用户名: 密码: 验证码:
供水管网优化投氯分析与计算
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
饮用水用氯消毒是我国大部分净水厂广泛使用的一种消毒技术,但多数水厂仅在水厂出口进行一次性投氯,由于余氯随着停留时间而衰减,管网末梢余氯过低,这种做法不足以保证余氯浓度在管网中的较好分布,而且有可能导致管网中局部区域余氯浓度较高,造成对人体健康有影响的消毒副产物的增加。针对这种情况,本文提出了在管网中进行二次加氯优化的思想,即在管网中投加适量的氯,这样即能够满足水处理过程中氯的内在消耗即对微生物的传染提供足够的保护,同时保证余氯浓度在供水管网中的分布比较均匀,能够使后续供水管网保证一定的余氯浓度,还能减少了水厂投药量,节省了制水成本,并且便于实际扩建工程的分布进行,将对人体健康有威胁的消毒副产物的产生量也能减小。
     本文首先对供水管网建模理论进行了阐述,在供水管网水力模型、水质模型的基础上,通过对余氯衰减模型的研究采用一级余氯衰减模型,该模型形式简洁,对实测数据的吻合程度也较好,在实际中广泛应用。其次在管网水力模型和一级余氯衰减模型的基础上建立了供水管网中二次加氯的优化模型,因为加氯量优化是相对简单的工作,而加氯点选址涉及因素复杂,加氯点选址优化一次完成,长期使用,而加氯量优化宜随时间和环境变化而进行调整,所以本文采用加氯点选址优化与加氯量优化分开进行。由于多数供水企业不具备好的水质模型条件,覆盖模型是通过节点间的水量大小比例及水流路径建立整个管网节点间的水质关系,覆盖模型虽然相对粗糙但实用,所以采用覆盖模型进行二次加氯点的选择。本文二次加氯量优化模型是根据管网中余氯分布最好的方式便是均匀地达到某一期望水平,与期望余氯浓度的差值便成为衡量用户水质的标准。
     为了验证模型及算法的有效性,将上述优化模型应用于国际学术领域中通用的实际测试算例管网和哈尔滨市道里区实际供水管网中。优化结果表明所选的二次加氯点及优化加氯量,不仅满足控制点余氯浓度的要求,而且与仅在水厂出口增加投氯量以满足控制点余氯浓度的要求相比,管网中各节点余氯浓度普遍下降,浓度分布比较均匀,降低了由于管网中余氯浓度较大造成消毒副产物的产生量增大引起的风险,同时管网总投氯量降低,药耗减少。
     本文通过对供水管网二次加氯优化分析的研究,希望可以给有关供水管理部门提供参考,从而有效提高我国供水管网水质管理水平,确保用户的水质安全。
In most of drinking water treatment plants, Chlorine disinfection is a widely used technology, but major of the plants add chlorine only once at the entrance of the plant. As the residual chlorine decayes with time, the dose is too low when it arrives at the network peripheral. This method can’t guarantee a better distribution of residual chlorine in the pipe network.And it may lead to higher residual chlorine concentration in some local area network, and increases disinfection by-product which has a bad impact on human health. In light of this situation, the paper puts forward the idea of secondary chlorination optimization in pipeline network, that is, adding secondary chlorination points.Appropriate addition of chlorine can meet the internal consumption of the treatment process, which provides adequate protection for the spread of microbes. Meanwhile it ensures residual chlorine concentration distributes more evenly in the network,and guarantees certain residual chlorine concentrations in the follow-up of network.It also reduces the amount of water plant administration, saves water costs and facilitates the actual expansion project. And it will minimize the quantity of disinfection by-products which are threats to human health.
     In this paper, the water pipe network modeling theory was expounded in the water distribution network hydraulic model, the water quality model, based on residual chlorine through the attenuation model of using a residual chlorine attenuation model, the model of simplicity, The measured data also match the better, in practice widely used. Second pipe network in the hydraulic model and a residual chlorine attenuation model on the basis of a secondary water supply networks in the chlorination of the optimal model, because the chlorination of optimization is relatively simple, while the chlorination point of the site Complex factors, chlorination at the site optimization was completed, the long-term use, and to optimize the chlorination of time and environmental change and adjustment, so this point chlorination site optimization and optimize the separation of chlorination. Since most companies do not have good water quality model conditions, the model is covered by node size ratio between the water flow path and the establishment of the network nodes between the quality, coverage model Although relatively rough but practical, so use the cover model The chlorination point choice. In this paper, the second chlorination of optimization model is based on residual chlorine in the distribution network the best way is to achieve a uniform level of expectations, and expectations of residual chlorine concentration of the margin has become the user to measure water quality standards.
     In order to verify the validity of models and algorithms, the optimal model for international academic in common examples of the actual test network and the District of Harbin City, hang in the actual water supply networks. The results show that optimization of the selected secondary chlorination points and optimization of chlorination, the control point not only to meet the requirements of residual chlorine concentrations, but only with the increase in water plant for export volume to meet the chlorine residual chlorine concentration of control point requirements, Network node in the general decline in residual chlorine concentrations, the concentration of relatively uniform, as a result of lower net residual chlorine concentration in the larger cause the formation of disinfection by-products of the risks posed by increased, while the total net volume of chlorine to lower drug Reduce consumption.
     Based on the second chlorination of water supply network optimization analysis of the study in the hope of the water management departments to provide information so as to effectively enhance the country's water supply network management level to ensure that users of water quality and safety.
引文
1李延平,蔡祖根.生活饮用水卫生标准实用指南.福州,东南大学出版社, 2002
    2卫生部.《生活饮用水卫生标准》,GB5749-85. 1986年10月10日实施
    3卫生部.《生活饮用水水质卫生规范》. 2001年9月1日起执行
    4中华人民共和国卫生部,生活饮用水卫生标准,(GB5479-2006), 2006.12.29
    5乐林生.上海供水水质现状、目标与对策.“饮用水安全保障技术与管理”专家报告文集.北京,2003
    6张金松等.城市供水的水质现状与发展规划.“饮用水安全保障技术与管理”专家报告文集.北京,2003
    7赵志刚,万众华.管网水质与实时检测.市政技术. 37~38
    8赵洪宾.给水管网系统理论与分析.中国建筑工业出版社,2003.9
    9李欣.配水管网水质变化的研究.哈尔滨建筑大学博士学位论文, 1999
    10李欣,赵洪宾,齐晶瑶.给水管道生长环的冲洗与防治.哈尔滨建筑大学学报2002,35(6):30~32
    11岳舜琳.我国给水氯化消毒的现状及存在的问题.给水排水,1993,19(11):15~17
    12王华成,吕锡武.微污染水源水饮用水处理研究进展.净水技术,2005,24(1):30~32
    13 R. M. Males, R. M. Clark, P. J. Wehrman. Algorithm for Mixing Problems in Water Systems. Hydraulic Engineering. 1985,111(2):206~219
    14 J. C. P. John, R. W. Nicholas. Performance of carious kinetic model for chlorine decay. Water Resources Planning and Management, 2000(126):13~21
    15 M. C. Robert, S. Mano. Predicting chlorine residuals in drinking water:second order mode. Water Resources Planning and Management, 2002,128(2):152~161
    16 H. M. Steran, S. P. Roger. A. W. Clive. Calibration and comparison of chlorine decay models for a test water distriburtion. Water Resources Planning and Management, 2000,34(8):2301~2309
    17 Li Xin, Gu Darming. Modeling of residual chlorine in water distribution system. Environmental Science. 2003,15(1):136~144
    18罗红毅.饮水消毒剂及其副产物对人体健康的影响.西藏科技.2005,(11):42~43
    19吴一蘩,高乃云,乐林生.饮用水消毒技术,北京:化学工业出版社,2006.1.
    20董丽丽,黄骏雄.饮用水消毒副产物及其分析技术.化学进展.2005,17(2):350~358
    21 J. J. Rook. Formation of haloforms during chlorination of natural waters. Water Treatment. 1974,(2):2340
    22 T. A. Bellar. The occurrence of organhalides in chlorination drinking water. AWWA.1974,(12):703~706
    23王琳,王宝贞.饮用水深度处理技术.第1版.北京:化学工业出版社,2002
    24 S. W. Karananer. The occurrence of disinfection by-products in U. S. drinking water. AWWA,1989,(8):41~53
    25黄君礼.国内主要水厂卤仿的调查.环境化学.1987,(4):80~86
    26 N. B. Hallam, J. R. West, C. F. Forster. The Decay of Chlorine Associated with the Pipe Wall in Water Distribution System. Water Research. 2002, (36): 3479~3488
    27 A. Waniek, M. Bodzek, K.Konieczny. Trihalomethane Removal from Water Using Membrane Processes. Polish Journal of Environmental Studies, 2002,11(2):171~178
    28许海宁,仇荣亮,饮用水中二卤甲烷形成机理与处理现状.上海环境科学,1999,18(12):568~570
    29董丽丽,黄骏雄.饮用水消毒副产物及其分析技术.化学进展.2005,17(2):350~358
    30郭士权.饮用水中消毒副产物的形成与去除.重庆建筑工程学院学报.1994,16(3)::92~96
    31赵洪宾.给水管网“生长环”对水质水压的影响.安徽建筑工业学院报. 1994, (4):12~14
    32吴文燕.给水管网系统水质模型的研究.哈尔滨建筑大学博士学位论文.1999
    33李欣.配水管网水质变化的研究.哈尔滨工业大学博士论文.1999
    34 H. Cross. Analysis of flow in networks of conduits or conductors. University of Illinois. Engeering Experimental Station. 1936:286~312
    35 C. C. Sulla. Convergenza del metodao di cross.Atti VIII convegno dildraulica e costruzioni Idrauliche.Pisa.1936:287~312
    36 U. J. Shamir, C. D. Charles. Water distribution systems analysis. Journar ofHydraulic Division. 1972,98:1157~1170
    37 D. J. Wood, C. O. A. Charles. Hydraulic network analysis using linear theory. Journal of the Hydraulics Division. 1972,98:1157~1170
    38 M. A. Collins, L. Cooper, R. Helgaso. Solving the pipe networks analysis problem using optimization techniques. Management Science. 1978:747~760
    39 R. M. Males, R. M. Clark, P. J. Wehrman. Algorithm for Mixing Problems in Water Systems. Hydraulic Engineering. 1985,111(2):206~219
    40 A. R. Simpson, G. C. Dancy, L. J. Murphy. Genetic Algorithms Compared to other Techniques for Pipe Optimization. Water Resour. Plng. and Mgmt. 1994,120(4):423~443
    41 W. M. Grayman, R. M. Clark, R. M. Males. Modeling Distribution System Water Quality:Dynamic Approach. Water Resour. Plng. and Mgmt. 1988,114(3):295~312
    42 C. P. Lious, J. R. Kroon. Modeling the Propagation of Waterborne Substances in Distribution Networks. AWWA. 1987,79(11):54~58
    43 L. A. Rossman, P. F. Boulo, Tom Altman. Discrete Volume-element Method for Network Water-quality Models. Water Resour. Plng. and Mgmt. 1993,119(5):32~40
    44 M. H. Chaudhry, M. R. Islam. Improving Efficiency and Reliability in Water Distribution Systems. Kluwer Academic publishers. 1995:233~241
    45 D. L. Boccelli, M. E.Tryby. Optimal Scheduling of Booster Disinfection in Water Distribution Systems. Water Resour. Plng. and Mgmt. 1998,124(2):99~111
    46徐洪福,赵洪宾.输配水系统中水体余氯的衰减规律研究.中国给水排水,2003,19(8):15-18
    47徐洪福.城市供水管网水质变化规律与控制措施研究:博士学位论文,哈尔滨工业大学,2003
    48吴一蔡,高乃云,乐林生.饮用水消毒技术.北京:化学工业出版社.2006
    49 M. Lungwitz, S. Hopfgarten, K. Chen, M. A. Brdys. Modeling and Simulation of Chlorine Concentration in Water Supply Systems for Control Purposes. Proceedings of the 39th International Scientific Colloquium, Ilmenau, Germany. 1994
    50 S. Schneider, M. A. Brdys, H. Puta. Modeling of Chlorine Concentration in Water Systems Directed to Integrated Operational Control. Integrated ComputerApplications in Water Supply. 1993:143~159
    51 L. W. Mays. Water Distribution Systems Handbook. New York:McGraw-Hill, 1999:1309~1321
    52严煦世,范瑾初.给水工程.中国建筑工业出版社,1999
    53 X. Chen, P. S. Stewart. Chlorine Penetration into Artifical Biofilm is Limited by a Reaction-disffussion. Interaction Envir. Sci. and Technol. 1996(6):2087~2083
    54 J. J. Vasconcelos, L. A. Rossman, W. M. Grayman. Kinetics of chlorine decay. AWWA. 1997,89(7):54~65
    55 J. C. Powell, N. B. Hallam, J. R. West. Factors which control bulk chlorine decay rates. Water Research. 2000,34(1):117~126
    56李欣,宋学峰.配水管网水质变化的研究(II)一余氯消耗动力学机制的研究.哈尔滨建筑大学学报,1999, 32 (3) : 52-56
    57齐晶瑶,李欣,赵洪宾.供水管道内余氯消耗机理的探讨.中国给水排水, 2000,26(8):66-69
    58赵洪宾.给水管道的余氯消耗规律的初步研究.给水排水, 1986, 12(6):11~15
    59 T. A. Bellar. The occurrence of organhalides in chlorination drinking water. AWWA. 1974,(12):703~706
    60 R. M. Males, R. M. Clark, P. J. Wehrman. Algorithm for Mixing Problems in Water Systems. ASCE. 1985,111(2):206~219
    61 W. M. Grayman, R. M. Clark, R. M. Males. Modeling Distribution-System Water Quality:Dynamic Approach. ASCE. 1988,114(3),295~312
    62 R. M. Clark, W. M. Grayman. Modeling Water Quality in Drinking Water Systems. AWWA. 1998
    63伍悦滨,赵洪宾,张海龙.用节点水龄量度给水管网的水质状况.给水排水,2002, 28(15),36-38
    64许仕荣,周书蔡,基于节点水龄的供水管网水质监测点的优化布置.南华大学学报,2003,17(3),13-16
    65孙惠泉.图论及其应用.北京:科学出版社,2004
    66 L. A. Rossman. EPANET user’s manual:Version 2.0 U.S. Environmental Protection Agency. Cincinnati, Ohio. 2000
    67 W. M. Kays. Convective Heart and Mass Transfer. McGraw-Hill New York, 1993
    68 P. C. L. Biswas, R. M. Clark. Chlorine Concentration Decay in Pipes. WaterResearch. 1993,27(12):1715~1724
    69 O. N. Ozdemir, A. M. Ger. Realistic Numerical Simulation of Chlorine Decay in Pipes. Water Research. 1998, 32(11):3307~3312
    70 L. A. Rossman, Paul F. Boulo, Tom Altman. Discrete Volume-element Method for Network Water-quality Models. J. Water Resour. Plng. and Mgmt. 1993, 119(5):32~40
    71 O. N. Ozdemir, A. Ucak. Simulation of Chlorine Decay in Drinking-water Distribution Systems. Envir. Engrg, ASCE. 2002,128(1):31~39
    72 D. L. Boccelli, M. E.Tryby. Optimal Scheduling of Booster Disinfection in Water Distribution Systems. Water Resour. Plng. and Mgmt. 1998,124(2):99~111
    73 R. R. Trussell. Safeguarding Distribution System Integrity. AWWA. 1999,91(1):52

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700