用户名: 密码: 验证码:
再生水灌区地下水防污性能试验及灌溉区划研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文以北京市平原区为主要研究区域,采取地下水水质普查、野外试验与模型改进相结合的方法,得出了主要污染物在包气带的迁移转化规律,量化评价了地下水水质与人类活动的相关关系,改进了DRASTIC模型的评分标准与权重,编制出北京市平原区地下水防污性能区划图,提出了北京市再生水灌溉利用分区。
     开展了北京市东南郊再生水灌区地下水化学评价,建立了基于GIS的再生水灌区地下水水质基础数据库,得出了地下水碳酸平衡作用、氧化还原作用、淋溶作用、浓缩作用是决定了典型区地下水水质空间分布规律,发现近年来典型区地下水水质总体呈现改善的趋势,再生水灌溉未导致典型区地下水显著污染。空间变异性分析提出了硝氮、亚硝氮、铵氮、氯化物、高锰酸钾指数、总硬度等6项指标是受人类活动影响最为显著的指标。
     开展了再生水灌溉条件下原位定点精细剖面试验,模拟长期(167年)再生水灌溉不会导致包气带剖面重金属含量显著增加,包气带剖面硝态氮易于迁移,包气带铵氮增加受粘粒含量影响较大,12m、18m包气带对总氮的去除率达到83%以上,对地下水TP含量的去除率达到99%以上,再生水灌溉(167年)条件下表层土壤盐分、土壤碱性具有增加的趋势,但是仍然在适宜范围内(0≤SAR≤10)。再生水长期渗滤条件下监测井(12m)pH值相比变化不显著,再生水在包气带的淋溶过程中盐分增加21%~30%、氯离子含量增加1.5%~16.1%,但是,监测井地下水TDS与对照井差异不显著,说明再生水灌溉对地下水盐分的影响与其它水源补给无显著差异。再生水长期渗滤条件下不同层位土壤PAHs含量变化不显著,与我国一些地区自然背景值相接近,多环芳烃污染源为石油源兼具燃煤污染的特征,可能源于大气降尘及历史污水灌溉,萘、菲、荧蒽、芘与其他组分相比具有更好的迁移性,包气带对多环芳烃的去除率达到95%,试验区域包气带防护性能良好。
     研究绘制出北京市东南部再生水灌区地下水固有防污性能分区图,提出了土地利用类型、水位降深值评分标准及权重,确定包气带防污性分区阈值,建立了北京市平原区基于人类活动影响的地下水包气带防污性能区划模型(DARSILE),完成了北京市再生水灌溉利用区划,提出了再生水优先发展区、再生水适宜发展区和再生水禁止发展区,面积分别为11.6万hm2、4.8万hm2、15.8万hm2。
The objective of ths study is to ascertain the transport and change of main pllutants in the typical vadose zone of Beijing plain based on groundwater investigation, field experiment. The indexs and weight of DRASTIC model is improved by quatifying the relation of human activities and grounderwater pollution, and the allocation map of grounderwater vulnerability and feasible allocation map of reclaimed wastewater irrigation in Beijing plain is drawn out.
     The time-spatical changes of groundwater quality in the southeast of Beijing plain is determined by carbonate balance, oxidation and deoxdation, concentration, etc.. The groundwater quality has improved in recent years. Reclaimed wastewater irrigation has not negative influence on groundwater from the investigation. Nitrite, nitrogen, ammonia, chloride, potassium permanganate and hardness are the six parameters signifantly affected by human activities.
     There are no signifance changes of heavy metals and PAHs in vadose profile under treatment 7 (simulation of 167-years reclaimed wastewater irrigation). The nitrogen is easier to transport compared to ammonia, and soil ammonia has high relation of clay particles content. The 12 meter and 18 meter of vadose thichness can remove 83% of total nitrogen, 99% of total phosphorus and 95% of PAHs. soil salt and sodicity is increased under treatment 7, which is still in the feasible range for irrigation(0≤SAR≤10). In the infiltration process of reclaimed wastewater from surface to groundwater (12 meter depth), the pH changes little, chloride increases 1.5%~16.1% and TDS increases 21%~30%, but there is no signifant difference in groundwater quality between treatment and control. There is no difference for salt changes between reclaimed wastewater and other water sources. The PAHs content is close to environmental background value, the pollutant is originated from a mixture of burning of natural gas and gasoline and coal combustion. Nap, Phe, Fla, Pyr is easier to transport compared to others. The typical vadose has low vulnerability.
     The relation between land use, water table decrese and groundwater pollution and the weight have been ascertained to improve DRASTIC model, the DRASILE model based on human activities has been established to research the feasibility of Beijing plain of reclaimed wastewater irrigation, the threshold to classify groundwater vulnerability for reclaimed wastewater irrigation is ascertained, Beijing plain bas been divided into priority area, feasible area and forbidden area for reclaimed wastewater irrigation with the area of 116 thousand hm2, 48 thousand hm2 and 15.8 thousand hm2 respectively.
引文
[1] A Kass, I Gavrieli,Y Yechieli, et al.The impact of freshwater and wastewater irrigation on the chemistry of shallow groundwater:a case study from the Israeli Coastal Aquifer[J].Journal of Hydrology, 2005; 300: 314-331.
    [2] A. k. Antonakos, N.J.Lambrakis. Development and testing of three hybrid methods for the assessment of aquifer vulnerability to nitrates,based on drastic model,an example from NE korinthia,Greece. Journal of Hydrology, 2007(333):288-304.
    [3] A.K. Hooda, C J Weston, D Chen. Denitrification in effluent-irrigated clay soil under Eucalyptus globulus plantation in south-eastern Australia. Forest Ecology and Management[J], 2003, 179:1/31/3, 547-558.
    [4] Adamat,Foster,Baban. Groundwater vulnerability and risk mapping for the Basaltic aquifer of the Azrap basin of Jordan using GIS,Remote sensing and DRASTIC. Applied Geography,2003:303-324.
    [5] Almasri. Assessment of intrinsic vulnerability to contamination for Gaza coastal aquifer. Palestine. Journal of Environmental Management, 2007:1-17.
    [6] Babiker,Mohamed,Hiyama, et al. A GIS-based DRASTIC model for assessing aquifer vulnerability in Kakamigahara Heights, Gifu Prefecture. Science of Total Environmental, 2006(345):127-140.
    [7] Basta N T, Tabatabai M A.Effeet of cropping systems on adsorption of metals by soils: 1.Single-metal adsorption[J]. Soil Sci., 1992, 153(2):108-114.
    [8] Chakrabatri C. Residual effect of long-term and application of domestic waste-water. Env- ironment International, 1995, 1(3): 333-339.
    [9] Chen J.Y.,Tang, C.Y., Shen, Y.J. et al., Nitrate pollution from agriculture in different hydrogeological zones of the regional groundwater flow system in the North China Plain, Hydrogeology Journal[J], 2005, (13):481-492.
    [10] EPA, Guidelines for Water Reuse[S]. Agency for international development Washington, DC.2004.9.
    [11] EPB,Treated Municipal Wastewater Irrigation Guidelines[S]. 2004, 235. Britain.
    [12] FAO,Wastewater treatment and use in agriculture[S], Irrigation and Drainage, 1992, 47.
    [13] G. Stuart Pettygrove & Takashi Asano, Irrigation with reclaimed municipal wastewater-A guidance manual[M], Lewis publishers. INC., 1985.
    [14] Gerriste R G, Van Driel W. The relationship between adsorption of trace metals, organic matter and pH in temperate soils[J]. J. Environ. Qual., 1984, 13:197-204.
    [15] Guggenberger G, Pichler M, Hartmann R,etal. 1996. Polycycl aromatic hydrocarbons in different forest soils: mineral horizons [J]. Z P flanzenernaehr Bodenk, 159(6): 565-573.
    [16] K. Müller , G.N. Magesan, N.S. Bolan, A critical review of the influence of effluent irrigation on the fate of pesticides in soil[J], Agriculture ecosystems & environment, 2004, AGEE-2913, 1-24.
    [17] Lazarova, V.. Role of water reuse in enhancing integrated water management in Europe[J]. Final,Report of the EU project CatchWater, ONDEO, Paris, France, 2001: 708.
    [18] Li H,Reynlds J F. On definition and quantification of heterogeneity. Oiko, 1995.73:280-284.
    [19] Lucila Candela, Salvador Fabregat, Alejandro Josa,et al. Assessment of soil and groundwater impacts by treated urban wastewater reuse. A case study: Application in a golf course (Girona, Spain), Science of the Total Environment, 2007(374):26-35.
    [20] M.H. Hamza, A. Added, R. Rodriguez, et al. A GIS-based DRASTIC vulnerability and net recharge reassessment in an aquifer of a semi-arid region. Journal of Environmental Management, 2007, 84(1): 9-12.
    [21] McPherson J.B., Land treatment of wastewater at Werribee: past, present and future [J]. Prog Water Technol, 1979(11):15-31.
    [22] Menahem Rebhun, Desalination of reclaimed wastewater to prevent salinization of soils and groundwater, Desalination 2004(160):143-149.
    [23] N. Jain, A. Bhatia, R. Kaushik, et al. Impact of post-machination distillery effluent irrigation on groundwater quality, Environmental Monitoring and Assessment, 2005(110): 243-255.
    [24] National Research Council. Ground Water Vulnerability Assessment: Predicting Relative Contamination Potential Under Conditions of Uncertainty (1993). NATIONAL ACADEMY PRESS, WASHINGTON, D.C.
    [25] R.A.N.Al-Adamat,I.D.L.Foster,S.M.J.Baban.Groundwater vulnerability and risk mapping for the Basaltic aquifer of the Azrap basin of Jordan using GIS, Remote sensing and DRASTIC. Applied Geography, 23 (2003):303-324.
    [26] Ryden, J. C., AND P. F. Pratt.. Phosphorus removal from wastewater applied to land. Hilgardia, 1980(48):1-36.
    [27] S. Khan, M. N. Asghar, T. Rana,Characterizing Groundwater Dynamics Based on Impact of Pulp and Paper Mill Effluent Irrigation and Climate Variability,Water Air Soil Pollut. ,2007 (185):131-148.
    [28] S. Secunda, M.L.Collin,A.J.Melloul. Groundwater vulnerability assessment using a composite model combining DRASTIC with extensive agricultural land use in Israels Sharon region.Journal of Environmental Management, 1998(54):39-57.
    [29] Secunda,Collin,Melloul. Groundwater vulnerability assessment using a composite model combining DRASTIC with extensive agricultural land use in Israels Sharon region. Journal of Environmental Management,1998(54):39-57.
    [30] Soren Thiele, Gerhard W. Brummer. Bioformation of polycyclic aromatic hydrocarbons in soil under oxygen deficient conditions[J]. Soil Biology&Biochemistry. 2002(34):733-735.
    [31] Valentina Lazarova, Water reuse for irrigation: agriculture, landscapes, and turf grass[M]. 2005, CPC press,20.
    [32] van den Heuvel H, van Noort P C M. Competition for adsorpition between added phenanthrene and in situ PAHs in two sediments [J], 2003, Chemosphere, 53(9): 1097-1103.
    [33] Vrana, M. (1984): Methodology for construction of groundwater protection maps. UNESCO/UNEP Project PLCE-3/29, Moscow
    [34] WHO, Guidelines for the microbiological quality of treated wastewater used in agriculture:Recommendations for revising WHO guidelines[S]. 2000.
    [35] Yuan G, Lvkuliehl M. Sorption behavior of copper, zine, and cadmium in response to simulated changes in soil properties[J].Commun soil Sci Plant Anal. 1997, 28:571-587.
    [36]北京地区水资源地下储备规划研究[R],2009.9,北京市地质工程勘察院.
    [37]北京市地表水资源保护规划报告[R],2005.5,北京市水文总站.
    [38]陈静,王学军,陶澍等,天津污灌区耕作土壤中多环芳烃的纵向分布[J],城市环境与城市生态,2003,16(6):272-274.
    [39]陈家军,郭乔羽,王红旗,等.应用协同-泛克立格法估计地下水水位[J],水利学报,2000. 07 :7-13.
    [40]崇洁.几种金属元素进入土壤后的迁移转化规律及吸附机理的研究[J],环境科学,1989,10(3):2-8.
    [41]董克虞,杨春惠,林春野.北京市污水农业利用区划的研究[M],1994.
    [42]董亮,朱荫湄,胡勤海等.应用DRASTIC模型评价西湖流域地下水污染风险[J],应用生态学报,2002,13(2):217-220.
    [43]黄冠华,杨建国,黄权中.污水灌溉对草坪土壤与植株氮含量影响的试验研究[J],农业工程学报,2002,18(3):22-25.
    [44]姜翠玲等,污水灌溉土壤及地下水三氮的变化动态分析[J],水科学进展,1997,v.8(2),183-188。
    [45]姜桂华.地下水防污性能研究进展[J],世界地质,2002,21(1):33-38.
    [46]姜志群,朱元生.地下水污染敏感性评价中DRASTIC法的应用[J],河海大学学报,2001,29 (2) :99-103.
    [47]荆延德,土壤汞污染的物理化学行为及其微生物学特征[D],浙江大学博士研究生学位论文,2007.
    [48]李涛.基于MapInfo的大沽河地下水库防污性能评价[D].中国海洋大学硕士学位论文(2004).
    [49]李保国,胡克林,黄元仿,等.区域浅层地下水硝酸盐含量评价的指示克立格法[J],水利学报2001. 03:1-5.
    [50]刘凌,陆桂华,含氮污水灌溉实验研究及污染风险分析[J],水科学进展,2002,13(3).
    [51]刘昌明,陈志恺,中国水资源现状评价和供需发展趋势分析[M],中国水利水电出版社,北京,2001.
    [52]刘洪禄,吴文勇,师彦武等,北京市再生水利用潜力与配置方案研究[J],农业工程学报,2006,22(2):289-291.
    [53]刘仁涛,付强,李伟业,等.地下水防污性能评价研究与探讨[J],水资源与水工程学报,2006,17(6):1-5.
    [54]刘长礼,张云,叶浩.包气带粘性土层的防污性能试验研究及其对地下水脆弱性评价的影响.地球学报,2006,27(4):349-354.
    [55]青长乐,付绍清.论土壤重金属毒性临界值[J],1992,农业环境保护,11(2):51-56.
    [56]斯尼茨尔,吴奇虎,等.环境中的腐殖物质[M],北京,化学工业出版社,1979.
    [57]孙维红.再生水灌溉条件下土壤-植物系统盐分迁移规律的试验研究[D],中国农业大学硕士论文,2007.
    [58]王国利,周惠成,杨庆.基于DRASTIC的地下水易污染性多目标模糊模式识别模型[J],水科学进展,2000,21(2):173-178.
    [59]王丽平,章明奎,不同来源重金属污染土壤中重金属的释放行为[J],环境科学研究,2007,20(4):134-138.
    [60]许彦卿,等.地质统计学方法在地下水动态预测中的应用[J],西安地质学院学报,1991,36-39.
    [61]徐义军.再生水灌溉条件下土壤氮素迁移转化规律试验研究[D],2007,中国农业大学硕士论文。
    [62]杨斌.土壤对铬吸附特性及影响外源铬吸附因素的研究[D],贵州大学硕士研究生学位论文,2006.
    [63]杨崇洁.几种金素元素进入土壤后的迁移转化规律及吸附机理的研究[J],1989,环境科学,10(3):2-8.
    [64]杨庆,栾茂田,杨庆.地下水易污性评价方法—DRASTIC指标体系.水文地质工程地质,1999(2):4-10.
    [65]姚爱军,青长乐.腐殖酸对矿物结合汞活性的影响[J],土壤学报,1999,36(4):477-483.
    [66]易秀.黄土类土对铬、砷的净化机理及地下水防污安全埋深的研究[D],长安大学博士学位论文,2003.
    [67]尹世洋.基于GIS的北京市再生水灌区地下水防污性能区划研究[D],中国农业大学硕士论文,2008.
    [68]于卉,郭勇等.武清县污水灌溉情况及影响分析[J],水资源保护,2000,第4期.
    [69]张春丽.浙江丽水地下水脆弱性研究[D],北京:中国地质科学院硕士学位论文,2006.
    [70]张丽君.地下水防污性能和风险性评价研究进展综述[J],水文地质工程地质,2006(6):113-119.
    [71]张仁铎,著.空间变异理论及应用[M],科学出版社,北京,2005.
    [72]赵昌刚.福建南部沿海地区地下水资源易污性评价[J],矿产保护与利用,2006.4:51-53.
    [73]钟佐燊.地下水防污性能评价方法探讨[J],地学前缘,2005(12):2-11.
    [74]朱雪芹,徐秀娟,蒋丽艳等.哈尔滨市地下水的易污性评价及计算机编图[J],世界地质,2001.20(4): 364-368.
    [75]周晓虹,李小娟,高存荣.基于GIS的地统计分析在区域水质评价中的应用——以内蒙古临河市为例[J],首都师范大学学报(自然科学版) ,2008.04:52-58.
    [76]邹胜章,张金炳,李洁等,北京西南城近郊浅层地下水盐污染特征及机理分析[J],水文地质工程地质,2002(1):5-9.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700