用户名: 密码: 验证码:
介孔二氧化锰电池材料的可控合成及其电化学性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
碱性锌锰电池因具有容量大、比能量高、工作温度范围宽、防漏性能好、储存寿命长、综合性价比高等优点而被广泛用于民用和工业领域。二氧化锰因为具有资源丰富、价格低廉、对环境相对友好等优势常被用作碱性锌锰电池的正极材料。但是在大电流、高功率放电时,二氧化锰正极材料的利用率低,只有30~40%。如何提高二氧化锰的利用率是改善碱性锌锰电池大功率放电能力的关键问题之一
     本文针对上述问题做了研究工作,主要研究内容和创新点如下:
     (1)采用介孔二氧化硅SBA-15和KIT-6为模板,硝酸锰为锰源,成功合成了两类高功率、大容量介孔二氧化锰电池材料。研究结果表明:用SBA-15作模板合成的二氧化锰具有类似于SBA-15的2D六方(p6m)介孔结构通道,比表面积为112 m2·g-1;以KIT-6为模板合成的MnO2具有3D立方(Ia3d)孔道结构,保持了KIT-6模板相应的介孔结构,比表面积为83 m2·g-1。循环伏安法表明两类介孔二氧化锰在-480~220 mV的电位区间都有两个强氧化峰,且氧化峰的面积大于还原峰的面积,说明它们都有比较好的循环性能。恒电流放电实验表明:当电流密度分别为50 mA·g-1、250 mA·g-1和500 mA·g-1时,与商业电解二氧化锰相比,SBA-15-MnO2的放电容量分别提高了74.98%、119.74%和146.19%;KIT-6-Mn02的放电容量分别提高了63.58%、95.14%和100.23%。
     (2)利用非金属元素S、Se为掺杂元素,采用原位掺杂技术合成了两类非金属元素掺杂的介孔二氧化锰电池材料。电化学性能测试结果表明无论是在SBA-15-Mn02中,还是在KIT-6-Mn02中,最佳掺杂元素均为Se,最佳掺杂质量份数也均为5%。当电流密度分别为50 mA·g-1、250 mA·g-1和500 mA·g-1时,SBA-15-Mn02的放电容量可达506.25 mA·h·g-1、430.25 mA·h·g-1和376.2 mA-h-g-1,比掺杂前分别提高了17.65%、24.98%和28.94%;而KIT-6-Mn02的放电容量则高达516.25 mA·h·g-1、465.97 mA·h·g-1和378.2 mA·h·g-1,比掺杂前分别提高了28.33%、52.41%和59.38%。
     (3)本论文同时还利用金属元素Ni、Pb、Ce和Mg为掺杂元素,成功合成了两类金属元素掺杂的介孔二氧化锰电池材料。电化学性能测试结果表明在上述金属元素中,Mg为最佳掺杂元素,最佳掺杂质量份数为5%。当电流密度分别为50 mA·g-1、250 mA·g-1和500mA·g-1时,SBA-15-Mn02的放电容量可达510.26 mA·h·g-1、454.86 mA·h·g-1和401.2mA·h·g-1,比掺杂前分别提高了18.58%、32.13%和37.51%;而KIT-6-Mn02的放电容量则高达560.6 mA·h·g-1、466.66 mA·h·g-1和410.2 mA·h·g-1,比掺杂前分别提高了39.36%、52.64%和72.86%。
     本论文通过研究发现,采用原位掺杂技术制备两类掺杂介孔二氧化锰电池材料时,无论掺杂非金属元素Se,还是掺杂金属元素Mg,掺杂量在10%以内,掺杂对介孔二氧化锰的晶型、形貌和结构均没有明显的影响。但是掺杂后,介孔二氧化锰的电化学性能却有极大的提高。这为改善碱性锌锰电池正极材料的大功率放电性能提供了一条新的途径。
The alkaline Zn/MnO2 battery are widely used in civil and industrial fields due to its large capacity, high specific energy, wide working temperature range, good leak-proof performance, long storage life and high integrated cost-effective. Manganese dioxide is often used as a cathode material for an alkaline Zn/MnO2 battery due to its good electrochemical properties, favorable cost structure and low toxicity. However, at high discharge rates, the utilization rate of the manganese dioxide cathode is low. For example, only 30-40% of the active material in an alkaline Zn/MnO2 battery is utilized in a high power electronic device. Therefore, how to improve the utilization of manganese dioxide is one of the key issues to make the traditional alkaline Zn/MnO2 batteries more effective at high discharge rates.
     In this paper, we have done some research for these problems. The contents and contributions are as following:
     (1) Two types of high-power mesoporous manganese dioxide battery materials were successfully prepared by using SBA-15 and KIT-6 as the hard templates, respectively, and manganese nitrate solution as the manganese source. The results showed that the MnO2 prepared using SBA-15 as the template is in the same perfect hexagonally mesostructured arrays as the channels of the SBA-15 mother mold and has a surface area of 112 m2·g-1; the MnO2 prepared using KIT-6 as the template is characterized by Ia3d cubic structure and has a surface area of 83 m2·g-1. From cyclic voltammograms two anodic peaks are observed at potentials of-480 mV and 220 mV, in addition, the area of the oxidation peak is larger than that of the reduction peak, which suggests that the reversibility of the two types of mesoporous MnO2 is better. Compared to the commercial electrolytic manganese dioxide (EMD), the discharge capacity of SBA-15-MnO2 increased by 74.98%,119.74% and 146.19% at constant currents of 50,250 and 500 mA·g-1, respectively, while the discharge capacity of KIT-6-MnO2 increased by 63.58%,95.14% and 100.23%.
     (2) We synthesized two types of non-metallic element doped mesoporous manganese dioxide battery materials by in situ doping non-metallic elements sulfur or selenium. The electrochemical performance test showed that the best doping element is selenium and the best doping amount is 5%. Compared to pre-doped, the discharge capacity of SBA-15-MnO2 reaches 506.25,430.25 and 376.2 mA·h·g-1, respectively, increased by 17.65%,24.98% and 28.94% at constant currents of 50,250 and 500 mA·g-1; while the discharge capacity of KIT-6-MnO2 reaches 516.25,465.97 and 378.2 mA·h·g-1, respectively, increased by 28.33%,52.41% and 59.38%.
     (3) In this paper, we also synthesized two types of metallic element doped mesoporous manganese dioxide battery materials by in-situ doping metal elements nickel, lead, cerium and magnesium. The electrochemical performance test showed that the best doping element is magnesium and the best doping amount is 5%. Compared to pre-doped, the discharge capacity of SBA-15-MnO2 reaches 510.26,454.86 and 401.2 mA·h·g-1, respectively, increased by 18.58%, 32.13% and 37.51% at constant currents of 50,250 and 500 mA·g-1; while the discharge capacity of KIT-6-MnO2 reaches 560.6,466.66 and 410.2 mA·h·g-1, respectively, increased by 39.36%, 52.64% and 72.86%.
     In this paper, two types of doped mesoporous manganese dioxide battery materials were prepared by in-situ doping. Mesoporous manganese dioxide have no significant impact on crystal form, morphology and structure, when the doping amount of less than 10%, regardless of doping non-metallic elements selenium, or a doped metal element magnesium. However, doped mesoporous manganese dioxide exhibited more excellent electrochemical performance. This provides a new approach for improving the high-power discharge performance of alkaline Zn/MnO2 battery cathode materials.
引文
[1]Yang C C, Lin S J. Improvement of high-rate capability of alkaline Zn-MnO2 battery [J]. Journal of Power Sources.2002,112(1):174-183.
    [2]Malloy A P, Browning G J, Donne S W. Surface characterization of heat-treated electrolytic manganese dioxide [J]. Journal of Colloid and Interface Science.2005,285(2):653-664.
    [3]Kozawa A, Manganese Dioxide, in K. V. Kordeseh(ed), Mareel Dekker, Batteries, Vol.1, New York,1974,385.
    [4]Kozawa A, Yeager J F. The Cathodic Reduction Mechanism of Electrolytic Manganese Dioxide in Alkaline Electrolyte [J]. Journal of the Electrochemical Society.1965, 112:959-963.
    [5]Kloβ M, Rahner D, Plieth W. The effect of alkaline earth titanates on the rechargeability of manganese dioxide in alkaline electrolyte [J]. Journal of Power Sources.1997, 69(1-2):137-143.
    [6]H. Bode, A. Sehmier, D. Berndt. Electrochem.1962, (66):585.
    [7]Kordesch K, Gsellmann J, Peri M, et al. The rechargeability of manganese dioxide in alkaline electrolyt [J]. Electrochimica Acta.1981,26(10):1495-1504.
    [8]夏熙.中国化学电源50年(1)—锌/二氧化锰电池[J].电池.1999,29(5):209-216.
    [9]李国欣.新型化学电源导论上海:复旦大学出版社,1992.
    [10]郭炳琨,李新海,杨青松.化学电源长沙:中南大学出版社,2000.
    [11]Cahoon N C, Holland H W. The Primary Batteries, Vol.1,edited by Heise G W and Cahoon N C (J. Wiley&Son, New York,1971), p.239.
    [12]王金良,麦国庆.影响碱性锌锰电池自放电的因素[J].电池工业.2002,7(3).
    [13]Mcbreen J. The electrochemistry of β-MnO2 and γ-MnO2 in alkaline electrolyte [J]. Electrochimica Acta.1975,20(3):221-225.
    [14]陈军,陶占良,苟兴龙.化学电源-原理、技术与应用北京:化学工业出版社,2006.67-68.
    [15]张立德,牟季美.纳米材料和纳米结构北京:科学出版社,2001.
    [16]黄惠忠.纳米材料分析北京:化学工业出版社,2003.
    [17]E. Haro-Poniatowski, R. Rodriguez-Talavera, Heredia M. de la Cruz, et al. Crystallization of nanosized titania particles prepared by the sol-gel process [J]. Materials Research Society. 1994,9(8):2102-2108.
    [18]Birkefeld L D., Azad A M., Akbar S A. Carbon Monoxide and Hy-drogen Detection by Anatase Modification of Titanium Dioxide [J]. Journal of American Ceramic Society.1992, 75(11):2694-2698.
    [19]Wu X J, Su F, Mater Res Symp Proc. [C].1993,86:149-151.
    [20]夏熙.纳米材料作为电池活性材料的前景[J].电池.1998,28(6):251-254.
    [21]张力德.纳米材料北京:化学工业出版社,第二版,2001.
    [22]李玲,向航.功能材料与纳米技术北京:化学工业出版社,第一版,2002.
    [23]张秀荣.现代物理知识2002,14,24.
    [24]王世敏,许祖勋,傅晶.纳米材料制备技术北京:化学工业出版社,2002.2.
    [25]徐如人,庞文琴.无机合成与制备化学高等教育出版社,2001,6:34-36.
    [26]IUPAC [S]. Manual of Symbols and Terminology for Physicochemical Quantities and Units, Appendix Ⅱ:Definitions, Terminology and Symbols in Colloid and Surface Chemistry Pure and Applied Chemistry.1972,31(4):577-638.
    [27]Kresge A J, Leibovitch M, Sikorski J A. Acid-catalyzed hydrolysis of 5-enolpyruvy-lshikimate 3-phosphate (EPSP) and some simple-models of its vinyl ether functional-group [J]. Journal of the American Chemical Society.1992,114(7):2618-2622.
    [28]Huo Q S, Margolese D I, Ciesla U, et al. Organization of Organic Molecules with Inorganic Molecular Species into Nanocomposite Biphase Arrays [J]. Chemistry of Materials.1994, 6(8):1176-1191.
    [29]Huo Q S, Margolese D I, Ciesla U, et al. Generalized synthesis of periodic surfactant/inorganic composite materials [J]. Nature.1994,368:317-321.
    [30]Huo Q S, Leon R, Petroff P M, et al. Mesostructure Design with Gemini Surfactants: Supercage Formation in a Three-Dimensional Hexagonal Array [J]. Science.1995,268: 1324-1327.
    [31]徐如人,庞文琴等编著.分子筛与多孔材料化学北京:科学出版社,2004.
    [32]Wang Y G, Yuan X H, Liu X H, et al. Mesoporous single-crystal Cr2O3:Synthesis, characterization, and its activity in toluene removal [J]. Solid State Sciences.2008, 10(9):1117-1123.
    [33]Ryoo R, Joo S H, Jun S. Synthesis of highly ordered carbon molecular sieves via template-mediated structural transformation [J].The Journal of Physical Chemistry B.1999, 103(37):7743-7746.
    [34]Urban M, Mehn D, Konya Z, et al. Production of carbon nanotubes inside the pores of mesoporous silicates [J]. The Journal of Chemical Physics Letters.2002,359(1-2):95-100.
    [35]S A, Prouzet E, et al. Templating of Mesoporous Molecular Sieves by Nonionic Polyethylene Oxide Surfactants [J]. Science.1995,269:1242-1244.
    [36]Allard G S, Glyde J C, Goliner C G. Liquid-crystalline phases as templates for the synthesis of mesoporous silica [J]. Nature.1995,378:366-368.
    [37]Yang P, Deng T, Zhao D, et al. Hierarchically ordered oxides [J]. Science.1998, 282:2244-2246.
    [38]Zhao D Y, Yang P D, Melosh N, et al. Continuous Mesoporouse Silica Films with Highly Ordered Large Pore Struetures [J]. Advanced Matertials.1998,10(16):1380-1385.
    [39]Abbas H, Nasser S A. Hydroxyl as a defect of the manganese dioxide lattice and its applications to the dry cell battery [J]. Journal of Power Soucres,1996,58(1):15-21.
    [40]陈军,陶占良,苟兴龙.化学电源——原理、技术与应用北京:化学工业出版社,2006:67-68.
    [41]Burns R G, Burns V M. Proc. MnO2 Symp. (Eds. Kozawa A, Brood R J). Cleveland:I. C. Sample Office,1975,1:288-305.
    [42]Burns R G, Burns V M. Proc. MnO2 Symp. (Eds. Kozawa A, Brood R J). Cleveland:I. C. Sample Office,1975,1:306-327.
    [43]夏熙.二氧化锰及相关锰氧化物的晶体结构、制备及放电性能(1)[J].电池.2004,34(6):41 1-414.
    [44]夏熙.二氧化锰及相关锰氧化物的晶体结构、制备及放电性能(2)[J].电池.2005,35(1):27-30.
    [45]夏熙.二氧化锰及相关锰氧化物的晶体结构、制备及放电性能(3)[J].电池.2005,35(2):105-108.
    [46]夏熙.二氧化锰及相关锰氧化物的晶体结构、制备及放电性能(4)[J].电池.2005,35.
    [47]Reddy Ravinder N, Reddy Ramana G. Sol-gel MnO2 as an electrode material for electrochemical capacitors [J]. Journal of Power Sources.2003,124(1):330-337.
    [48]Sugantha M, Ramakrishnan P A, Hermann A M, et al. Nanostructured MnO2 for Li batteries [J]. International Journal of Hydrogen Energy.2003,28(6):597-600.
    [49]Reddy Ravinder N, Reddy Ramana G. Synthesis and electrochemical characterization of amorphous MnO2 electrochemical capacitor electrode material [J]. Journal of Power Sources.2004,132(1-2):315-320.
    [50]Wang X Y, Wang X Y, Huang W G, et al. Sol-gel template synthesis of highly ordered MnO2 nanowire arrays [J]. Journal of Power Sources.2005,140(1):211-215.
    [51]李娟,夏熙,李文娟.纳米MnO2的固相合成及其电化学性能的研究[J].高等学校化学学报.1999,20(3):1434-1437.
    [52]Ali Eftekhari, Parvaneh Jafarkhani, Fathollah Moztarzadeh. Rectangular structure of manganese oxide nanowires [J]. Materials Science and Engineering B.2005,122:110-114.
    [53]Ali Eftekhari, Fathollah Moztarzadeh, Mahmood Kazemzad. Template-free preparation of bunches of aligned manganese oxide nanowires [J]. Journal of Physics D:Applied Physics. 2005,38:628-631.
    [54]王笃金,吴瑾,徐光宪.反胶团或微乳胶法制备超细颗粒的研究进展[J].化学通报.1995,9:1-4.
    [55]Wei M D, Yoshinari Konishi, Zhou H S, Hideki Sugihara, Hironori Arakawa. Synthesis of single-crystal manganese dioxide nanowires by a soft chemical process [J]. Nanotechnology. 2005,16:245-249.
    [56]Tang B, Wang G L, Zhuo L H, et al. Novel dandelion-like beta-manganese dioxide microstructures and their magnetic properties [J]. Nanotechnology.2006,17:947-951.
    [57]Zhang Y C, Qiao T, Hu X Y, et al. Simple hydrothermal preparation of y-MnOOH nanowires and their low-temperature thermal conversion to β-MnO2 nanowires [J]. Journal of Crystal Growth.2005,280:652-657.
    [58]Wang X, Li Y D. Synthesis and formation mechanism of manganese dioxide nanowires/nanorods [J]. Chemistry-A European Journal 2003,9(1):300-306.
    [59]Wang X, Li Y D. Rational synthetic strategy. From layered strcture to MnO2 nanotubes [J]. Chemistry Letters.2004,1:48-49.
    [60]Wang X, Li Y D, Rational synthesis of α-MnO2 single-crystal nanorods [J]. Chemical Communications 2002,7:764-765.
    [61]Zhou F, Zheng H G, Zhao X M, et al. Large-area synthesis of high-quality β-MnO2 nanowires and the mechanism of formation through a facile mineralization process [J]. Nanotechnology.2005,16:2072-2076.
    [62]Yang Z, Zhang Y C, Zhang W X, et al. Nanorods of manganese oxides:Synthesis, characterization and catalytic application [J]. Journal of Solid State Chemistry.2006, 179:679-684.
    [63]Gao Y Q, Wang Z H, Wan J X, et al. A facile route to synthesize uniform single-crystalline α-MnO2 nanowires [J]. Journal of Crystal Growth.2005,279:415-419.
    [64]Yuan J K, Li W N, Gomez Sinue, et al. Shape-Controlled Synthesis of Manganese Oxide Octahedral Molecular Sieve Three-Dimensional Nanostructures [J]. Journal of the American Chemical Society.2005,127(41):14184-14185.
    [65]Xi G S, Peng Y Y, Zhu Y C, et al. Preparation of β-MnO2 nanorods through a y-MnOOH precursor route [J]. Materials Research Bulletin.2004,39:1641-1648.
    [66]Yuan L J, Li Z C, Sun J T, et al. Synthesis and characterization of actived MnO2 [J]. Materials Letter.2002,4093:1-4.
    [67]Liu Y P, Qian Y T, Zhang Y H, et al. γ-Ray Radiation Preparation and Characterization of Nanocrystalline Manganese Dioxide [J]. Materials Research Bulletin.1997, 32(8):1055-1062.
    [68]Tian Z. R., T Ong W., Wang J. Y., et al. Manganese Oxide Mesoporous Struetures: Mixed-Valent Semiconducting Catalysts [J]. Science.1997,276:926-930.
    [69]洪昕林,张高勇,杨恒权.介孔锰氧复合物的表面活性剂模板合成与孔结构分析[J].日用化工业.2002,32(6):6-8.
    [70]Chen H G, He J H, Zhang C B,et al.Self-Assembly of Novel Mesoporouse Manganese Oxide Nanostructures and Their Application in Oxidative Decoposition of Formaldehyde [J]. Journal of Physical Chemistry C.2007, (III):18033-18038.
    [71]Liu M, Zhang G J, Shen Z R, et al. Synthesis and characterization of hierarchically structured mesoporous MnO2 and Mn2O3 [J]. Solid State Sciences.2009,11(1):118-128.
    [72]Xue T, Xu C L, Zhao D D, et al. Electrode position of mesoporous manganese dioxide supercapaecitor electrodes through self-assembled triblock copolymer templates [J]. Journal of Power Sources.2007,164(2):953-958.
    [73]Luo J Y, Zhang J J, Xia Y Y, Highly Electrochemical Reaction of Lithium in the Ordered Mesoporous β-MnO2 [J]. Chemistry of Materials.2006,18(23):5618-5623.
    [74]Zhu S M, Zhou Z Y, Zhang D, et al. Synthesis of mesoporous amorphous MnO2 from SBA-15 via surface modification and ultrasonic waves [J].Microporous and Mesoporous Materials.2006,95(1-3):257-264.
    [75]Chen H R, Dong X P, Shi J L, et al. Templated Synthesis of hierarchically porous manganese oxide with a crystalline nanorod framework and its high electrochemical performance [J]. Journal of Materials Chemistry.2007,17(9):855-860.
    [76]D. Linden, Handbook of Batteries, Ch.10, Mc-Graw Hill, New York,1994.
    [77]F. L. Tye, in:M. Barak (Ed.), Electrochemical Power Sources, Peter Peregrinus, London, 1980, p.50.
    [78]Kozawa A, Yeager J F. [J]. Journal of The Electrochemical Society.1968,115:1003.
    [79]Y. Chabre, J. Pannetier. Structural and electrochemical properties of the proton γ-MnO2 system [J]. Progress in Solid State Chemistry.1995,23(1):1-130.
    [80]Cheng F Y, Chen J, Gou X L, et al. High-Power Alkaline Zn-MnO2 Batteries Using y-MnO2 Nanowires/Nanotubes and Electrolytic Zinc Powder [J]. Advanced. Materials.2005, 17(22):2753-2756.
    [81]Wang X, Li Y D. Selected-Control Hydrothermal Synthesis of α-and β-MnO2 Single Crystal Nanowires [J]. Journal of the America Chemical Society.2002,124(12):2880-2881.
    [82]Xiong Y, Xie Y, Li Z, et al. Growth of Well-Aligned γ-MnO2 Monocrystalline Nanowires through a Coordination-Polymer-Precursor Route [J]. Chemistry A European Journal.2003, 9(7):1645-1651.
    [83]Wu C Z, Xie Y, Wang D, et al. Selected-Control Hydrothermal Synthesis of γ-MnO2 3D Nanostructures [J]. The Journal of Physical Chemistry B.2003,107(49):13583-13587.
    [84]Z. Y. Yuan, Zhang Z L, Du G H, et al. A simple method to synthesise single-crystalline manganese oxide nanowires [J]. Chemical Physics Letters.2003,378(3-4):349-353.
    [85]Subramaniam V, Zhu H W, Vajtai R, et al. Hydrothermal Synthesis and Pseudocapacitance Properties of MnO2 Nanostructures [J]. The Journal of Physical Chemistry B 2005, 109(43):20207-20214.
    [86]Cheng F Y, Zhao J Z, Song W E, et al. Facile Controlled Synthesis of MnO2 Nanostructures of Novel Shapes and Their Application in Batteries [J]. Inorganic Chemistry. 2006,45(5):2038-2044
    [87]Sugantha M, Ramakrishana P A, Hermann A M, et al. Nanostructured MnO2 for Li batteries [J]. International Journal of Hydrogen Energy.2003,28(6):597-600.
    [88]Tench D, Warren L F. [J]. Journal of The Electrochemical Society.1983,130,869.
    [89]Moore G J, Portal R, A. Le Gal La Salle, et al. Synthesis of nanocrystalline layered manganese oxides by the electrochemical reduction of AMnO4 (A=K, Li) [J]. Joural of Power Sources.2001, (97-98):393-397.
    [90]Ghaemi M, Biglari Z, Binder L. Effect of bath temperature on electrochemical properties of the anodically deposited manganese dioxide [J]. Journal of Power Sources.2001, 102(1-2):29-34.
    [91]Hu C C, Wang C C, [J]. Journal of The Electrochemical Society 2003,15, A 1079.
    [92]Hu C C, Tsou T W. Capacitive and textural characteristics of hydrous manganese oxide prepared by anodic deposition [J]. Electrochimica Acta.2002,47(21):3523-3532.
    [93]Wu M S. Electrochemical capacitance from manganese oxide nanowire structure synthesized by cyclic voltammetric electrodeposition [J]. Applied Physics Letters.2005,87, 153102.
    [94]Wu M S, Lee J T, Wang Y Y, et al. Field Emission from Manganese Oxide Nanotubes Synthesized by Cyclic Voltammetric Electrodeposition [J]. The Journal of Physical Chemistry B.2004,108(42):16331-16333.
    [95]Katakura K, Nishimura S, Ogumi Z, Preparation of an electrochemically-formed spinel lithium manganese oxide and its charge-discharge behaviors [J]. Journal of Power Sources. 2005,146(1-2):217-221.
    [96]Ghaemi M, Khosravi-Fard L, Neshati J. Improved performance of rechargeable alkaline batteries via surfactant-mediated electrosynthesis of MnO2 [J]. Journal of Power Sources. 2005,141(2):340.
    [97]Zhao D Y, Feng J L, Huo Q S, et al. Triblock Copolymer Syntheses of Mesoporous Silica with Periodic 50 to 300 Angstrom Pores [J]. Science.1998,279(5350):548-552.
    [98]Kleitz F, Choi S H, Ryoo R. Cubic Ia3d large mesoporous silica:synthesis and replication to platinum nanowires, carbon nanorods and carbon nanotubes [J]. Chemical Communications.2003,17:2136-2137.
    [99]Tae-Wan Kim, Freddy Kleitz, Blain Paul, et al. MCM-48-like Large Mesoporous Silicas with Tailored Pore Structure:Facile Synthesis Domain in a Ternary Triblock Copolymer-Butanol-Water System [J]. Journal of the America Chemical Society.2005, 127(20):7601.
    [100]Beng Jit Tan, Kenneth J.Klabunde, Peter M. A.Sherwood. XPS studies of solvated metal atom dispersed (SMAD) catalysts. Evidence for layered cobalt-manganese particles on alumina and silica [J]. Journal of the America Chemical Society.1991,113(3):855-861.
    [101]Ghaemi M, Gholami A, Moghaddam R B. A study around the improvement of electrochemical activity of MnO2 as cathodic material in alkaline batteries [J]. Electrochimica Acta.2008,53:3250-3256.
    [102]Xia X, Zhang C X, Guo Z P, et al. Studies on electrochemical performance of partially reduced MnO2 used as cathode for MH-MnO2 rechargeable battery [J]. Journal of Power Sources.2002,109(1):11-16.
    [103]Davis S M, Bowden W L, Richards T C. Defining high power EMD through porosimetry [J]. Journal of Power Sources.2005,139(1-2):342-350.
    [104]Kozawa A, Yeager J F. [J]. Journal of The Electrochemical Society.115 (1998) 1003.
    [105]Luo J Y, Zhang J J, Xia Y Y. Highly Electrochemical Reaction of Lithium in the Ordered Mesoporosus β-MnO2 [J]. Chemistry of Materials.2006,18(23):5618-5623.
    [106]贾铮,张翠芬,周德瑞.可充碱锰电池循环容量衰降探因[J].材料科学与工艺.2004, 12(2):179-182.
    [107]Wroblowa H S, Gupta N. Rechargeable manganese oxide electrodes:Part Ⅱ. physically modified materials [J]. Journal of Electroanalytical Chemistry.1987,238(1-2):93-102.
    [108]Yao Y F, Gupta N, Wroblowa H S. Rechargeable manganese oxide electrodes:Part Ⅰ. Chemically modified materials [J]. Journal of Electroanalytical Chemistry.1987, 223(1-2):107-117.
    [109]张胜利,宋文顺,夏同驰.电解二氧化锰在碱液中的可逆性[J].电池.1992,22(1):9-12.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700