用户名: 密码: 验证码:
星载雷达GMTI系统与信号处理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
利用星载雷达实现地面运动目标指示(GMTI)功能为地表大面积监视、侦察和目标跟踪、定位提供了可能,具有重要的军事应用价值。利用多通道雷达和分布式雷达的空域采样特征进行GMTI成为目前研究的热点。由于星载雷达GMTI系统是一个涉及领域宽、层次多、高度复杂的大系统,要实现它,在信号处理和系统设计上面临许多挑战,对它开展研究具有十分重要的意义。
     本文瞄准星载雷达GMTI这一前沿课题,针对GMTI信号建模与仿真、GMTI信号处理、星载分布式SAR-GMTI系统性能分析、星载分布式SAR-GMTI编队优化设计等四个关键技术问题进行了研究,主要工作安排如下:
     第二章研究了星载雷达GMTI信号建模与仿真。基于小面单元模型和粗糙地面的散射特性,建立了三维场景地杂波模型,推导了地杂波和运动目标的回波信号表达式,分析了动目标的星载合成孔径雷达(SAR)成像特性。给出了回波仿真和GMTI信号处理流程,建成了完整的星载分布式SAR-GMTI仿真系统,为深入研究各种GMTI处理算法和优化系统设计提供了支持。
     第三章研究了星载雷达GMTI信号处理问题。首先从一般性的收发分置几何关系入手,分析了多通道脉冲—多普勒(PD)体制雷达的地杂波特性,结合具体的双站形式、波束同步方式、地球自转偏航导引、以及天线方向图形式,给出了杂波秩预测实例。采用非平稳杂波抑制算法与固定结构降维算法级联的形式提高运算效率。然后针对多通道SAR体制雷达GMTI信号处理,研究了两种空时自适应处理(STAP)信号模型的本质区别,揭示了相关脉冲积累时间(CPI)的长度对杂波秩和目标功率谱的影响。最后针对星载分布式SAR-GMTI系统,对比研究了顺轨干涉(ATI)、图像域自适应滤波等算法,修正了ATI方法,分析了现有的两种图像域自适应滤波方法的本质,比较说明了各种算法的适用性。
     第四章分析了星载分布式SAR-GMTI系统检测性能。与以往只分析干涉相位误差的研究思路不同,本章通过揭示各因素与SAR图像相关系数的关系,从本质上分析了时间、频率同步误差以及热噪声、基线、图像配准误差等参数对星载分布式SAR-GMTI处理性能的影响,比较了分布式GMTI系统和分布式InSAR系统对各参数指标的要求,为星载分布式SAR-GMTI系统设计提供了理论指导。
     第五章研究星载分布式SAR-GMTI编队优化设计。在信号处理和检测性能分析的基础上,提出了一种测速比和时间效用比的联合指标,作为衡量编队系统整体GMTI能力的标准,比较了Cartwheel、Pendulum、SAR-Train等典型编队的GMTI性能。针对沿航向编队,提出基于信号正交原理优化基线配置的方法,性能较均匀线阵和最小冗余阵有一定程度提高。针对立体编队,抽象出了优化目标的数学模型,结合雷达信号检测要求和编队卫星轨道控制知识确定了搜索空间的范围,采用遗传算法搜索得到了一个3星优化编队。
Ground Moving Target Indication(GMTI) using Spacebome Radar(SBR) gives the opportunity for large scale surveillance,spying,and target tracking,position.It is specially valuable for military application.Utilizing the space domain sampling character of multi-channel radar and distributed radar for GMTI is attractive to researchers.Since SBR GMTI system is a multilevel and complex large-scale system concerning broad technology,many challenges about signal processing and system design will be encountered.It is significant and valuable to study it.
     With the spaceborne GMTI radar as the background,this dissertation focuses on four crucial techniques:the GMTI signal modeling & simulation,GMTI signal processing,distributed SAR-GMTI system performance analysis,distributed SAR-GMTI optimum formation design.
     In the second chapter,SBR GMTI signal modeling & simulation are researched. Based on the small facet model and the scatter characteristic of the rough terrain,3-D ground scene clutter model is established.The received signal expression of clutter and moving target are formulated.The moving target imaging character is tested.The simulation method of receive signal and GMTI procession flow are discussed comprehensively,and an integrated distributed spaceborne SAR-GMTI simulation software is established.The software will be usefull for the deeper research in GMTI procession algorithms and optimum system design.
     In the third chapter,SBR GMTI signal processing algorithms for Short coherent pulses integrated(CPI) multi-channel Pulse Doppler(PD) mode,long CPI multichannel SAR imaging mode and distributed SAR-GMTI are researched separately.The ground clutter characteristic of bistatic spaceborne GMTI radar in PD mode is analyzed. The clutter rank is forecasted with considering the bistatic style,beam synchronization, earth rotation,and the directional array pattern.Several nonstationary clutter suppression algorithms dependent on range are researched,and cascade signal processing is used to enhance the efficiency and improve the performance.The natural difference of the STAP signal models for PD and SAR modes is analyzed,and the effects of CPI on clutter statistical character and power spectrum are discovered. Several distributed SAR-GMTI algorithms,such as ATI,two kinds of adaptive filters in image domain,are compared essentially.Proper modification is made to ATI.
     In the fourth chapter,the detection performance of the distributed spaceborne SAR-GMTI is analyzed.Instead of beginning the research from the phase errors models as the traditional way,we start the research from the more essential matter.A comprehensive expression of the correlation coefficient with time and frequency synchronization errors is given.The influence of synchronization error and some other system parameters are discussed.System parameters requirements for two kinds of interferometric systems,InSAR and GMTI,are compared.This will give powerful theoretical supports for distributed spaceborne SAR-GMTI system design.
     In the fifth chapter,optimal formation design for SAR-GMTI is studied.Based on the research of signal processing and detection performance analysis,the joint criterion, which combines the detectable velocity percent with the effective system cycle is presented.GMTI performances of some classical formations,such as the Cartwheel, Pendulum,SAR-Train and so on,are evaluated by it.For along-track formation,the optimum baseline configuration is obtained based on the orthogonal signal theory.It has some advantages than Uniform Linear Arrays and Minimum Redundancy Arrays.For 3-D formation,the mathematic model of the optimal object is drawn,and the searching range is established by the requirement for the radar signal detection and the knowledge of the orbit control.As a result,an optimum 3-D formation consisting of 3 small satellites is found through genetic algorithm.
引文
[1]Hounam D,Baumgartner S,Bethke K H,et al.An autonomous,non-cooperative,wide-area traffic monitoring system using space-based radar(TRAMRAD).Proc.of the IEEE IGARSS 2005,July 2005,Seoul,Korea:2917-2920
    [2]魏钟铨.合成孔径雷达卫星.北京:科学出版社,2001
    [3]袁孝康.星载合成孔径雷达导论.北京:国防工业出版社,2002
    [4]王超,张红,刘智.星载合成孔径雷达干涉测量.北京:科学出版社,2002
    [5]Thompson A A,Livingstone C E.Moving target performance for Radarsat-2.Proc.of the IEEE IGARSS 2000,July 2000:2599-2601
    [6]Nohara T J,Weber P,Premji A,et al.SAR-GMTI processing with Canada's Radarsat 2 satellite.Proc.of the IEEE AS-SPCC 2000,Oct.2000,Canada:379-384
    [7]Shen Chiu.Performance of Radarsat2 SAR-GMTI processors at high SAR Resolutions.Defence Research Establishment Ottawa,Technical Report DREO TR 2000-093,Nov.2000
    [8]Shen Chiu.An analysis of Radarsat2 SAR-GMTI performance for standard beam mode.Defence Research Establishment Ottawa,Technical Report DREO TR 2000-088,Dec.2000
    [9]Christoph H G.Statistics of SAR interferograms with application to moving target detection.Defence Research Establishment Ottawa,Technical Report DREO TR 2001-045,July 2001
    [10]Sevigny P,Livingstone C,Saper R.A synthetic moving target generator for calibration of Radarsat2 moving-object detection experiment(MODEX).Proc.of the IEEE IGARSS 2001,July 2001:3141-3143
    [11]van der Sanden J J,Ross S G.Applications potential of Radarsat-2 a preview,Canada Center for Remote Sensing,National Resources Canada,Ottawa,April,2001,177p.(http://geoscan.ess.nrcan.gc.ca/cgibin/starfinder/16916/geoscan_e.txt)
    [12]Shen Chiu.SAR along-track interferometry with application to Radarsat-2 ground moving target indication.Image and Signal Processing for Remote Sensing Ⅷ,Proc.of SPIE vol.4885,2003:246-255
    [13]Beaulne P D,Gierull C H,Livinstone C E,et al.Preliminary design of a SAR-GMTI processing system for Radarsat-2 MODEX data.Proc.of the IEEE IGARSS 2003,July 2003:1019-1021
    [14]Shen Chiu.Clutter effects on ground moving target velocity estimation with SAR along-track interferometry.Proc.of the IEEE IGARSS 2003,July 2003:1314-1319
    [15]Gierull C H,Sikaneta I C.Raw data based two-aperture SAR ground moving target indication. Proc. of the IEEE IGARSS 2003, July 2003: 1032-1034
    [16] Vant M, Livingstone C, Rey M, et al. Canadian experience on Radarsat-1 and Radarsat-2 GMTI for surveillance. AIAA/ICAS International Air and Space Symposium and Exposition: The Next 100 Year. July 2003, Dayton Ohio, AIAA 2003-2820
    
    [17] http://www.radarsat2.info
    [18] Mittermayer J, Runge H. Conceptual studies for exploiting the TerraSAR-X dual receive antenna. Proc. of the IEEE IGARSS 2003, July 2003: 2140-2142
    [19] Wolfgang Pitz. The TerraSAR-X satellite. EUSAR 2006, May 2006, Dresden Germany
    
    [20] Rolf W. The TerraSAR-X mission. EUSAR 2006, May 2006, Dresden Germany
    [21] Hartmut R, Christopher L, Martina G, et al. Performance analysis of virtual multi-channel modes for TerraSAR-X. EUSAR 2006, May 2006, Dresden Germany
    [22] Franz M, Stefan H, Andreas L, et al. Performance analysis of the TerraSAR-X traffic monitoring concept. ISPRS Journal of Photogrammetry & Remote Sensing,Oct. 2006,61: 225-242
    [23] http://www.terrasar.de/
    [24] Breit H, Eineder M, Holzner J, et al. Traffic monitoring using SRTM along-track interferometry. Proc. of the IEEE IGARSS 2003, July 2003: 1187-1189
    [25] Steffen Suchandt, Michael Eineder, Helko Breit, et al. Analysis of ground moving objects using SRTM/X-SAR data. ISPRS Journal of Photogrammetry & Remote Sensing, Nov. 2006, 61: 209-224
    [26] Lombardo P, Pastina D, Colone F, et al. Potentialities of a multichannel radar obtained by splitting the antenna of the COSMO-SkyMed SAR into multiple sub-apertures. EUSAR Proc. Ulm, Germany, 2004: 35-38
    [27] Verdone G R, Viggiano R, Lopinto E, et al. Processing algorithms for COSMO-SkyMed SAR sensor. Proc. of the IEEE IGARSS 2002, June 2002,:2771-2774
    [28] Das A, Cobb R. TechSat 21 - space missions using collaborating constellations of satellites. Proceeding of the 12th Annual AIAA/USU Conference on Small Satellites, Logan Utah, 31 August-3 September 1998
    [29] Cyrus D Jilla. A multiobjective, multidisciplinary design optimization methodology for the conceptual design of distributed satellite systems. PHD Thesis, Department of Aeronautics and Astronautics, Massachusettes Institute of Technology, 2002
    [30] Martin M, Klupar P, Kilberg S, et al. Techsat21 and revolutionizing space missions using microsatellites. 15th American Institute of Aeronautics and Astronautics Conference on Small Satellites, Utah, 2001
    [31] Bums R, McLaughlin C A, Leitner J, et al. TechSat 21: formation design, control,and simulation, IEEE Aerospace Conference Proceedings, Vol: 7 , March,2000,pp: 19-25
    [32] Steyskal H, Schindler J K, Franchi P, et al. Pattern synthesis for TechSat21-a distributed space-based radar system. IEEE Antennas and Propagation Magazine.2003,45(4): 19-25
    [33] Karen Marais, Raymond Sedwick. Space based GMTI using scanned patterm interferometric radar(SPIR). Aerospace Conference, 2001, IEEE Proceedings,4_2047-4_2055
    [34] Kong Edmund M, Tollefson Mark V, Skinner James M, et al. TechSAT 21 cluster design using AI approches and the cornwell metric. Proceedings of the AIAA 1999 Space Technology Conference, AIAA-99-4635, Albuquerque, NM,September 1999
    [35] Martin M, Stallard M J, Distributed satellite missions and technologies - the TechSat 21 program. Proceedings of the AIAA 1999 Space Technology Conference, AIAA-99-4479, Albuquerque, NM, September 1999
    [36] Kong E M C, Miller D W. Optimal spacecraft re-orientation for earth orbiting clusters: applications to TechSat 21, 51st International Astronautical Congress,IAF Paper No. IAF-00-A.4.06,2-6 October 2000.
    [37] Sedwick R J, Kong M C, Miller D W. Exploiting orbital dynamics and micropropulsion for aperture synthesis using distributed satellite systems:applications to TechSat 21. Proceedings of the AIAA Defense & Civil Space Programs Conference, AIAA-98-5289, Huntsville, AL, October 1998.
    [38] Graeme B Shaw. The generalized information network analysis methodology for distributed satellite systems. PHD Thesis, Department of Aeronautics and Astronautics, Massachusettes Institute of Technology, 1998
    [39] John P, Enright A. Flight software development and simulation framework for advanced space systems. PHD Thesis, Department of Aeronautics and Astronautics, Massachusettes Institute of Technology, 2002
    [40] Edmund Mun-Choong Kong. Spacecraft formation flight exploiting potential fields. PHD Thesis, Department of Aeronautics and Astronautics, Massachusettes Institute of Technology, 2002
    [41] Troy L Hacker. Performance analysis of a space-based GMTI radar system using separated spacecraft interferometry. Masters Thesis, Department of Aeronautics and Astronautics, Massachusetts Institute of Technology, 2000
    [42] Cyrus D Jilla. Separated spacecraft interferometry -system architecture design and optimization. Masters Thesis, Department of Aeronautics and Astronautics,Massachusetts Institute of Technology, 1999
    [43] Techsat21-space missions using satellite clusters. Air Force Research Laboratory Factsheet,Sept.1998.http://www.vs.afrl.af.mil/factsheets/TechSat21.html
    [44]Massonnet D.Capabilities and limitations of the interferometric Cartwheel.IEEE Trans.on Geoscience and Remote Sensing,2001,39(3):506-520
    [45]Massonnet D,Thouvenot E,Ramongassie S,et al.A wheel of passive radar microsats for upgrading existing SAR projects,Proc.of the IEEE IGARSS 2000,July 2000:1000-1003
    [46]Kfieger G,Wendler M.Comparison of the interferometric performance for spacebome parasitic SAR configurations.EUSAR,June 2002,Cologne,Germany:467-470
    [47]Amoit T,Douchin F.The interferometric cartwheel:A multi-purpose formation of passive radar microsatellites,Proc.of the IEEE IGARSS,2002:435-437
    [48]Kwag Y K,Multi-mode SAR system model design for small satellite platform,EUSAR,June 2002,Cologne,Germany:45-48
    [49]Ender J H G,Spacebased SAR/MTI using multistatic satellite configurations.EUSAR,June 2002,Cologne,Germany:337-340
    [50]Fiedler H,Krieger G,Jochim F,et al.Analysis of bistatic configurations for spaceborne SAR interferometry.EUSAR,June 2002,Cologne,Germany:29-32
    [51]Fiedler H,Krieger G,Jochim F,et al.Analysis of satellite configurations for spaceborne SAR Interferometry.International Symposium of Formation Flying:Missions & technologies,Toulouse,October 2002.
    [52]Moreira A,Krieger G,Hajnsek I,et al.TanDEM-X:a TerraSAR-X add-on satellite for single-pass SAR interferometry.Proc.of the IEEE IGARSS 2004,sept.2004:1000-1003
    [53]Krieger G,Moreira A.Tandem-X:mission concept,product definition and performance prediction.EUSAR 2006,May 2006,Dresden Germany
    [54]Fiedler H,Krieger G.Then Tandem-X mission design and data acquisition plan.EUSAR 2006,May 2006,Dresden Germany
    [55]Aguttes J P.The SAR Train concept:required antenna area distributed over N smaller satellites,increase of performance by N.Proc.of the IEEE IGARSS 2003,July 2003:542-544
    [56]Jean P A.The SAR Train:along track oriented formation of SAR satellites.International Symposium Formation Flying Missions and Technologies,Toulouse (France),Oct.2002.
    [57]许稼,彭应宁,王秀坛,夏香根.合成孔径雷达运动目标检测和成像方法.第九届全国雷达学术年会论文集,2004,8,中国烟台,pp:617-620
    [58]王万林.非均匀环境下的相控阵机载雷达STAP研究.西安电子科技大学博士学位论文:2004,3
    [59]董瑞军.机载雷达非均匀STAP方法及其应用.西安电子科技大学博士学位 论文: 2002,9
    [60] Rabideau D J, Steinhardt A O. Improving the performance of adaptive arrays in nonstationary environments through data-adaptive training. Proc. of IEEE 30th ASILOMAR conf. on Signals, Systems and Computers, vol.1, 1996:75-79
    [61] Rabideau D J, Steinhardt A O. Improved adaptive clutter cancellation through data-adaptive training. IEEE Trans. AES, 1999, 35(3): 879-891
    [62] Rabideau D J. Maximum likelihood training of adaptive beamformers in distributed interference. Proc. of IEEE 35th ASILOMAR conf. on Signals,Systems and Computers, vol.2, 2001:1379-1384
    [63] Rabideau D J. Secondary data partitioning via maximum likelihood estimation:extensions. Sensor Array and Multichannel Signal Processing Workshop Processings, 2002:365-369
    [64] Melvin W L, Wicks M C. Improving practical space-time adaptive radar. Proc. of the IEEE National Radar Conf., 13-15 May 1997: 48-53
    [65] Melvin W L, Wicks M C, Brown R D. Assessment of multichannel airborne radar measurements for analysis and design of space-time processing architectures and algorithms. Proc. of the IEEE National Radar Conf., 13-16 May 1996: 130-135
    [66] Adve R S, Hale T B, Wicks M C. Transform domain localized processing using measured steering vectors and non-homogeneity detection. Proc. of the IEEE National Radar Conf, Boston, Apr. 1999: 285-290
    [67] Chen P. On testing the equality of covariance matrices under singularity. Report for AFOSR Summer Faculty Research Program, Rome: Rome Laboratory, Aug.1994
    [68] Chen P. Partitioning procedure in radar signal processing problems. Final Report for AFOSR Summer Faculty Research Program, Rome: Rome Laboratory, Aug.1995
    [69] Himed B, Salama Y, Michels J H. Improved detection of close proximity targets using two-step NHD. Proc. of the IEEE Int. Radar Conf., Alexandria, May 2000:781-786
    [70] Wang Y L, Chen J W, Bao Z, et al. Robust space-time adaptive processing for airborne radar on nonhomogeneous clutter environment. IEEE Trans. AES, 2003,39(1):70-81
    [71] Sarkar T K, Sangruji N. An adaptive nulling system for a narrow-band signal with a look-direction constraint utilizing the conjugate gradient method. IEEE Trans.AP, 1989, 37(7):940-944
    [72] Sarkar T K, Park S, Koh J, et al. A deterministic least square approach to adaptive antennas. Digital Signal Processing-Rev. J., 1996, 6:185-194
    [73] Sarkar T K, Koh J, Adve R S, et al. A pragmatic approach to adaptive antennas.IEEE Antennas Propagation Mag., 2000,42(2):39-55
    [74] Sarkar T K, Adve R S, Wicks M C. Effects of mutual coupling and channel mismatched on space-time adaptive processing algorithms. Proc. of IEEE Int.Conf. on Phased Array Systems and Technology, 2000:545-548
    [75] Sarkar T K, Wang H, Park S, et al. A deterministic least-squares approach to space-time adaptive processing (STAP). IEEE Trans. AP, 2001, 49(1): 91-103
    [76] Borsari G. Mitigating effects on STAP processing caused by an inclined array. Proc. of IEEE National Radar Conference, Dallas, TX, May, 1998:135-141
    [77] Kreyenkamp O, Klemm R. Doppler compensation in forward-looking stap radar.Proc. of Inst. Elect. Eng.-Radar, Sonar, Navigation, vol.148, Oct.2001:596-608
    [78] Lapierre F D, Verly J G, Droogenbroeck M V. New solution to the problem of range dependence in bistatic STAP radars. Proc. of the IEEE Radar Conf.,Huntsville, Alabama, May, 2003: 452-259
    [79] Lapierre F D, Droogenbroeck M V, Verly J G. New methods for handling the range dependence of the clutter spectrum in non-sidelooking monostatic STAP radars. ICASSP, April, 2003, V73-V76
    [80] Lapierre F D, Verly J G. Computationally-efficient range-dependence compensation method for bistatic radar stap. Proc. of the IEEE International Radar Conference, May, 2005: 714-719
    [81] Neyt X, Lapierre F D, Verly J G. Estimation of geometric radar configuration parameters for range-dependent compensation in STAP in the presence of targets,jammers, and decorrelation effects, IEEE Sensor Array and Multichannel Signal Processing Workshop, 2004: 662-666
    [82] Varadarajan V, Krolik J. Joint space-time interpolation for bistatic STAP,Asilomar Conf. on Signal, Systems and Computers, vol.1, Nov. 2003: 60-65
    [83] Varadarajan V, Krolik J. Space-time interpolation for adaptive arrays with limited training data. IEEE Int. Conf. on Acoustics, Speech, and Signal Processing (ICASSP), April 2003, 5:353-6
    [84] Varadarajan V. Model-based techniques for space-time adaptive processing. PHD thesis, Department of Electrical and Computer Engineering in the Graduate School of Duke University, America, 2004
    [85] Varadarajan V, Krolik J. Joint space-time interpolation for distored linear and bistatic array geometries. IEEE Trans. SP, 2006, 54(3): 848-860
    [86] Zatman M. Circular array STAP. Proc. of the IEEE National Radar Conf., Boston,Apr. 1999: 108-113
    [87] Kogon S M, Zatman M. Bistatic STAP for airborne radar systems. ASAP Workshop, Lexington: MIT Lincoln Laboratory, 2001
    [88] Daniel A Leatherwood, William L Melvin. Configuring a sparse aperture antenna for spaceborne MTI radar. IEEE radar conference 2003:139-146
    [89] Daniel A Leatherwood, William L Melvin, Scott Berger. Adaptive Signal Processing for A Spaceborne Distributed Aperture.AIAA Space 2001 Conference.Aug.2001,AIAA -2001-4725
    [90]Daniel A Leatherwood,William L Melvin,John Gamham.High- Fidelity MTI Modeling and Analysis of a distributed Aperture Spacebome Concept.AIAA Space 2000 Conference.Sep.2000,AIAA -2000-5187
    [91]王彤,保铮,廖桂生,邢孟道.天基分布式雷达GMTI.分布式卫星航天器新概念及其应用技术研讨会.北京香山.2004,10:537-545
    [92]王彤,保铮,廖桂生,邢孟道.天基分布式雷达GMTI.电子学报,2006,34(3):399-403
    [93]王彤,保铮,廖桂生,邢孟道.分布式小卫星雷达平台沿航向排列研究.宇航学报,2005,26(5):663-667
    [94]王彤,保铮,廖桂生,张振华.星载双基雷达GMTI的相干性研究.分布式小卫星雷达地面运动目标指示(GMTI)会议论文集,西安,2005,12:79-88
    [95]李真芳,保铮,杨凤凤.基于成像的分布式卫星SAR系统地面运动目标检测(GMTI)及定位技术.中国科学E辑:信息科学,2005,35(6):597-609
    [96]Li Zhen-fang,Bao Zheng,Yang Feng-feng.Distributed Satellites SAR System Ground Moving Target Indication and Location Based on Images.Science in China ser.E Information Sciences,2005,35(6):597-609(in Chinese)
    [97]李真芳,保铮.基于图像的分布式星载InSAR地面运动目标检测(GMTI)方法.分布式小卫星雷达地面运动目标指示(GMTI)会议论文集,西安,2005,12:72-78
    [98]曾斌.分布式卫星SAR慢动目标检测及关键技术研究.成都电子科技大学博士学位论文:2006,3
    [99]Cerutti-Maori D J E,Ender J H G.An approach to multistatic spaceborne SAR/MTI processing and performance analysis.Proc.of the IEEE IGARSS 2003,July 2003:4446-4449
    [100]Cerutti-Maori D J E.Performance analysis of multistatic configurations for spaceborne SAR/MTI based on the auxiliary beam approach.EUSAR 2004:629-634
    [101]Cerutti-Maori D J E,Ender J H G.Performance analysis of multistatic configurations for spaceborne GMTI based on the auxiliary beam approach.IEE Proceedings Radar,Sonar and Navigation.2006,513(2):96-103
    [102]Cerutti-Maori D J E.SpaceSim:simulation for spacebome multichannel SAR/MTI with phased-array antenna.EUSAR,2002:537-540
    [103]John Maher,Michael Callahan,Doug Lynch.Effects of clutter modeling in evaluating STAP processing for space-based radars.IEEE International Radar Conference,2000,5,Alexandra,VA,USA,565-570
    [104]Jilla C D,Sedwick R J,Miller D W.Application of multidisciplinary design optimization techniques to distributed satellite systems,Proc.of the AIAA Space Technology Conf.,Sept.1999,AIAA-99-4632
    [105]Tollefson M V,Preiss B K.Space based radar constellation optimization.Proc.of the IEEE Aerospace Conf.,Mar.1998:379-388
    [106]Marco D'Errico,Antonio Moccia.Remote sensing satellite formation for bistatic synthetic aperture radar observation.Proc.of SPIE,2001,vol.4540:237-245
    [107]Rego P J De,Jamshidi M.Optimizing spacecraft formation for single pass IFSAR.Proc.of SPIE,Bellingham,WA,2003,vol.5151:94-105
    [108]黄海风.分布式星载SAR干涉测高系统技术研究.国防科技大学博士学位论文.2005,12
    [109]Zebker Howard A.Decorrelation in Interferometric Radar Echoes.IEEE Trans.GRS,1992,30(5):950-959
    [110]Rodriguez E.Theory and design of interferometric synthstic aperture radars.IEE proceedings-F,1992,139(2):147-159
    [111]Rabideau D,Kogon S.A signal processing architecture for space-based GMTI radar.Proc.of IEEE Radar Conf.,Waltham MA,1999:96-101
    [112]郗晓宁,王威.近地航天器轨道基础.长沙:国防科技大学出版社,2003,4
    [113]John C Curlander,Robert N McDonough.合成孔径雷达—系统和信号处理.华东电子工程研究所译.1999,11
    [114]Zulch P,Davis M,Adzima L,et al.The earth rotation effect on a LEO L-band GMTI SBR and mitigation strategies.Proc.of IEEE Radar Conf.2004:27-32
    [115]Pillai S U,Braham Himed,Ke YongLi.Effect of earth's rotation and range foldover on space based radar performance.Proc.of IEEE Radar Conference 2005:137-142
    [116]陈筠力.单发多收分布式SAR卫星系统初步概念研究.分布式航天器新概念及其应用技术研讨会,北京香山,2004,10:308-314.
    [117]Klemm R.Comparison between monostatic and bistatic configurations for STAP.IEEE Trans.AES,2000,36(2):596-608
    [118]Zhang Y,Himed B.Effects of geometry on clutter characteristics of bistatic radars.Proc.of IEEE Radar Conf.,May 2003:417-424
    [119]Reed I S,Mallet J D,Brennan L E.Rapid convergence rate in adaptive arrays.IEEE Trans.AES,1974,10(6):853-863
    [120]Kelly E J.An adaptive detection algorithm.IEEE Trans.AES,1986,22(1):115-127
    [121]Robey F C,Fuhrmann D R,Kelly E J,et al.A CFAR adaptive matched filter detector.IEEE Trans.AES,1992,28(1):208-216
    [122]Ward J.Space-time adaptive processing for airborne radar.Technical Report 1015. MIT Lincoln Laboratory,1994
    [123]Klemm R.Space-time adaptive processing:principles and applications,IEE Radar,Sonar,Navigation and Avionics 9,London:IEE Press,1998
    [124]Klemm R.Principles of space-time adaptive adaptive processing.IEE Radar,Sonar,Navigation and Avionics 12,London:IEE Press,2002
    [125]Guerci J R.Space-time adaptive processing for radar.Boston:Artech House,2003
    [126]Melvin W L.A STAP overview.IEEE A&E Systems Magazine,2004,19(1),Part 2:Tutorials—Melvin:19-35
    [127]保铮,廖桂生,吴仁彪等.相控阵机载雷达杂波抑制的时空二维自适应滤波.电子学报,1993,21(9):1-7
    [128]保铮,张玉洪,廖桂生等.机载雷达空时二维信号处理(1).现代雷达,1994,16(1):38-48
    [129]保铮,张玉洪,廖桂生等.机载雷达空时二维信号处理(1).现代雷达,1994,16(2):17-27
    [130]Wang H,Cai L.On adaptive spatial-temporal processing for airborne surveillance radar systems.IEEE Trans.AES,1994,30(3):660-670
    [131]王永良,吴志文,彭应宁.适于非均匀杂波环境的空时自适应处理方法.电子学报,1999,27(9):56-58
    [132]Haimovich A M,Berin M.Eigenanalysis-based space-time adaptive radar:performance analysis.IEEE Trans.AES,1997,33(4):1170-1179
    [133]Zatman M.Properties of Hun-Turner projections and their relationship to the eigencanceller.Proc.of IEEE 30th ASILOMAR conf.on Signals,Systems and Computers,vol.2,Pacific Grove,CA,1996,1176-1180
    [134]Goldstein J S,Kogon S M.Reed I S,et al.Partially adaptive radar signal processing:the cross-spectral approach.Proc.of IEEE 29th ASILOMAR conf.on Signal,Systems and Computers,Pacific Grove,CA,Nov.1995:1383-1387
    [135]Goldstein J S,Reed I S.Reduced rank adaptive filtering.IEEE Trans.SP,1997,45(2):492-496
    [136]Goldstein J S,Reed I S.Theory of partially adaptive radar.IEEE Trans.AES,1997,33(4):1309-1325
    [137]Goldstein J S,Reed I S,Zulch P A,et al.A multistage STAP CFAR detection technique.Proc.of the IEEE National Radar Conf.,Dallas,TX,May 1998:111-116
    [138]Goldstein J S,Reed I S,Scharf L L.A multistage representation of the Wiener filter based on orthogonal projections.IEEE Trans.IT,1998,44(7):2943-2959.
    [139]Goldstein J S,Reed I S,Zulch P A.Multistage partially adaptive STAP CFAR detection algorithm.IEEE Trans.AES,1999,35(2):645-661
    [140]Fuhrmann D R.Application of Toeplitz covariance estimation to adaptive beamforming and detection.IEEE Trans.SP,1991,39(10):2194-2198
    [141]Barton T A,Smith S T.Structured covariance estimation for space-time adaptive processing.Proc.of IEEE International Conf.on Acoustics,Speech,and Signal Processing(ICASSP),1997,5:3493-3496
    [142]Pillai S U,Kwon B H.Forward/Backward spatial smoothing for conherent signal identification.IEEE Trans.ASSP,1989,37(1):8-15
    [143]Zatman M,Marshall D.Forward-Backward averaging in the presence of array manifold errors.IEEE Trans.AP,1998,46(11):1700-1704
    [144]Fante R L,Barile E C,Guella T P.Clutter covariance smoothing by subaperture averaging.IEEE Trans.AES,1994,30(4):941-945
    [145]Guerci J R,Bergin J S.Principal components,covariance matrix tapers,and the subspace leakage problem.IEEE Trans.AES,2002,38(1):152-162
    [146]Guerci J R,Goldstein J S,Reed I S.Optimal and adaptive reduced-rank STAP,special section on space-time adaptive processing.IEEE Trans.AES,2000,36(2):647-663
    [147]Guerci J R.Theory and application of covariance matrix tapers for robust adaptive beamforming.IEEE Trans.SP,1999,47(4):977-986
    [148]Goodman N A.SAR and MTI processing of sparse satellite clutters.PHD thesis,the University of Kansas,2002
    [149]Hayward S D.Adaptive beamforming for rapidly moving arrays.Proc.Int.Conf.on ASSP,1996:1165-1168
    [150]Zatman M A,The properties of adaptive algorithms with time varying weights.Proc.of IEEE Sensor Array and Multichannel Signal Processing Workshop,2000:82-86
    [151]Kreyenkamp O,Klemm R.Doppler compensation in forward-looking stap radar.Proc.IEE Radar,Sonar,Navigation,2001,148:596-608
    [152]保铮,邢孟道,王彤.雷达成像技术.北京:电子工业出版社,2005
    [153]Ward J.Space-time adaptive processing with sparse antenna arrays.The Thirty-Second Asilomar Conference on Signals,Systems & Computers,1998,Vol.2:1537-1541.
    [154]Ender J.Space-Time processing for multichannel synthetic aperture radar.Electronics & Communication Engineering Journal.1999:29-38
    [155]Billingsley J B.Exponential decay in windblown radar ground clutter Doppler spectra:multifrequency measurements and model.MIT Lincoln Lab TR-997,1996,DTIC AD-A321 399
    [156]孙造宇,梁甸农,董臻.星载分布式InSAR系统仿真研究.系统仿真学报.2006,18(6):1538-1541
    [157]黄立胜,王贞松,郑天垚.基于FFT的快速SAR分布目标回波模拟算法.分 布式航天器新概念及其应用技术研讨会,北京香山,2004,10:458-468
    [158]路兴强,梁甸农,王敏,余安喜.分布式小卫星SAR回波仿真的并行化研究.信号处理.2006,22(3):343-347
    [159]郑明洁.合成孔径雷达运动目标检测和成像研究.中科院电子所博士学位论文.2003
    [160]李景文.合成孔径雷达动目标检测与成像.北京航空航天大学博士学位论文.1999
    [161]张澄波.综合孔径雷达原理、系统分析与应用.北京:科学出版社,1989
    [162]Goldstein R M,Zebker H A.Interferometric radar measurement of ocean surface current.Nature,1987,328(20):707-709
    [163]Moccia A.Spaceborne along-track SAR interferometry:performance analysis and mission scenarios.IEEE Trans AES,2001,37(1):199-213
    [164]Massonnet D.The interferometric cartwheel:a constellation of passive satellites to produce radar images to be coherently combined.Int.J.Remote Sensing,2001,22(12):2413-2430
    [165]Roland R,Johannes S,Marcus S.Study on concepts for radar interferometry from satellites for ocean(and land) applications.KoRIOLiS Technical Report.April 2002.available at http://www.ifm.uni-hamburg.def-romeiser/koriolis.htm
    [166]何峰,梁甸农,刘建平.星载寄生式SAR多普勒特性分析.信号处理,2004,20(5):475-480
    [167]刘建平,梁甸农,何峰.主星带伴随小卫星编队系统的顺轨干涉SAR性能研究.电子与信息学报,2004,26(增):500-506
    [168]Gierull C H.Statistical analysis of multilook SAR interferograms for CFAR detection of ground moving targets.IEEE Trans GRS,2004,42(4):691-701
    [169]Soumekh M.Synthetic aperture radar signal processing with MATLAB algorithms.New York:Wiley,1999:575-586
    [170]Soumekh M.Moving target detection and imaging using an X band along-track monopulse SAR.Trans.AES,2002,38(1):315-333
    [171]龚耀寰.自适应滤波.北京:电子工业出版社,1988
    [172]Scheiber R,Moreira A.Coregistration of interferometric SAR images using spectral diversity.IEEE Trans GRS,2000,38(5):2179-2191
    [173]杨清友,王超.干涉雷达复图像配准与干涉条纹的增强.遥感学报.1999,3(2):122-127
    [174]何友,关键,彭应宁.雷达自动检测与恒虚警处理.北京:清华大学出版社,1999.5
    [175]Zhenfang Li,Zheng Bao,Hongyang Wang,Guisheng Liao.Performance improvement for constellation SAR using signal processing techniques.IEEE Trans.AES,2006,42(2):436-452
    [176]Simone D'Amico,Oliver Montenbruck,Christian Arbinger,et al.Formation flying concept for close remote sensing satellites.15th AAS/AIAA Space Flight Mechanics Conference.Copper Mountain,Colorado:AAS,January 23-27,2005.
    [177]Hovanessian S A,Jocic L B,Lopez J M.Spaceborne radar design equations and concepts.Proc.of the IEEE Aerospace Conf.,Feb.1997:125-136
    [178]何峰,梁甸农,刘建平.星载寄生式SAR系统干涉性能与空间分辨能力分析.信号处理,2005,21(6):570-576
    [179]孙造宇,梁甸农,董臻.星载分布式SAR干涉信号分析.信号处理.已录用
    [180]刘宝碇,赵瑞清,王纲.不确定规划及应用.北京:清华大学出版社,2003:1-17
    [181]张永胜,王敏,梁甸农等.星载寄生式InSAR系统频率同步误差分析.信号处理.已录用
    [182]Zhang Yong-sheng,Liang Dian-nong,Dong Zhen.Analysis of time and frequency synchronization errors in spaceborne parasitic interferometric SAR system.Proc.of the IEEE IGARSS 2006
    [183]Matthias Wei β.Synchronization of bistatic radar systems,Proc.of the IEEE IGARSS 2004,Sept.2004:1750-1753
    [184]Matthias Wei β.Time and frequency synchronization aspects for bistatic SAR systems.EUSAR,2004:395-398
    [185]Bamler R,Just D.Phase statistics and decorrelation in SAR interferograms.Proc.of the IEEE IGARSS 1993,Aug.1993:980-984
    [186]Long M W著,陈春林,顾昌贤译.陆地和海洋的雷达反射特性.北京:国防工业出版社,1983:222-261
    [187]汪浩,孙兴,刘森石.高等数学.长沙:国防科技大学出版社,1988
    [188]汤子跃,张守融.双站合成孔径雷达系统原理.北京:科学出版社,2003,6
    [189]张贤达.矩阵分析与应用.北京:清华大学出版社,2004,9:341-402
    [190]康雪艳.机载SAR地面运动目标检测成像技术研究.中科院电子所博士学位论文.2004

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700