A metal-free polymeric photocatalyst forhydrogen production from water under visible light[J]. Nat. Mater.,2008,8(1):76-80.
    [24] Wang X., Maeda K., Chen X., et al., Polymer Semiconductors for ArtificialPhotosynthesis: Hydrogen Evolution by Mesoporous Graphitic Carbon Nitride with VisibleLight[J]. J.Am. Chem. Soc.,2009,131(5):1680-1681.
    [25] Chen X., Jun Y.-S., Takanabe K., et al., Ordered Mesoporous SBA-15Type GraphiticCarbon Nitride: A Semiconductor Host Structure for Photocatalytic Hydrogen Evolution withVisible Light[J]. Chem. Mater.,2009,21(18):4093-4095.
    [26] Dong F., Wu L., Sun Y., et al., Efficient synthesis of polymeric g-C3N4layered materialsas novel efficient visible light driven photocatalysts[J]. J. Mater. Chem.,2011,21(39):15171-15174.
    [27] Cui Y., Ding Z., Liu P., et al., Metal-free activation of H2O2by g-C3N4under visible lightirradiation for the degradation of organic pollutants[J]. PCCP,2012,14(4):1455-1462.
    [28] Ge L., Synthesis and photocatalytic performance of novel metal-free g-C3N4photocatalysts[J]. Mater. Lett.,2011,65:2652-2654.
    [29] Fujishima A., Honda K., Photolysis-decomposition of water at the surface of anirradiated semiconductor[J]. Nature,1972,238(5385):37-38.
    [30] Song L., Zhang S., Wu X., et al., Graphitic C3N4Photocatalyst for Esterification ofBenzaldehyde and Alcohol under Visible Light Radiation[J]. Ind. Eng. Chem. Res.,2012,51(28):9510-9514.
    [31] Zhang Y., Thomas A., Antonietti M., et al., Activation of Carbon Nitride Solids byProtonation: Morphology Changes, Enhanced Ionic Conductivity, and PhotoconductionExperiments[J]. J.Am. Chem. Soc.,2008,131(1):50-51.
    [32] Christy A. A., Kvalheim O. M., Velapoldi R. A., Quantitative analysis in diffusereflectance spectrometry: A modified Kubelka-Munk equation[J]. Vib. Spectrosc,1995,9:19-27.
    [33] Dong W., Lee C. W., Lu X., et al., Synchronous role of coupled adsorption andphotocatalytic oxidation on ordered mesoporous anatase TiO2-SiO2nanocompositesgenerating excellent degradation activity of RhB dye[J].Appl. Catal. B,2010,95:197-207.
    [34] Lei P., Chen C., Yang J., et al., Degradation of Dye Pollutants by ImmobilizedPolyoxometalate with H2O2under Visible-Light Irradiation[J]. Environ. Sci. Technol.,2005,39(21):8466-8474.
    [35] Chen C., Zhao W., Li J., et al., Formation and Identification of Intermediates in theVisible-Light-Assisted Photodegradation of Sulforhodamine-B Dye in Aqueous TiO2Dispersion[J]. Environ. Sci. Technol.,2002,36(16):3604-3611.
    [36] Gillan E. G., Synthesis of Nitrogen-Rich Carbon Nitride Networks from an EnergeticMolecularAzide Precursor[J]. Chem. Mater.,2000,12(12):3906-3912.
    [37] Komatsu T., Nakamura T., Polycondensation/pyrolysis of tris-s-triazine derivativesleading to graphite-like carbon nitrides[J]. J. Mater. Chem.,2001,11(2):474-478.
    [38] Miller D. R., Wang J., Gillan E. G., Rapid, facile synthesis of nitrogen-rich carbon nitridepowders[J]. J. Mater. Chem.,2002,12(8):2463-2469.
    [39] Fang Z., Hong Q., Zhou Z., et al., Oxidative dehydrogenation of propane over a series oflow‐temperature rare earth orthovanadate catalysts prepared by the nitrate method[J]. Catal.Lett.,1999,61(1-2):39-44.
    [40] He Y., Cai J., Li T., et al., Synthesis, Characterization, and Activity Evaluation ofDyVO4/g-C3N4Composites under Visible-Light Irradiation[J]. Ind. Eng. Chem. Res.,2012,51(45):14729-14737.
    [41] Zhang N., Liu S., Fu X., et al., Synthesis of M@TiO2(M=Au, Pd, Pt) Core-ShellNanocomposites with Tunable Photoreactivity[J]. J. Phys. Chem. C,2011,115(18):9136-9145.
    [42] Wang Y., Bai X., Pan C., et al., Enhancement of photocatalytic activity of Bi2WO6hybridized with graphite-like C3N4[J]. J. Mater. Chem.,2012,22(23):11568-11573.
    [43] Yoon S.-H., Lee J. H., Oxidation Mechanism of As(III) in the UV/TiO2System:Evidence for a Direct Hole Oxidation Mechanism[J]. Environ. Sci. Technol.,2005,39(24):9695-9701.
    [44] Fu J., Tian Y., Chang B., et al., BiOBr-carbon nitride heterojunctions: synthesis,enhanced activity and photocatalytic mechanism[J]. J. Mater. Chem.,2012,22(39):21159-21166.
    [45] Fu X., Tang W., Ji L., et al., V2O5/Al2O3composite photocatalyst: Preparation,characterization, and the role ofAl2O3[J]. Chem. Eng. J.,2012,180:170-177.
    [46] Bandara J., Ranasinghe R. A. S. S., The effect of MgO coating on photocatalytic activityof SnO2for the degradation of chlorophenol and textile colorants; the correlation between thephotocatalytic activity and the negative shift of flatband potential of SnO2[J]. Appl. Catal. A,2007,319:58-63.
    [47] Zhang Y. C., Du Z. N., Li K. W., et al., High-Performance Visible-Light-DrivenSnS2/SnO2Nanocomposite Photocatalyst Prepared via In situ Hydrothermal Oxidation ofSnS2Nanoparticles[J].ACSAppl. Mater. Inter.,2011,3(5):1528-1537.
    [48] Kumar S., Surendar T., Baruah A., et al., Synthesis of a novel and stable g-C3N4-Ag3PO4hybrid nanocomposite photocatalyst and study of the photocatalytic activity under visiblelight irradiation[J]. J. Mater. Chem. A,2013,1(17):5333-5340.
    [49] Gerischer H., Willig F., Reaction of excited dye molecules at electrodes, in: F.P. Sch fer,H. Gerischer, F. Willig, H. Meier, H. Jahnke, M. Sch nborn, G. Zimmermann (Eds.) Physicaland ChemicalApplications of Dyestuffs, Springer Berlin Heidelberg,1976, pp.31-84.
    [1] Yu Y X, Xu D S. Single-crystalline TiO2nanorods: Highly active and easily recycledphotocatalysts[J].Appl. Catal. B: Environ.,2007,73(1-2):166-171.
    [2] Yang M Q, Zhang N, Xu Y J. Synthesis of Fullerene-, Carbon Nanotube-, andGraphene-TiO2Nanocomposite Photocatalysts for Selective Oxidation: A ComparativeStudy[J].ACSAppl. Mater. Inter.,2013,5(3):1156-1164.
    [3] Feng X J, Zhu K, Frank A J, et al. Rapid Charge Transport in Dye-Sensitized Solar CellsMade from Vertically Aligned Single-Crystal Rutile TiO2Nanowires[J]. Angew. Chem. Int.Ed.,2012,124(11):2781-2784.
    [4] Liu G, Niu P, Sun C H, et al. Unique Electronic Structure Induced High Photoreactivity ofSulfur-Doped Graphitic C3N4[J]. J.Am. Chem. Soc.,2010,132(33):11642-11648.
    [5] Fu J, Chang B B, Tian T L, et al. Novel C3N4-CdS composite photocatalysts withorganic-inorganic heterojunctions: in situ synthesis, exceptional activity, high stability andphotocatalytic mechanism[J]. J. Mater. Chem.A,2013,1(9):3083-3090
    [6] Yan S C, Li Z S, Zou Z G. Photodegradation Performance of g-C3N4Fabricated byDirectly Heating Melamine[J]. Langmuir,2009,25(17):10397-10401.
    [7] Groenewolt M, Antonietti M. Synthesis of g-C3N4Nanoparticles in Mesoporous SilicaHost Matrices[J]. Adv. Mater.,2005,17(14):1789-1792.
    [8] Liu J H, Zhang T K, Wang Z C, et al. Simple pyrolysis of urea into graphitic carbon nitridewith recyclable adsorption and photocatalytic activity[J]. J. Mater. Chem.,2011,21(38):14398-14401.
    [9] Wang X C, Meada K, Thomas A, et al. A metal-free polymeric photocatalyst for hydrogenproduction from water under visible light[J]. Nat Mater.,2009,8:76-80.
    [10] Yan S C, Li Z S, Zou Z G. Photodegradation of Rhodamine B and Methyl Orange overBoron-Doped g-C3N4under Visible Light Irradiation[J]. Langmuir.2010,26(6):3894-3901.
    [11] Zhang Y J, Mori T, Ye J H, et al. Phosphorus-Doped Carbon Nitride Solid: EnhancedElectrical Conductivity and Photocurrent Generation[J]. J. Am. Chem. Soc.,2010,132(18):6294-6295.
    [12] Xu J, Wu H T, Wang X, et al. A new and environmentally benign precursor for thesynthesis of mesoporous g-C3N4with tunable surface area[J]. PCCP.2013,15(13):4510-4517.
    [13] Dong F, Zhao Z W, Xiong T, et al. In Situ Construction of g-C3N4/g-C3N4Metal-FreeHeterojunction for Enhanced Visible-Light Photocatalysis[J]. ACS Appl. Mater. Inter.,2013,5(21):11392-11401.
    [14] Wang Y J, Bai X J, Pan C S, et al. Enhancement of photocatalytic activity of Bi2WO6hybridized with graphite-like C3N4[J]. J. Mater. Chem.,2012,22(22):11568-11573.
    [15] Chai B, Peng T Y, Mao J, et al. Graphitic carbon nitride (g-C3N4)-Pt-TiO2nanocompositeas an efficient photocatalyst for hydrogen production under visible light irradiation[J]. PCCP.2012,14(48):16745-16752.
    [16] Niu P, Zhang L L, Liu G, et al. Graphene-Like Carbon Nitride Nanosheets for ImprovedPhotocatalyticActivities[J].Adv. Funct. Mater.,2012,22(22):4763-4770.
    [17] Lei P X, Chen C C, Yang Jet al. Degradation of Dye Pollutants by ImmobilizedPolyoxometalate with H2O2under Visible-Light Irradiation[J]. Environ. Sci. Technol.,2005,39(21):8466-8474.
    [18] Li T T, Zhao L H, He Y M, et al. Synthesis of g-C3N4/SmVO4composite photocatalystwith improved visible light photocatalytic activities in RhB degradation[J]. Appl. Catal. B:Environ.,2013,129:255-263.
    [19] Li Y B, Zhang H M, Liu P R, et al. Cross-Linked g-C3N4/rGO Nanocomposites withTunable Band Structure and Enhanced Visible Light Photocatalytic Activity[J]. Small,2013,9(19):3336-3344.
    [1] Hernández-Gordillo A., Romero A. G., Tzompantzi F., et al., Kinetic study of the4-Nitrophenol photooxidation and photoreduction reactions using CdS[J]. Appl. Catal. B:Environ.,2014,144:507-513.
    [2] Jin J., Yu J., Liu G., et al., Single crystal CdS nanowires with high visible-lightphotocatalytic H2-production performance[J]. J. Mater. Chem. A,2013,1(36):10927-10934.
    [3] Zhou M., Wu H. B., Bao J., et al., Ordered Macroporous BiVO4Architectures withControllable Dual Porosity for Efficient Solar Water Splitting[J]. Angew. Chem. Int. Ed.,2013,52(33):8579-8583.
    [4] Madhusudan P., Kumar M., Ishigaki T., et al., Hydrothermal synthesis ofmeso/macroporous BiVO4hierarchical particles and their photocatalytic degradationproperties under visible light irradiation[J]. Environ Sci Pollut Res.,2013,20(9):6638-6645.
    [5] Jeong H. W., Jeon T. H., Jang J. S., et al., Strategic Modification of BiVO4for ImprovingPhotoelectrochemical Water Oxidation Performance[J]. J. Phys. Chem. C,2013,117(18):9104-9112.
    [6] Liu Z., Chen F., Gao Y., et al., A novel synthetic route for magnetically retrievable Bi2WO6hierarchical microspheres with enhanced visible photocatalytic performance[J]. J. Mater.Chem.A,2013,1(24):7027-7030.
    [7] Zhang W.-D., Zhu L., Construction of Hierarchical Nanostructured TiO2/Bi2MoO6Heterojunction for Improved Visible Light Photocatalysis[J]. J. Nanosci. Nanotechnol.,2012,12(8):6294-6300.
    [8] Li N., Zhu L., Zhang W.-D., et al., Modification of TiO2nanorods by Bi2MoO6nanoparticles for high performance visible-light photocatalysis[J]. J. Alloys. Compd.,2011,509(41):9770-9775.
    [9] Xi G., Ye J., Ma Q., et al., In Situ Growth of Metal Particles on3D Urchin-like WO3Nanostructures[J]. J.Am. Chem. Soc.,2012,134(15):6508-6511.
    [10] Wang F., Di Valentin C., Pacchioni G., Rational Band Gap Engineering of WO3Photocatalyst for Visible light Water Splitting[J]. ChemCatChem,2012,4(4):476-478.
    [11] Kim J., Lee C. W., Choi W., Platinized WO3as an Environmental Photocatalyst thatGenerates OH Radicals under Visible Light[J]. Environ. Sci. Technol.,2010,44(17):6849-6854.
    [12] Maeda K., Wang X., Nishihara Y., et al., Photocatalytic Activities of Graphitic CarbonNitride Powder for Water Reduction and Oxidation under Visible Light[J]. J. Phys. Chem. C,2009,113(12):4940-4947.
    [13] Li X.-H., Wang X., Antonietti M., Mesoporous g-C3N4nanorods as multifunctionalsupports of ultrafine metal nanoparticles: hydrogen generation from water and reduction ofnitrophenol with tandem catalysis in one step[J]. Chem. Sci.,2012,3(6):2170-2174.
    [14] Yan H., Soft-templating synthesis of mesoporous graphitic carbon nitride with enhancedphotocatalytic H2evolution under visible light[J]. Chem. Commun.,2012,48(28):3430-3432.
    [15] Chang F., Xie Y., Li C., et al., A facile modification of g-C3N4with enhancedphotocatalytic activity for degradation of methylene blue[J]. Appl. Surf. Sci.,2013,280:967-974.
    [16] Jorge A. B., Martin D. J., Dhanoa M. T. S., et al., H2and O2Evolution from WaterHalf-Splitting Reactions by Graphitic Carbon Nitride Materials[J]. J. Phys. Chem. C,2013,117(14):7178-7185.
    [17] Sano T., Tsutsui S., Koike K., et al., Activation of graphitic carbon nitride (g-C3N4) byalkaline hydrothermal treatment for photocatalytic NO oxidation in gas phase[J]. J. Mater.Chem.A,2013,1(21):6489-6496.
    [18] Hong Z., Shen B., Chen Y., et al., Enhancement of photocatalytic H2evolution overnitrogen-deficient graphitic carbon nitride[J]. J. Mater. Chem. A,2013,1(38):11754-11761.
    [19] Li Q., Zong L., Xing Y., et al., Preparation of g-C3N4/TiO2Nanocomposites andInvestigation of Their PhotocatalyticActivity[J]. Sci. Adv. Mater.,2013,5(9):1316-1322.
    [20] Zhang Y., Mori T., Niu L., et al., Non-covalent doping of graphitic carbon nitridepolymer with graphene: controlled electronic structure and enhanced optoelectronicconversion[J]. Energy Environ. Sci.,2011,4(11):4517-4521.
    [21] Liu G., Niu P., Sun C., et al., Unique Electronic Structure Induced High Photoreactivityof Sulfur-Doped Graphitic C3N4[J]. J. Am. Chem. Soc.,2010,132(33):11642-11648.
    [22] Ji H., Chang F., Hu X., et al., Photocatalytic degradation of2,4,6-trichlorophenol overg-C3N4under visible light irradiation[J]. Chem. Eng. J.,2013,218:183-190.
    [23] Yan S. C., Li Z. S., Zou Z. G., Photodegradation of Rhodamine B and Methyl Orangeover Boron-Doped g-C3N4under Visible Light Irradiation[J]. Langmuir,2010,26(6):3894-3901.
    [24] Yan S. C., Li Z. S., Zou Z. G., Photodegradation Performance of g-C3N4Fabricated byDirectly Heating Melamine[J]. Langmuir,2009,25(17):10397-10401.
    [25] Liu J., Zhang T., Wang Z., et al., Simple pyrolysis of urea into graphitic carbon nitridewith recyclable adsorption and photocatalytic activity[J]. J. Mater. Chem.,2011,21(38):14398-14401.
    [26] Zhang Y., Liu J., Wu G., et al., Porous graphitic carbon nitride synthesized via directpolymerization of urea for efficient sunlight-driven photocatalytic hydrogen production[J].Nanoscale,2012,4(17):5300-5303.
    [27] Hong J., Xia X., Wang Y., et al., Mesoporous carbon nitride with in situ sulfur doping forenhanced photocatalytic hydrogen evolution from water under visible light[J]. J. Mater.Chem.,2012,22(30):15006-15012.
    [28] Dong F., Sun Y., Wu L., et al., Facile transformation of low cost thiourea intonitrogen-rich graphitic carbon nitride nanocatalyst with high visible light photocatalyticperformance[J]. Catal. Sci. Technol.,2012,2(7):1332-1335.
    [29] Wang X., Maeda K., Chen X., et al., Polymer Semiconductors for ArtificialPhotosynthesis: Hydrogen Evolution by Mesoporous Graphitic Carbon Nitride with VisibleLight[J]. J.Am. Chem. Soc.,2009,131(5):1680-1681.
    [30] Xu J., Wu H.-T., Wang X., et al., A new and environmentally benign precursor for thesynthesis of mesoporous g-C3N4with tunable surface area[J]. Phys. Chem. Chem. Phys.,2013,15(13):4510-4517.
    [31] Chang C., Fu Y., Hu M., et al., Photodegradation of bisphenol A by highly stablepalladium-doped mesoporous graphite carbon nitride (Pd/mpg-C3N4) under simulated solarlight irradiation[J].Appl. Catal. B: Environ.,2013,142-143:553-560.
    [32] Ge L., Han C., Liu J., et al., Enhanced visible light photocatalytic activity of novelpolymeric g-C3N4loaded with Ag nanoparticles[J]. Appl. Catal. A: Gen.,2011,409-410:215-222.
    [33] Dong G., Zhao K., Zhang L., Carbon self-doping induced high electronic conductivityand photoreactivity of g-C3N4[J]. Chem. Commun.,2012,48(49):6178-6180.
    [34] Li J., Shen B., Hong Z., et al., A facile approach to synthesize novel oxygen-dopedg-C3N4with superior visible-light photoreactivity[J]. Chem. Commun.,2012,48(98):12017-12019.
    [35] Wang Y., Shi R., Lin J., et al., Enhancement of photocurrent and photocatalytic activityof ZnO hybridized with graphite-like C3N4[J]. Energy Environ. Sci.,2011,4(8):2922-2929.
    [36] Huang L., Xu H., Zhang R., et al., Synthesis and characterization of g-C3N4/MoO3photocatalyst with improved visible-light photoactivity[J].Appl. Surf. Sci.,2013,283:25-32.
    [37] Ge L., Han C., Liu J., In situ synthesis and enhanced visible light photocatalytic activitiesof novel PANI-g-C3N4composite photocatalysts[J]. J. Mater. Chem.,2012,22(23):11843-11850.
    [38] Chen X., Zhang J., Fu X., et al., Fe-g-C3N4-Catalyzed Oxidation of Benzene to PhenolUsing Hydrogen Peroxide and Visible Light[J]. J. Am. Chem. Soc.,2009,131(33):11658-11659.
    [39] Xu Y., Xu H., Wang L., et al., The CNT modified white C3N4composite photocatalystwith enhanced visible-light response photoactivity[J]. Dalton Trans.,2013,42(21):7604-7613.
    [40] Xiang Q., Yu J., Jaroniec M., Preparation and Enhanced Visible-Light PhotocatalyticH2-Production Activity of Graphene/C3N4Composites[J]. J. Phys. Chem. C,2011,115(15):7355-7363.
    [41] Zhang M., Xu J., Zong R., et al., Enhancement of visible light photocatalytic activitiesvia porous structure of g-C3N4[J].Appl. Catal. B: Environ.,2014,147:229-235.
    [42] Chai B., Peng T., Mao J., et al., Graphitic carbon nitride (g-C3N4)-Pt-TiO2nanocomposite as an efficient photocatalyst for hydrogen production under visible lightirradiation[J]. Phys. Chem. Chem. Phys.,2012,14(48):16745-16752.
    [43] Yu J., Wang S., Low J., et al., Enhanced photocatalytic performance of direct Z-schemeg-C3N4-TiO2photocatalysts for the decomposition of formaldehyde in air[J]. Phys. Chem.Chem. Phys.,2013,15(39):16883-16890.
    [44] Sun J.-X., Yuan Y.-P., Qiu L.-G., et al., Fabrication of composite photocatalystg-C3N4-ZnO and enhancement of photocatalytic activity under visible light[J]. Dalton Trans.,2012,41(22):6756-6763.
    [45] Liu W., Wang M., Xu C., et al., Facile synthesis of g-C3N4/ZnO composite with enhancedvisible light photooxidation and photoreduction properties[J]. Chem. Eng. J.,2012,209:386-393.
    [46] Wang Y., Wang Z., Muhammad S., et al., Graphite-like C3N4hybridized ZnWO4nanorods: Synthesis and its enhanced photocatalysis in visible light[J]. CrystEngComm,2012,14(15):5065-5070.
    [47] Kumar S., Surendar T., Baruah A., et al., Synthesis of a novel and stable g-C3N4-Ag3PO4hybrid nanocomposite photocatalyst and study of the photocatalytic activity under visiblelight irradiation[J]. J. Mater. Chem. A,2013,1(47):5333-5340.
    [48] Zhang F.-J., Xie F.-Z., Zhu S.-F., et al., A novel photofunctional g-C3N4/Ag3PO4bulkheterojunction for decolorization of Rh.B[J]. Chem. Eng. J.,2013,228:435-441.
    [49] Xiu Z., Bo H., Wu Y., et al., Graphite-like C3N4modified Ag3PO4nanoparticles withhighly enhanced photocatalytic activities under visible light irradiation[J]. Appl. Surf. Sci.,2014,289:394-399.
    [50] Ge L., Zuo F., Liu J., et al., Synthesis and Efficient Visible Light PhotocatalyticHydrogen Evolution of Polymeric g-C3N4Coupled with CdS Quantum Dots[J]. J. Phys. Chem.C,2012,116(25):13708-13714.
    [51] Ye S., Qiu L.-G., Yuan Y.-P., et al., Facile fabrication of magnetically separable graphiticcarbon nitride photocatalysts with enhanced photocatalytic activity under visible light[J]. J.Mater. Chem.A,2013,1(9):3008-3015.
    [52] Niu P., Zhang L., Liu G., et al., Graphene-Like Carbon Nitride Nanosheets for ImprovedPhotocatalyticActivities[J].Adv. Funct. Mater.,2012,22(22):4763-4770.
    [53] Wang X., Maeda K., Thomas A., et al., A metal-free polymeric photocatalyst forhydrogen production from water under visible light[J]. Nat Mater,2009,8(1):76-80
    [1] Teter D. M., Hemley R. J., Low-compressibility carbon nitrides[J]. Science,1996,271(5245):53-55.
    [2] Bai X., Li J., Cao C., et al., Solvothermal synthesis of the special shape (deformable)hollow g-C3N4nanospheres[J]. Mater. Lett.,2011,65:1101-1104.
    [3] Bai Y.-J., Lü B., Liu Z.-G., et al., Solvothermal preparation of graphite-like C3N4nanocrystals[J]. J. Cryst. Growth.,2003,247:505-508.
    [4] Dong F., Wu L., Sun Y., et al., Efficient synthesis of polymeric g-C3N4layered materials asnovel efficient visible light driven photocatalysts[J]. J. Mater. Chem.,2011,21(39):15171-15174.
    [5] Dong F., Wang Z., Sun Y., et al., Engineering the nanoarchitecture and texture ofpolymeric carbon nitride semiconductor for enhanced visible light photocatalytic activity[J]. J.Colloid Interface Sci.,2013,401:70-79.
    [6] Dante R. C., Martín-Ramos P., Sánchez-Arévalo F. M., et al., Synthesis of crumplednanosheets of polymeric carbon nitride from melamine cyanurate[J]. J. Solid State Chem.,2013,201:153-163.
    [7] Gao J., Zhou Y., Li Z., et al., High-yield synthesis of millimetre-long, semiconductingcarbon nitride nanotubes with intense photoluminescence emission and reproduciblephotoconductivity[J]. Nanoscale,2012,4(12):3687-3692.
    [8] Yan H., Chen Y., Xu S., Synthesis of graphitic carbon nitride by directly heating sulfuricacid treated melamine for enhanced photocatalytic H2production from water under visiblelight[J]. Int. J. Hydrogen Energy,2012,37:125-133.
    [9] Zhang G., Zhang J., Zhang M., et al., Polycondensation of thiourea into carbon nitridesemiconductors as visible light photocatalysts[J]. J. Mater. Chem.,2012,22(16):8083-8091.
    [10] Wang X., Maeda K., Thomas A., et al., A metal-free polymeric photocatalyst forhydrogen production from water under visible light[J]. Nat Mater.,2009,8(1):76-80.
    [11] Sun J.-X., Yuan Y.-P., Qiu L.-G., et al., Fabrication of composite photocatalystg-C3N4-ZnO and enhancement of photocatalytic activity under visible light[J]. Dalton Trans.,2012,41(22):6756-6763.
    [12] Goettmann F., Fischer A., Antonietti M., et al., Chemical Synthesis of MesoporousCarbon Nitrides Using Hard Templates and Their Use as a Metal-Free Catalyst forFriedel-Crafts Reaction of Benzene[J].Angew. Chem. Int. Ed.,2006,45(27):4467-4471.
    [13] Goettmann F., Thomas A., Antonietti M., Metal-Free Activation of CO2by MesoporousGraphitic Carbon Nitride[J]Angew. Chem. Int. Ed.,2007,46(15):2717-2720.
    [14] Kiskan B., Zhang J., Wang X., et al., Mesoporous Graphitic Carbon Nitride as aHeterogeneous Visible Light Photoinitiator for Radical Polymerization[J] ACS Macro Lett.,2012,1(5):546-549.
    [15] Upadhyay S., Shrivastava J., Solanki A., et al., Enhanced Photoelectrochemical Responseof BaTiO3with Fe Doping: Experiments and First-Principles Analysis[J] J. Phys. Chem. C,2011,115(49):24373-24380.
    [16] Ren P., Fan H., Wang X., Solid-state synthesis of Bi2O3/BaTiO3heterostructure:preparation and photocatalytic degradation of methyl orange[J] Appl. Phys. A,2013,111(4):1139-1145.
    [17] Zhang Y., Pan C., TiO2/graphene composite from thermal reaction of graphene oxide andits photocatalytic activity in visible light[J] J. Mater. Sci.,2011,46(8):2622-2626.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700