用户名: 密码: 验证码:
黄牡丹种子休眠与萌发特性及苗木的抗旱性初步研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
黄牡丹(Paeonia lutea Delavay ex Franch)是我国西南特有的野生牡丹,是国家三级保护植物,属于濒危物种;作为种质资源黄牡丹在新品种培育以及药用方面也具重要价值。迄今为止关于黄牡丹的研究主要集中在系统分类、染色体、孢粉学等有限的领域;对黄牡丹种子生理学的研究偶见报道;而对其抗旱性的研究至今未见报道。为了对野生黄牡丹进行有效保护与利用,开展其繁殖生物学以及抗旱生理、生态学方面的相关研究显得非常必要和迫切。
     开展对黄牡丹种子休眠与萌发特性的研究,有助于我们对其种子生理有更全面的了解,同时探求黄牡丹种子繁殖的有效途径,为野生黄牡丹种质资源的保护提供参考。另外,通过对不同黄牡丹居群的抗旱性进行研究,除了有助于了解其抗旱生理方面的特点,同时还可得到不同居群黄牡丹之间的抗旱性差异,为黄牡丹资源保护提供帮助,也可为优良牡丹品种的选育提供一定的理论依据。
     本文包括两部分试验:(1)种子处理与萌发试验:通过在不同温度条件下,用不同处理方法对昆明西山野生黄牡丹居群种子进行生根和发芽试验;(2)模拟土壤干旱试验:利用土壤干旱处理法中的控水法控制盆栽牡丹苗木的土壤含水量;通过实验室测定苗木相同部位叶片的相对含水量、叶绿素含量、相对电导率、脯氨酸含量及丙二醛含量的变化情况等部分生理生化指标间接鉴定和评价昆明西山居群、玉溪梁王山居群和大理苍山居群黄牡丹的抗旱性差异。两个部分试验结果分别如下:
     (1)对黄牡丹种子的休眠与萌发特性试验表明:
     1) 200㎎/L GA3溶液浸泡24h处理、挫伤种脐处种皮与50℃温水浸种三种处理方法对黄牡丹种子胚根的生长都有促进作用;其促根生长的效果从高到低依次为200㎎/L GA3溶液浸泡>种皮挫伤>温水浸泡。
     2) GA3溶液浸泡能打破黄牡丹种子上胚轴休眠,促进生根种子提前发芽,尤其是对根长超过3㎝的种子发芽更为有效。
     3)单纯的5℃低温条件不能有效打破黄牡丹种子的上胚轴休眠;15℃是野生黄牡丹种子生根和发芽都比较适合的温度条件。
     (2)模拟土壤干旱条件的抗旱性试验表明:
     1)在控水过程中,各居群幼苗盆栽土壤含水量都呈下降趋势:即干旱的前6d土壤含水量下降得比较剧烈;随着干旱胁迫的不断加重,土壤含水量下降的程度趋于平缓。随着土壤干旱程度加剧,叶片含水量急剧下降。三个居群苗木叶片含水量下降程度由强到弱是:大理苍山﹥玉溪梁王山﹥昆明西山。
     2)在整个控水过程中,三个居群苗木的叶绿素含量都呈下降趋势。从控水第6d开始,各居群苗木叶绿素含量下降的幅度增大,且各居群间下降的幅度呈现较大的差异;叶绿素变幅由大到小的排序为:大理苍山居群、玉溪梁王山居群、昆明西山居群。
     3)随着盆栽土壤干旱程度加剧,三个居群黄牡丹幼苗的相对电导率都呈上升趋势。在干旱达到8d和10d后,三个居群的相对电导率均急剧增加,增幅排序从大到小依次为:大理苍山居群、玉溪梁王山居群、昆明西山居群。
     4)三个居群黄牡丹幼苗的脯氨酸含量随着干旱加剧都有所增加。到了干旱第10 d,昆明西山居群的脯氨酸含量约是对照的16倍;玉溪梁王山居群的脯氨酸含量是对照的15倍;大理苍山居群的脯氨酸含量是对照的12.5倍。
     5)三个居群黄牡丹幼苗的丙二醛含量也都随着土壤干旱程度的提高呈上升趋势。干旱第8d之后丙二醛含量变化较明显,变幅由大到小依次为大理苍山居群、玉溪梁王山居群、昆明西山居群。在干旱第10d,大理苍山居群的比对照增加了47.09%;玉溪梁王山居群的与对照相比增加了41.68%;昆明西山居群的丙二醛含量与对照相比增加了37.17%。
     6)运用方差分析和主成分分析探讨上述各项因子变化的内在相互关系发现:所测定的生理指标中与昆明西山居群幼苗抗旱性能密切相关的有脯氨酸含量和相对电导率;与玉溪梁王山和大理苍山居群幼苗抗旱性密切相关的生理指标包括脯氨酸含量、叶绿素b。因此可以将这些指标作为黄牡丹抗旱性研究的测定和评价指标。
     7)采用坐标综合评定法和模糊数学的隶属函数评定法对三个居群的抗旱能力评定结果相同,即三个居群抗旱能力由强到弱依次是:昆明西山﹥玉溪梁王山﹥大理苍山。
     本试验研究发现三个居群黄牡丹的抗旱能力有所不同,建议在对不同居群黄牡丹实施保护时应该根据其自身特点选择适当的保护策略。对于抗旱性较弱的居群,应加大保护力度;在人工迁地保护时应根据其抗旱能力大小选择适宜的生境;在培植以黄牡丹为亲本的牡丹新品种时,应优先选择抗旱能力较强的居群,从而培养出美观、耐旱的优良品种。
Paeonia lutea Delavay ex Franch is a wild peony species indigenous to southwest of china. Being an endanged species, it is listed as a third grade national protected species in china. P. lutea has very important germplasm resource value for new variety breeding and for medicinal purpose. The researches on P. lutea so far have been mostly concentrated in taxonomic classification, chromosome, palynology and some other limited fields. Few of studies were related to its seed physiology, whereas there was not any research report found about drought resistance of this species. So it is essential and urgent to do some researches on its reproductive biology, drought resistant physiology and ecology for this endanged species in terms of appropriate conservation and utilization.
     Conducting studies on seed dormancy and germination characteristics of P. lutea would be helpful to understanding better its seed physiology, exploring effective approaches for its seeding reproduction, and providing the germplasm conservation of this endanged specis with theoretical and practical references. Carrying out studies on drought resistant characteristics of P. lutea populations from different habitats would be benefitial to understanding its related physiological properties and the difference in this aspect among varied populations so as to provide germplasm resource protection and superior cultivar breeding with guidance.
     Two experiments were conducted: (1) Seed treatment and germination experiment: rooting and germination experiments were conducted with the seeds collected from wild P. lutea population in the Xishan Mount of Kunming City under different temperature conditions after the seed samples having been treated with different ways; (2) Simulating soil drought experiment: different soil drought statuses were simulated by irrigation control for potted P. lutea plants, and the indexes of lelf water content, chlorophyll content, the change of relative electrical conductivity, contents of proline (Pro) and melondiadehyde (MDA) were mensured together with soil water content in order to evaluate indirectly and appraise the difference in drought resistant capacity among Cangshan Mountains population in Dali, Liangwang Mount population in Yuxi and the Xishan Mount population in Kunming; the results obtained from the two experiments are as follows:
     (1)The following conclusions were drawn from seed treatment and germination experiment:
     1) Soaking the seeds in solution of 200㎎/L GA3 for 24h, contusing the testa around hilum and soaking the seeds in 50℃water could all improve the radicle growth, and the effectiveness order was 200㎎/L GA3 solution soaking >testa contusing >50℃water soaking.
     2) Soaking the seeds with 200㎎/L GA3 solution could break epicotyl dormancy of the rooted seeds and enhance the germination, and the effect was even better on seeds with radicles longer than 3cm.
     3) Only the 5℃low temperature could not effectively break epicotyl dormancy of the rooted seeds. 15℃temperature was comparatively appropriate for both radicle growth and seed germination of P. lutea.
     (2)The following conclusions were drawn from the simulating soil drought experiment:
     1) Water content of the pot planting soil dropped along with the drought process. It dropped dramatically within the 6 days, and then slowed down when the soil became very dry. Seedling leaf water content decreased obviously with the soil desiccation, and the leaf water content declining range order of the three populations was the Cangshan Mountains population in Dali﹥the Liangwang Mount population in Yuxi﹥the Xishan Mount population in Kunming.
     2) In the entire process of drought stress, chlorophyll content of all the three populations declined gradually. The decline became significant after the 6th day, while there was great difference in the reduction amplitude among the three populations. The biggest reduction happened to the Cangshan Mountains population in Dali , followed by Liangwang Mount population in Yuxi, and the Xishan Mount population in Kunming.
     3) With the aggravation of drought stress in the soil, all the relative electrical conductivity value of seedlings of the three populations increased. The increment of the value became obviousy after the 8th day, and the order of increase amplitude was the Cangshan Mountains population in Dali, the Liangwang Mount population in Yuxi, and the Xishan Mount population in Kunming.
     4)Proline (Pro) content of all the seedlings inceased along with the aggravation of drought stress. Compared with the CK of each population, the proline content of the Xishan Mount population in Kunming increased by 15 times; the value of Liangwang Mount population in Yuxi increased by 14 times, and the value of Cangshan Mountains population in Dali increased by 11.5 times.
     5) Melondiadehyde (MDA) content of all the three populations increased along with the aggravation of drought stress in the soil. The increment became siginificant after the 8th day of drought stress, and the change amplitude order from the largest to the least was the Cangshan Mountains population in Dali, the Liangwang Mount population in Yuxi, and the Xishan Mount population in Kunming. By the 10th day of the drought stress, MDA content of the of Cangshan Mountains population in Dali increased by 47.09% compared to the CK group, the value of the Liangwang Mount population in Yuxi increased by 41.68%, and the MDA content of Xishan Mount population in Kunming increased by 37.17% versus to its own contrast.
     6) It was indicated by the variance analysis and the main components analysis on the inherent correlations among above physiological indices that: The proline content and the value of relative electrical conductivity indices of the Xishan Mount population in Kunming were closely related to the drought resistance characters. Indices of proline content and chlorophyll b content of both Liangwang Mount population in Yuxi and Cangshan Mountains population in Dali were closely related to their drought resistance properties. So it was proposed that these indices could be used for eualuating drought resistant capacity for P. lutea.
     7) The same results were obtained by the Coordinate Comprehensive Evaluation and the Affiliated Equation Evaluation on each physiological index of the three P. lutea populations, i.e., the drought-resistant capacity of the three populations was in this order: the Xishan Mount population in Kunming﹥the Liangwang Mount population in Yuxi﹥the Cangshan Mountains population in Dali.
     It was showed by the experiments that there was diffenrence in drought resisitant capacity among the three P. lutea populations, indicating that appropriate conservation strategies concerning of the intrinsic charactersitics should be taken for different populations. Greater efforts should be done to protect the population with weaker drought reisistance. Suitable habitats should be selected for ex situ conservation according to its drought resistant capacity. The population with stronger drought resistance should be applied in priority as parental materials in the process of P. lutea cultivar breeding, so that the new vatieties could be drought resistant beside its beauty and other superior traits.
引文
[1]郭绍霞,张玉刚,任茹.中国牡丹研究进展[J].莱阳农学院学报, 2003, 20(2): 116~121.
    [2]潘开玉.芍药属.中国植物志(第2卷)[M],北京:科学出版社, 1979.
    [3]王莲英,袁涛主编.牡丹花[J].北京:中国建筑工业出版社, 2002.
    [4]李嘉珏.中国牡丹与芍药[M].北京:中国林业出版社, 1999.
    [5]Hong D. Y, Pan K. Y. , Yu H. Taxonomy of the Paeonia delavayi complex(Paeoniaceae)[J].Ann Msouri Bot Gard, 1998, 85: 554~564.
    [6]成仿云,李嘉珏,陈德忠.中国野生牡丹自然繁殖特性研究[J].园艺学报, 1997, 24(2): 180~184.
    [7]王志芳,王雁,岳桦.珍稀资源—黄牡丹[J].中国城市林业, 2007, 5(2): 59~60.
    [8]成仿云,李嘉珏,于玲.中国牡丹的输出及其在国外的发展Ⅱ:野生牡丹[J].西北师范大学学报, 1998, 34(3): 103~108.
    [9]洪德元,潘开玉.芍药属牡丹组的分类历史和分类处理[J].植物分类学报, 1999, 37(4): 351~368.
    [10]何丽霞.黄牡丹花粉母细胞减数分裂过程的细胞遗传学观察[J].兰州大学学报(自然科学版), 2004, 40(6): 78~82.
    [11]李宗艳,万晓敏,唐岱,等.黄牡丹花粉萌发特性的研究[J].浙江林学院学报, 2004, 21(3): 285~28.
    [12]龚洵,肖调江,顾志建,等.黄牡丹八个居群的Giemsa C一带比较研究[J].云南植物研究, 1999, 21(4): 477~482.
    [13]JING Xin-Ming , ZHENG Guang-Hua. The Characteristics in Seed Germination and Dormancy of Four Wild Species of Tree Peonies and Their Bearing on Endangerment[J]. Acta Phytophysiologica Sinica, 1999, 25(3): 214~221.
    [14]景新明,郑光华,裴颜龙,等.野生紫斑牡丹和四川牡丹种子萌发特性与其致濒的关系[J].生物多样性, 1995, 3(2): 84~87.
    [15]高捍东译.乔灌木种子手册[M].东南大学出版社, 1994.
    [16]景新明,郑光华,洪德元.栽培牡丹的种子萌发和贮藏特性(简报)1[J].植物生理学通讯, 1995, 31(4): 268~270.
    [17]周仁超,姚崇怀,潘俊,等.紫斑牡丹种子休眠和萌发特性初步研究[J].湖北农业科学, 2002, (1): 59~60.
    [18]张远兵,刘爱荣,张雪平.不同贮藏方法及激素、稀土等对牡丹种子发芽及幼苗生长的影响[J].种子, 2005, 24(8):16~20.
    [19]龚洵,武安全.渐危植物黄牡丹受威胁因素初探[J].植物引种驯化集刊, 1993, (8): 141~146.
    [20]武维华.植物生理学[M].北京:科学出版社, 2003.
    [21]李吉跃.植物耐旱性及其机理[J].北京林业大学学报, 1991, 13(3):92~100.
    [22]张建国.中国北方主要造林树种耐旱性及其机理的研究[D].北京林业大学博士论文, 1993.
    [23]彭祚登,李吉跃.林木抗旱性育种的现状与策略思考[J].北京林业大学学报, 1998, 20(4):98~103.
    [24]路贵和,安海润.作物抗旱性鉴定方法与指标研究进展[J].山西农业科学, 1999, 27(4):39~43.
    [25]李吉跃.杨树耐旱性及其生理[J].北京林业大学学报, 1991, 13(3):92~99.
    [26]胡新生,王世绩.树木水分胁迫生理与耐旱性研究进展用展望[J].林业科学, 1998, 34(2):77~89.
    [27]黎裕.作物抗旱鉴定方法与指标[J].干旱地区农业研究, 1993,11(3):91~99
    [28]Farshsdfar E., Koszegi B., Tischner T., Sutka J. Substitution analysis of drought tolerance in wheat (Triticum aestiruml.) [J]. Plant Breeding, 1995, 114(6):542~544.
    [29]李妮亚,曹翠玲等.干旱对小麦诱导蛋白表达与某些特性的初步探讨[J].西北植物学报, 1997, 17(2):210~216.
    [30]郭卫东,铙景萍等.抗旱基因HDCSI的植物表达载体构建[J].西北植物学报, 1999, 19(3):371~375
    [31]魏岩主编.园林植物栽培与养护[M].中国科学技术出版社, 2003.
    [32]张彤,齐麟.植物抗旱机理研究进展[J].湖北农业科学, 2005, (4):107~l l0.
    [33]林馗,吴志华.桉树水分胁迫研究进展[J].桉树科技, 2006, 23(2):36~52.
    [34]潘瑞炽.植物生理学[M].北京:高等教育出版社, 2001.
    [35]孙存华,白嵩,白宝璋等.水分胁迫对小麦幼苗根系生长和生理状态的影响[J].吉林农业大学学报, 2003, 25(3):485~489.
    [36]米海莉,许兴,李树华等.干旱胁迫下牛心朴子幼苗的抗旱生理反应和适应性调节机理[J].干旱地区农业研究, 2002, 20(4):11~16.
    [37]谢会成,朱西存.水分胁迫对栓皮栎幼苗生理特性及生长的影响[J].山东林业科技, 2004, (2):6~7.
    [38] OSMOND C B. Photorespiration and photoinhibition:some implications for the energetics of photo synthesis[J]. Biochim Biophys Acta, 1981, (639):77~98.
    [39]KRAUSE G H, CORNIC G.. CO2 and O2 interactions in photohibition [M]. AmsteMam: Elsevier, 1987.
    [40]MflTLER R, BARBARA A, Zilinskas. Regulation of pea cytssolic ascorbate peroxidase and other antioxidant enzymes during the progression of drought stress and following recovery from drought [J]. The Plant Journal, 1994, 5(3):397~405.
    [41]吴林,李亚东,张志东等. 3种类型越桔对干旱胁迫的生理反应[J].吉林农业大学学报, 1998, 20(2): 1~3. 42陈洪国.桂花幼苗对不同程度水分胁迫的生理响应[J].华中农业大学学报, 2006, 25(2):190~193.
    [43]樊卫国,刘国琴,何嵩涛等.刺梨对土壤干旱胁迫的生理响应[J].中国农业科学, 2002, 35(10):1243~1248.
    [44]贾利强,李吉跃,郎南军等.水分胁迫对黄连木、清香木幼苗的影响[J].北京林业大学学报, 2003, 25(3):55-59.
    [45]SCHULTE P J, HINCKLEY T M, STE'ITLER R F. Stomatal responses of pupulus to leaf water potential [J]. Canadian J. 0f Botany, 1987, 65(2):255~260.
    [46]骆建霞,史燕山,曹鸿斌.水分胁迫对蔓生紫薇和亮叶忍冬生长及生理特性的影响[J].园艺学报, 2006, 33 (3):657~659.
    [47]赵昌琼,芦站根,庞永珍等.土壤水分胁迫对曼地亚红豆杉光合特性的影响[J].西南师范大学学报(自然科学版), 2003, 28(1):126~129.
    [48]景茂,曹福亮,汪贵斌等.土壤水分含量对银杏光合特性的影响[J].南京林业大学学报(自然科学版), 2005. 29(4):8 3~86.
    [49]韦小丽,徐锡增,朱守谦.水分胁迫下榆科3种幼苗生理生化指标的变化[J].南京林业大学学报(自然科学版), 2005, 29(2):47~50.
    [50]彭立新,李德全,束怀瑞.植物在渗透胁迫下的渗透调节作用[J].天津农业科学,2002, 8(1):40~43.
    [51]Boland DJ, Brooker MIH, Chippendale GM. et al.Forest trees of Australia.Nelson and CSIRO [M]. Melbourne.687, 1984.
    [52]Bachelard E P. Effects of soil moisture stress on the growth of seedlings of three eucalypt species.Ⅲ.Tissue water relations [J]. Aust. For. Res., 1986, 16:155~163.
    [53]Wang D,Bachelard E,Banks JCG.Growth and water relations of seedlings of two subspecies ofEucalyptus globulus[J].Tree physiol.,1988,4:129~138.
    [54]Stewart C. R,Beggess. SF. Metabolism of [5-3H] Proline by barely leaves and its use in measuring the effects of water stress on proline oxidation [J]. Plant physiol, 1969, 44:1023~1026.
    [55]Munns R., Brady CJ, Barlow EWR. Solute accmulation in the apex and leaves of wheat during water stress [J]. Aust.J.Plant physiol, 1979, 6:379~289.
    [56]李林锋,刘新田.干旱胁迫对桉树幼苗的生长和某些生理生态特性的影响[J].西北林学院学报, 2003, 19(1):14~17.
    [57]陈少瑜,郎南军,李吉跃,等.干旱胁迫下3树种苗木叶片相对含水量、质膜相对透性和脯氦酸含量的变化[J].西部林业科学, 2004, 33(3): 30~33.
    [58]CLIFFORD S, ARNDT S, CORLE'IT J, et a1. The role of solute accumulation, osmotic adjustment and changes in cell wall elasticity in drought tolerance in ziziphus mauritiana (Lamk.)[J]. Journal of Experimental Botany, 1998, 49(323):967~977.
    [59]李玲,余光辉,曾富华.水分胁迫下埴物脯氨酸累积的分子机理[J].华南师范大学学报:自然科学版, 2003, (1):126~134.
    [60]曾鸣.四川柏木与露丝柏的抗旱性研究[J].四川农业大学学报, 1989, (2): 46~49.
    [61]黄颇梅,张健,罗承德.西藏柏木抗旱生理研究[J].四川林业科技, 1998, 19(4):31~36.
    [62]马双艳,姜远茂,彭福田,等.干旱胁迫对苹果叶片中甜菜碱和丙二醛及脯氨酸含量的影响[J].落叶果树, 2003, (5):1~4.
    [63]ARNDT S K, CLIFFORD S C, WANEK W, et a1. Physiolosical and morphologica/adaptations of the fruit tree ZiziphUS rotundifolia in response to progressive drought stressⅢ[J]. Tree Physiology, 2001, (21):1~11.
    [64]罗华建,刘星辉.水分胁迫条件下枇杷若干生理指标的变化[J].亚热带植物科学, 2004, 33(1):19~21.
    [65]王霞,侯平,尹林克,等.水分胁迫对柽柳植物可溶性糖物质的影响[J].干旱区研究, 1999, 16(2):6~11.
    [66]彭立新,李德全,束怀瑞.园艺植物水分胁迫生理及耐旱机制研究进展[J].西北植物学报, 2002, 22(5):1275~1281.
    [67]蒋明义,郭绍川.水分亏缺诱导的氧化胁迫和植物的抗氧化作用[J].植物生理学通讯, 1996, 32(2):144~150.
    [68]吴伯千,潘根生.茶树对水分胁迫的生理生化反应[J].浙江农业大学学报, l995, 21(1):451~456.
    [69]李霞,阎秀峰,于涛.水分胁迫对黄檗幼苗保护酶活性及脂质过氧化作用的影响[J].应用生态学, 2005, 16(12):2353~2356.
    [70]胡哲森,许长钦,傅瑞树.锥栗幼苗对水分胁迫的生理响应及6-BA的作用[J].福建林学院学报, 2000, 20(3):199~202.
    [71]夏新莉,郑彩霞,尹伟伦.土壤干旱胁迫对樟子松针叶膜脂过氧化、膜脂成[分]和乙烯释放的影响[J].林业科学, 2000, 36(3):8~12.
    [72]张文辉,段宝利,周建云,等.不同种源栓皮栎幼苗叶片水分关系和保护酶活性对干旱胁迫的响应[J].植物生态学报, 2004, 28(4):483~490.
    [73]张大鹏,贾文锁,杨洪强.植物水分胁迫信号识别与转导[J].植物生理学通讯, 2001, 37(2):149~154.
    [74]胡新生,王世绩.树木水分胁迫生理与耐旱性研究进展及展望[J ].林业科学, 1998, 34(2):77~89.
    [75]KASUGAL M, UUQ, MIURAL S, et al. allmproving plant drousht,salt.and freezing tolerance by gene transfer of a single stress—inducible transcription factor[J]. Nature Biotechnology, 1999, (17):287~291.
    [76]Pelosi A. Molecular and genetic studies into the formation of lateral roots in Eucalyptus and Arabidopsi [D] . PhD Thesis. Monash University, Melbourne, Australia, 2002.
    [77]Naoko Ishige, Keiko Kondo, Atsushi Furujyo, et al.Genetic improvement for environmental stress resistance in eucalyptus [C]. Town & Country Convention Center.San Diego, CA January, 2004.
    [78]陈雅君,冯淑华,陈桂芬.植物抗旱性鉴定指标的研究现状与进展[J].中国林副特产, 2005, 6(79):62~63.
    [79]李嘉珏.中国牡丹与芍药[M].北京:中国林业出版社, 1998.
    [80]王莲英.中国牡丹品种图志[M].北京:中国林业出版社, 1997.
    [81]朱丽娟,任凝辉.牡丹栽培生理研究现状进展[J].河南林业科技, 2004, 24(1):27~29.
    [82]陈智忠,陈俊,刘大瑛,等.洛阳牡丹主要栽培树种耐旱特性的研究[J].林业科技, 2000, 25(5):61~62.
    [83]侯小改,段春燕,刘改秀,等.土壤含水量对牡丹光合特性的影响[J].华北农学报, 2006, 21(2):91~94.
    [84]侯小改,段春燕,刘素云,等.不同土壤水分条件下牡丹的生理特性研究[J].华北农学报, 2007, 22(3):80~83.
    [85]李永华,翟敏,李颖旭,等.干旱胁迫下牡丹叶片光合作用与抗氧化酶活性变化[J].河南农业科学, 2007(5):90~93.
    [86]徐艳,吕长平,成明亮,等.几个牡丹品种的抗热性比较研究[J].湖南农业科学, 2007, (4):180~183.
    [87]华东师范大学生物系植物生理教研组编著.植物生理实验指导[M].北京:高等教育出版社, 1990.
    [88]邹琦主编.植物生理生化实验指导[M].北京:中国农业出版社, 1995.
    [89]王三根主编.植物生理研究技术[M].重庆:西南农业大., 2000.
    [90]郝再彬主编.植物生理实验[M].哈尔滨工业大学出版社, 2004.
    [91]Thimann KV. The senescence of leaves[M]. In Senescence in plants (Thimann KV.ed). Boca Raton Florida : CRC Press , 1980: 85-115.
    [92]聂华堂,陈竹生,计玉.分胁迫下柑桔的生理变化与抗旱性的关系[J].农业科学, 91, (4):14~18.
    [93]燕平梅,章艮山.水分胁迫下脯氨酸的累积及其可能的意义[J].太原师范专科学校学报, 2000, 33(4):27~28.
    [94]叶德生,徐国华.闽北优良笋用散混生竹种的初步选择[J].福建林业科技, 2003, 30(1):25~27.
    [95]Larcher W. Physilogical Plant Ecology 2nd ed[M]. New York:Spinger-verlag, 1980, 303~304.
    [96]李云荫.综合评价冬小麦的抗旱性[J].植物生理学通讯, 1990, (20):17~20
    [97 ]李秀珍,李学强,马慧丽,等.不同处理对牡丹和芍药种子发根及发芽的影响[J]. 种子, 2004, 23(3):59~60.
    [98]郑光华主编.种子生理研究[M].科学出版社, 1995.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700