用户名: 密码: 验证码:
雷电冲击和快速暂态过电压对GIS及相连设备影响的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以气体绝缘的金属封闭式组合电器(GIS)及相连电气设备变压器为研究对象,在查阅和总结了大量与本课题相关的参考资料基础上,确定了本课题研究的技术关键和技术路线。
     首先针对操作GIS中隔离开关所产生的快速暂态过电压(VFTO)上升时间短及幅值高的特点,在一般暂态电路模型的基础上提出了新的暂态电路模型,并利用该模型,对GIS中隔离开关切断短母线的等值电路进行了数值模拟,并与电磁暂态程序(EMTP)的计算结果进行了比较。同时通过数值模拟和试验的对比分析,确定了GIS等值电路的元件参数,给出了求解等值电路的动态节点电压方程,为数值模拟实际电路提供了较通用的电路模型和参数。由离散的傅立叶变换可知:VFTO含有三个主要的频率分量:2MHz的基本振荡频率、10MHz的高频分量和40MHz的快速暂态分量,其中40MHz的快速暂态分量是陡形波在GIS中发展形成的,直接影响着GIS的绝缘。
     实验研究了绝缘介质的高频特性。对实验数据采用最小二乘意义下的多项式曲线拟合方法,通过求曲线的极值确定了绝缘介质环氧树脂的高频参数——光频介电常数和松弛时间。
     依据实验确定的绝缘介质的高频参数,针对雷电冲击电压的特点,引入绝缘介质的微观参数,并推导出了含有静态介电常数、光频介电常数和松弛时间的暂态电场计算的时域数学模型。对雷电波,采用了Duhamel积分的方法来处理边界激励。求解出绝缘子内部及沿面的暂态电场分布。计算结果表明:VFTO作用下绝缘子表面的电场强度不仅有沿面的切向分量,而且还有较强的垂直于分界面的法向分量,该法向分量很可能会使SF_6气体中的导电离子在电场作用下高速撞击固体表面而产生滑闪。
     将绝缘介质的宏观参数和微观参数结合在一起,推导出复介电常数占ε~*下暂态电场计算的频域数学模型。利用频域数学模型,计算了VFTO作用下,绝缘子及其附近的电位分布、电场强度分布及电场强度的切向分量和法向分量沿径向的分布,进一步分析了SF_6气体和绝缘子的绝缘性能。
     将变压器的全部线饼视为传输线,且每饼视为一根传输线,建立了快速暂态过电压作用下变压器绕组的多导体传输线模型(MTL),给出了求解的数学模型和边界条件。利用时域有限差分(FDTD)法对变压器绕组的暂态电压分布进行了数值计算,并与传统的广义特征值和特征向量计算方法进行了比较。结果表明:传统方法和FDTD两种计算方法计算的暂态电压分布趋势趋于一致,但用FDTD方法计算的波形局部出现了振
    
    沈阳工业大学博士学位论文
    荡,这说明以线匝为计一算单元更能反映变压器绕组的暂态电压分布,而传统的广义特征
    值和特征向量法只能求出线饼首、末端或所分线段的首、末端波形。因此FDTD方法是
    计算变压器绕组暂态电压分布的一种有效的方法。
Based on references involved the influences of very fast transient over-voltage (VFTO) caused by disconnector closing and switching off charging current of bus on gas insulated switch-gear (GIS) and the adjacent device, the key technique and technical path of investigation are found. The concerned research works of VFTO is investigated.
    A new transient circuit model to the question of the steep front and high amplitude value of VFTO is proposed based on general transient circuit model. The numeric simulation that disconnector switched off short bus has been proceeded by using above circuit model and the comparison of results with the one based on EMTP are given. The parameters of elements and equivalent circuit model in GIS are determined based on comparison analysis between test and numeric simulation, which has also provided a kind of valuable reference for simulating actual circuit. Three components of VFTO which are 2MHz, 10MHz and 40MHZ frequency components are obtained from Discrete Fourier Transformation, in which 40 MHz component plays a key role in GIS insulation.
    High frequency characteristic of epoxy dielectrics is studied based on experiment. In term of least square method (LSM), polynomial fitting curves of epoxy permittivity with respect to frequency under VFTO are obtained according to experimental data. By solving the maximum of above fitting curve, high frequency dielectric parameters, light frequency permittivity and relaxation time, are evaluated.
    According to lighting impulse voltage characteristic, the microscopic parameters of dielectric are introduced and differential equations including light frequency permittivity and relaxation time are firstly deduced. Duhamel integration method is introduced to express the response caused by lighting impulse voltage. Potential distribution curves at representative time and electric field intensity curves along with disc spacer surface are shown. The calculation results have shown that not only tangential field intensity but also stronger normal field intensity are found on surface of spacer. The normal field intensity effects on dielectric may bring the slip discharge along the surface of disc spacer.
    The mathematic models of frequency domain with complex permittivity ' are deduced to calculate transient electric field by combining macroscopic with microcosmic parameters. Potential distribution, electric intensity distribution, Tangential intensity e, and normal field
    
    
    intensity e,, curves along the radial direction on interface of spacer are illustrated under VFTO. Insulation performance of gas SF6 and disc spacer is investigated.
    Multi-conductor transmission line (MTL) model of transformer winding is deduced under VFTO, in which the mathematical equations and boundary conditions for calculating over-voltage in windings are given. The over-voltages in winding are solved by using finite different time domain (FDTD) method. Comparison between MTL and traditional method are given. The calculation results have shown that the tendency of over-voltage distribution curves by using MTL model is accordant with by traditional improper eigenvalue method. However, partial oscillation has been observed in windings by FDTD, which can't be found by improper eigenvalue method of lump parameters. In addition, improper eigenvalue method can only solve the over-voltage distribution of terminals. It has been shown that FDTD method, in which a turn is regarded as calculated unit, is a virtual method for calculating over-voltage distribution of transformer windings.
引文
[1] 朱法华、谭国柱,西部大开发与电力工业可持续发展,中国电力,2002(1):1-5
    [2] 中国电器工业协会高压开关分会、高压电器科技信息网.高压开关设备国内外产品水平.北京:机械工业出版社,2000.
    [3] 王晋根.关于高压开关设备运行质量的调研与分析.高压开关行业通讯.2000(5):18-23.
    [4] H. Singer, H. Steinbigler and P. Weiss. A Charge Simulation Mothod for the Calculation of High Voltage Fields. IEEE Trans. on Power Apparatus and Systems. Vol. PAS-93, 1974, 1660- 1668.
    [5] IEEE Working Group. Bibliography of Gas Insulated Substations. IEEE Trans. on Power and Systems. Vol. PAS-94, 1975, 1425-1435.
    [6] N. H. Malik and A. A. Al-Ariamy. Charge Simulation Modeling of Three-core Belted Cables. IEEE Trans on Electric Insulation. Vol. Ei-20, 1985(6): 499-503.
    [7] M. M. A. Salama, A. Nosseir, A. Soliman T. El-Shiekh. Methods of Calculations of Field Stress in a Three-core Power Cable. IEEE Trans. on Power Apparatus and Systems. Vol. PAS-103, 1984, 3434-3641.
    [8] K. Adamiak. Adaptive Approach to Finite Element Modeling of Corona Fields. IEEE Trans on Industry Application. 1994, 30(1): 387-393.
    [9] M. Abdel-Salam, Z. Al-Hamouz. A New Finite-element Analysis of an ionized Field in Coaxial Cylindrical Geometry. J. Phys. D: Appl. Physics, 1992, 25(3): 1551-1555.
    [10] Xiurong Zhang, Yicheng Zhang, Yuzhou Shen, YongTao Yao. The Computation of Voltage Distribution along a Metal-oxide Surge Arrester. Proc. 4th ICEF, Septemper, 2000, 451-453.
    [11] S. A. Boggs, F. Y. Chu, etc. Disconnect Switch Induced Transients and Trapped Charge in Gas-insulated Substation. IEEE Trans. on Power Apparatus and Systems. Vol. PAS-101, 1982(10): 3593-3602.
    
    
    [12] J. Ozama, T. Yamaglwa, M. Hosokawa, S. Takeuchi, H. Kozawa. Suppression of Fast Transient Over-voltage during GAS Disconnector Switching in GIS. IEEE Trans. on Power Delivery, Vol. PWRD-1, 1986(4): 194-201.
    [13] S. Ogawa, E. Haginomori, S. Nishiwaki, T. Yoshida, K. Terasaka. Estimation of Restriking Over-voltage on Disconnecting Switch for GIS. IEEE Trans. on Power System, Vol. PWRD-1, 1986(2): 95-101.
    [14] H. Murase, I. Ohshima, H. Aoyagi etc. Measurement of Transient Voltage Induced by Disconnect Switch Operation. IEEE Trans. on Power Apparatus and Systems. Vol. PAS-104, 1985(1): 157-163.
    [15] Witzman. R. Fast Transients in GIS-Modeling of Different GIS Components. ISH-5, Braunschweig: 1987.
    [16] Working Group 33/13-09. Very Fast Transient Phenomena Associated with GIS. CIGRE, Paris: 1988, 33-13.
    [17] CIGRE Report. Very Fast Transient Phenomena Associated with Gas Insulated Substation. CIGRE. Paris: 1988, 33/13-09.
    [18] Esmeraldo P C V, Salgado Carvalho F M. Surge Propagation Analysis: an Application to the Grajua 500kV SF_6 Gas Insulated Substation. CIGRE. Paris: 1988, 33-01.
    [19] N. Fujimoto, S. A. Boggs. Characteristics of GIS Disconnector Induced Short Rise-time Transients Incident on Externally Connected Power System Components. IEEE Trans. on Power Delivery. 1989, 4(1): 223-233.
    [20] S. Yanabu, H. Murase, ect. Estimation of Fast Transient Overvoltage in Gas-Insulated Substation. IEEE Trans. on Power Delivery. 1990, 5(1): 278-283.
    [21] Okabe S, Koto M et. al. Insulation Characteristics of GIS Spacer for Very Fast Transient Overvoltage. IEEE Trans. on Power Delivery. 1996, 11 (1): 210-215.
    [22] S. Narimatsu, K. Yamaguchi, S. Nakano, S. Maruyama. Interrupting Performance of Capacitive Current by Disconnecting Switch for Gas Insulated Switchgear. IEEE Trans. on Power Apparatus and Systsms, 1981, Vol. PAS-100: 452~458.
    
    
    [23] Z. Haznadar, S. Carsimamovic, R. Mahmutcehajie. More Accurate Modeling of Gas Insulated Substation Components in Digital Simulations of Very Fast Electromagnetic Transients. IEEE Trans. on Power Delivery. 1992, 7(1): 434-441.
    [24] D. Povh, H. Schmitt, O. Volcker, R. Witzmann. Modeling and Analysis Guideline for Very Fast Transients. IEEE Trans. on Power Delivery. 1996, 11(4): 2028~2035.
    [25] 施围.GIS的绝缘水平和EMTP.高压电器,1988,25(5):44-49.
    [26] 吉嘉琴,GIS中的VFT过电压分析,清华大学学报(自然科学版).1994,34(1):73-81.
    [27] W. Al-Hasawi, N. H. Abbasy. Evaluation of Transient Over-voltages in Kuwait EHV Network Using EMPT. Electric Power System Research. 2000(54): 1-10.
    [28] L. C. Lee, K. P. Poon. Statistical Switching Over-voltage and Analysis of the First B. C. Hydro Phase Shifting Transformer Using the EMTP. IEEE Trans. on Power Systems, 1990, Vol. PAS-109: 2231-2236.
    [29] L. Martie, H. W. Dommel, Calculation of Voltage Profiles along Transmission Lines using EMTP, IEEE Trans. on Power Delivery. 1997, 12(1): 2325-2332.
    [30] S. Bojic, A. Sekso, I. Uglesic. Comparative Research into Switching Over-Voltage in the Case of Switching by SF_6 Circuit Breaker in 400kV network of Croatia. IPST'95 International Conference on Power Systems Transients. Lisbon: 1995, 173-177.
    [31] 史保壮,GIS中快速暂态过电压的测量系统:博士学位论文.西安:西安交通大学,1996.
    [32] Changchou Hwang, J. N. Lou. Transient Analysis of Capacitance Switching for Industrial Power System by Pspice. Electric Power Systems Research, 1998(45): 29-38.
    [33] 何善庆,GIS中的快速暂态现象,高压电器,1995,31(2):41-43.
    [34] 沈阳高压开关厂译.日本SF_6封闭组合电器试验方法专门调查委员会,SF_6封闭组合电器试验方法.沈阳:1990.
    [35] Pearson J. S. Partial Discharge Diagnostics for Gas Insulated Substations. IEEE Trans. on Dielectric and Electrical Insulation, 1995, 2(5): 893-897.
    [36] Gallimbreti I. Streamer and Leader Formation in SF_6 and SF_6 Mixtures under Positive Impulse Condition. J. physics, D: Application Physics. 1986, 2351-2379.
    
    
    [37] Chalmers I. D. Leader Development in Short Point/Plane Gaps in Compressed SF_6. Proc. IEE, 1984, Vol. A131: 159-163.
    [38] Laghari J. R. A Review of Particle contamination Gas Breakdown. IEEE Trans. on Electric and Electrical Insulation. 1989, 24(4): 721-739.
    [39] Vu Nhan., Miller R., Ryder D. M.. Further Development of High-voltage Photo-conductive Switches Using Finite Element Modelling Technique. Proc. of the 29th Universities Power Engineering Conf., Part1, Galway, 1994, 1(4): 485-488.
    [40] Cenders Z. J. Magnetic Field Computation Using Delaunay Triangulation and Complementary Finite Element Methods, IEEE Trans. on Magnetics, 1983, 19(6): 2215- 2219.
    [41] Y. M. Li, Y. Qiu, E. Kuffel, New Approach to Calculation of Electric Field in Three-core Power cables, IEEE Trans. on PD. 1989, 11(3): 374-380.
    [42] M. S. Abou-seada, E. Nasser, Digital Computer Calculation of The Potential and Field of A Rod Gap, Proc. IEEE Trans. on PAS, 1978, 1(5): 813-820.
    [43] Y. L. Chow, K. D. Srivastava, C. Charalambous, Electrostatic Field between a Conducting Sphere near a Dielectric coated conducting Sphere and Dielectric coated Electrode, J. of Electrostatics, 1982, 11(3): 167-178.
    [44] E. U. Landers, Computation of Asymmetric Three Dimension High Voltage Field, The 3rd ISH Symp. Milan, 1979, 229-232.
    [45] Suzoki K, Toda H, Aoyagi A. Development of 550kV 1-breaker GCB-investigation of Interrupting Chamber Performance. IEEE Trans. on Power Delivery. 1993, 8(3): 1184-1191.
    [46] Mcdonald B H, Wexler A. Boundary Element Solution of Unboundered Field Problems. IEEE Trans. on MTT, 1972, 20(2): 841-847.
    [47] Lowther D A, Freemen E m, Forghani B. A Sparse Matrix Open Boundary Method for Finite Element analysis. IEEE Trans. on Magnetics. 1989, 25(4): 2810-2813.
    [48] 盛剑霓等.工程电磁场数值分析.西安:西安交通大学出版社,1986.
    [49] 周克定等.工程电磁场数值计算理论方法及应用.北京:高等教育出版社,1994.
    [50] 汤蕴璆.电机内电磁场(第二版).北京:科学出版社,1998.
    
    
    [51] 雷银照,关于电磁场数值分析的若干认识,电工技术学报,1997,12(6):32-34
    [52] 车俊禄、李严明、邱毓昌,三相母线筒中环氧支撑附近的电场计算,高压电器,1990,26(5),10-14.
    [53] Y. H. Jung, K. Lee, Tetrahedron-based octree encoding for automatic mesh generation, Computer-aided Design. 1993, 25(3): 141-149
    [54] Bai Baodong, Luan Ru, Xie Dexin, Three Dimension Mesh Generation with a Tetrahedral Octree Algorithm, Proc. of 3rd Chinese Int. Conf. on Electrical Machines, 1999, 511-514.
    [55] Lutz Janicke. Error Estimation and Adaptive Mesh Generation in 2D and 3D Element Method. IEEE Trans. on Magnetics. 1996, 32(3): 412-420.
    [56] 袁建生,自适应有限元软件技术与电场计算,高电压技术,1999,25(1):20-23.
    [57] 张天爵、樊明武,三维网格的自动剖分与图形显示,电工技术学报,1992,7(1):59-63.
    [58] 刘旭光、吕邦泰,一种三维网格自动生成的方法,华北电力学院学报,1989(2):28-32
    [59] K. C. Wen, Y. B. Zhou, J. Fu, T. Jin. A Calculation Method and Some Features of Transient Field under Polarity Reversal Voltage in HVDC Insulation. IEEE Trans. on PD. 1993. 8(1): 223-230.
    [60] Xiurong Zhong, Yicheng Zhang, Yuzhou Shen, Yongtao Yao. The Computation of Voltage Distribution along a Metal-Oxide Surge Arrester. Proc. of the 4th Int. conf. on Electro-Magnetic Field Problem and Application, 2000, 451-454.
    [61] 和伟、高攸纲,用表面阻抗法求雷电产生的水平电场,北京邮电大学学报,1999(4):56~59.
    [62] 陈守直、祝丽雯、罗俊华、袁淳智,电缆附件电场有限元计算方法,高电压技术,1996,22(3):14-15.
    [63] Rachidi F, Nucci C A, Ianaz M, Influence of a Lossy Ground on Lighting-Induced Voltages on Overhead Lines, IEEE Trans. on Electromagn Compat. 1996, 38(4): 250-264.
    [64] Zakariya, Al-Hamouz, Finite Element Computation of Corona Monopolar Transmission Lines, Electric Power System Research. 1998(.48): 57-63.
    
    
    [65] M. Abdel-Salam, Z. Al-Hamouz, A New Finite-element Analysis of an Ionized Field in Coaxial Cylindrical Geometry, J. Phys. D: Appl. Phys. 1992(25): 1551-1555.
    [66] Yamagata Y, Tanaka K, Nishiwaki S, Suppression of VFT in 1100kV GIS by adopting Resistor fitted Disconnector. IEEE Trans. on Power Delivery. 1996, 11(2): 872-880.
    [67] Tiebing Lu, Xiang Cui, Haoliu Yin. Analysis of Switching Transient Electromagnetic Field in Substation. Pro. of 4th Int. Con. on Electromagnetic Field Problems & Applications. 2000, 31-34.
    [68] IEC-1259. Gas-insulated Metal-enclosed Switchgear for Rated Voltages 72.5 kV and Above. Requirements for switching of Bus-charging Currents by Disconnectors. 1994.
    [69] Nojima K. Very Fast Transient Over-voltage in Gas Insulated Substation Modeling of Three Phase Encapsulated Bus. The 8th Sympo. On high Voltage Engineering, 1993, 323-326.
    [70] Steven A. Boggs, Ying Wang. Trapped Charge-induced Field Distortion on GIS Spacers. IEEE Trans. on Power Delivery. 1995, 10(3): 1270~1275.
    [71] A. Eriksson, K. G. Petersson, A. Krenicky, R. Baker, J. R. Ochoa, A. Leibold. Experience with Gas Insulated Substations in USA. IEEE Trans. on Power Delivery, 1995, 10(1): 453- 458.
    [72] 胡之光.电机电磁场的分析与计算(修订本).北京:机械工业出版社,1986.
    [73] 金维芳.电介质物理学.北京:机械工业出版社,1995.
    [74] 张冶文、陈玲译.电介质材料及其介电性能.北京:科学出版社,2000.
    [75] 邱毓昌.GIS装置及其绝缘技术.北京:水利电力出版社,1993.
    [76] 黎明,黄维枢.SF_6气体及SF_6气体绝缘变电站的运行.北京:水利电力出版社,1993.
    [77] 徐建源、汪枫、何荣涛、肖风良.110kV三相共箱式GIS内隔离开关部位电场及击穿特性的分析与研究.中国电机工程学报.1999,19(9):31~35.
    [78] Wagner K W. Das eindringen einer elektromagnetischen welle in eine spule Mit Windungskapazitat, Elektrotechnik und Maschinenbau, 1955, 33 (89): 126-131.
    [79] Morched A, Marti L, Ottevangers J. A high Frequency Transformer Model for EMTP. IEEE Trans. on Power Delivery, 1993, 8(3): pp945-949.
    
    
    [80] Xi Ziqiang, Zhou Keding, Gu Chenglin, Numeric Analysis of Wave Process in A Power Transformer, Pro. of the 3rd Chinese Int. Conf. on Electrical Machines, Int. Academic Publishers, 1999, 429-432.
    [81] Cornick K J, Filliat B, Kieny C, Muller M. Distribution of Very Fast Transient Overvoltages in Transformer Windings. CIGRE, 1992.
    [82] Leon F, Semlyen A. Efficient Calculation of Elementary Parameters of Transformers. IEEE Trans. on Power Delivery. 1992, 7(1): 525-531.
    [83] Woivre V, Arthaud J P, Ahmad A. Transient Overvoltage Study and Model for Shell-type Transformer. IEEE Transactions on Power Delivery. 1993, 8(1): 212-222.
    [84] S. Chimklai, J. R. Marti. Simplified Three-phase Transformer Model for Electromagnetic Transient Studies. IEEE Trans. on Power Delivery, 1995, 10(3): 1316-1323.
    [85] P. T. M. Vaessen, Transformer Model for High Frequencies. IEEE Trans. on Power Delivery. 1988, 3(4): 1761-1768.
    [86] P. T. M. Vaessen, E. Hanique. A New Frequency Respose Analysis Method for Power Transformer. IEEE Trans. on Power Delivery. 1992, 7(1): 384-391.
    [87] G. C. Paap, A. A. Alkema, L. vander Sluis. Overvoltage in Power Transformers caused By No-load Switching. IEEE Trans on Power Delivery. 1995, 10(1): 326-331.
    [88] Paul C R. Finite-Different Time-Domain Analysis of Lossy Transmission. IEEE Trans. on EMC, 1996, 38(1): 15-23.
    [89] Kunz K S, luebbers R J. The Finite Different Time Domain Method in electromagnetic. Boca raton, CRC Press, 1993.
    [90] Paul C R. Analysis of Muticonductor Transmission Lines. New York: John Wiley & Sons Press, 1994.
    [91] Mao Junma, Li Zhengfan. Analysis of the Time Response of MTL with Frequencydependent Losses By the Method of Convolution Characteristics. IEEE Trans. on MTT, 1992, 40(4): 637-644.
    [92] Paul R C. Incorporation of Terminal Constraints in The FDTD Analysis of Transmission Line. IEEE Trans. on EMC. 1994, 36(2): 85-91.
    
    
    [93] J. H. Beggs, R. J. Luebbers, K. S. Yee and K. S. Kunz. Finite-different Time-domain Implementation of Surface Impedance Boundary Conditions. IEEE Trans. on Antennas Propagation. 1992, 40(1): 49-56.
    [94] D. Mardane and J. Lovetri. The Finite-difference Time-domain Solution of Lossy MTL Networks with Nonlinear Termination. IEEE Trans. on Circuits Systems. 1991, 38(4): 418- 422.
    [95] E. Mok, G. Costache. Skin Effect Considerations on Transient Resonse of Transmission Line Excited By An electromagnetics Pulse. IEEE Trans. Emc. 1992, 34(3): 320-329.
    [96] F. Deleon, A. Semlyen. Complete Transformer Model for Electromagnetics Transients. IEEE Trans. on Power Delivery. 1994, 8(1): 231-239.
    [97] 朱德恒,严璋.高电压绝缘.北京:清华大学出版社,1996.
    [98] 卢铁兵、崔翔.变电站空载母线波过程的数值分析.中国电机工程学报.1999,20(6):39-42.
    [99] 杨学昌、戚庆成、崔益彬,暂态分析中变压器线圈等值参数的确定,清华大学学报(自然科学版).1996,36(9):100-105.
    [100] 王赞基,大型变压器线圈暂态分析的一个模型,清华大学学报(自然科学版),1993,33(1):25-30.
    [101] 王赞基,变压器线圈中特快速暂态仿真的建模,中国电机工程学报.1996,16(5):299-305.
    [102] 杨学昌、王勇平、戚庆成、盛新富,考虑损耗后变压器绕组暂态电压分布和电场的计算,变压器.1998,25(5):7-9.
    [103] 张嘉祥.变压器线圈的波过程.北京:水利电力出版社.1982.
    [104] 夏路易、王建平.电路电子电路微机辅助分析(PSPICES软件及其应用).太原:山西高校联合出版社.1995.
    [105] 施阳、李俊.MATLAB语言工具箱.西安:西北工业大学出版社.1998.
    [106] 钱家骊、张节容、吉嘉琴、徐国政、李震彪、刘卫东.高压开关开合电容电流和小电感电流.中国电力出版社.1999.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700