用户名: 密码: 验证码:
猪瘟病毒的shRNA干扰、强弱毒鉴别及基因工程疫苗研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
猪瘟(Classical swine fever ,CSF)是严重危害养猪业的传染性疾病,病原为猪瘟病毒(Classical swine fever virus, CSFV)。CSFV为单股正链RNA病毒,研究发现其3′非翻译区(3′-non-translation region,3′-NTR)在病毒的复制中有重要作用,为了研究CSFV Shimen株3′-NTR的不同位点在病毒复制中的作用,筛选3个靶位点设计了短发夹RNA(shRNA),构建了针对shimen株CSFV 3′-NTR 3个靶位点的shRNA表达质粒;将重组质粒转染PK-15细胞,获得3株稳定靶向CSFV Shimen株3′-NTR 3个靶位点的干扰细胞株,接种CSFV后,检测干扰细胞株对病毒复制的影响。
     目前CSF防控上采取的是以疫苗免疫接种为主的策略,弱毒疫苗的大范围使用,使病毒变异、毒力返强的风险增高,当前临床上“非典型”CSF的大量出现,被怀疑与弱毒疫苗的大量使用有关,新型CSF疫苗的研制是防控CSF的需要;在分析国内外有关猪瘟基因工程疫苗研究进展的基础上,构建了表达CSFV Shimen株E2基因的“自杀性”DNA疫苗和同时表达CSFV Shimen株E0和E2基因的重组鸡痘病毒,对构建的疫苗进行了初步评价。
     CSF弱毒疫苗的大量使用,使在生产中难以有效地用血清学方法区分野毒感染猪和疫苗免疫猪,对生猪及其产品的贸易造成严重影响;针对这个问题,在借鉴已有研究的基础上,建立了区分CSFV强/弱毒株的RT-PCR方法,通过对临床病料的检测表明,该方法的特异性较强,可用于临床上对CSFV野毒感染和弱毒疫苗免疫猪的鉴别检测。
     本研究取得以下结果:
     1.通过对CSFV Shimen株3′-NTR核苷酸序列的分析,分别设计了靶向CSFV Shimen株3′-NTR 115~132位、137~154位和210~228位mRNA的短发夹RNA(shRNA)的单链核苷酸,经退火后形成双链shRNA,将其分别与siRNA表达质粒载体连接,构建了编码CSFV Shimen株3′-NTR 3个位点shRNA的表达质粒载体;转染细胞后筛选获得了稳定转录靶向CSFV Shimen株3′-NTR shRNA PK-15细胞株(P-1、P-2和P-3);接毒试验表明,细胞株P-1、P-2及P-3在转录水平和蛋白表达水平上均可干扰CSFV Shimen株在感染细胞中的增殖(P<0.05)。
     2.建立了可鉴别CSFV强毒和弱毒的RT-PCR方法。在CSFV强毒中可扩增得到187 bp的片段,弱毒可获得492 bp的片段;在对PCV2、TGEV、PRRSV等猪源病毒的检测,均未有PCR产物出现,说明方法的特异性较高。对临床疑是CSF病料的检测证明,建立的方法可有效地区分CSFV野毒感染猪和弱毒疫苗免疫猪,本方法可用于临床上对CSFV强弱毒的鉴别检测。
     3.构建了CSFV E2基因“自杀性”DNA疫苗表达质粒载体PSCA1-E2。在转染细胞中可检测到E2蛋白的表达;免疫小鼠的脾淋巴细胞增殖刺激指数(SI)在二免后10d与对照组差异显著(p<0.05),20d和30d差异极显著(p<0.01);试验猪二免后21d能检测到抗CSFV特异性血清抗体,说明构建的表达CSFV E2基因的“自杀性”DNA疫苗能诱导试验动物的免疫反应。
     4.将CSFV E0和E2基因及报告基因LacZ插入到鸡痘病毒FV282的复制非必需区,经同源重组构建了一株含CSFV E0和E2基因的重组鸡痘病毒(FV282-E0-E2)。用重组鸡痘病毒免疫接种试验小鼠和试验猪,检测发现,免疫动物均能产生特异性抗体,说明E0和E2基因在机体细胞内得以有效表达,并能激发机体产生免疫反应;对免疫猪的攻毒试验表明,重组鸡痘病毒免疫猪能获得部分的免疫保护,抵抗CSFV强毒的攻击,免疫保护率为75%(6/8)。
Classical swine fever (CSF) is a serious contagious disease of pig caused by classical swine fever virus (CSFV). CSFV is a single-strain positive RNAvirus, the 3′-nontranslation region(3′-NTR)plays an important role in virus replication. Three sites in 3′-NTR of CSFV shimen strain were selected by sequence analysis to study the function of 3′-NTR on virus replication. Three recombinant plasmids expressing the shRNAs target to 3′-NTR of CSFV shimen strain were constructed and tranfected into PK-15 cells. Three recombinant PK-15 cell strains targeting the 3′-NTR of CSFV were obtained. The interferences of CSFV replication were researched in the recombinant PK-15 cells infected with CSFV.
     Vaccination-based strategies are the main ways for prevention and control CSF at present. The riskes of virus variation and virulence increasing with the CSFV attenuated vaccine are widely used at present. Some people suspected largely to use attenuated vaccine are the one of reasons of more cases of atypical CSF are found in swine population. It needs to develop more new typic vaccines to control CSF. A suicide DNA vaccine of CSFV E2 gene and a recombinant fowlpox virus harboring E0 and E2 genes of CSFV were constructed (FPV-pSY-E0-E2) by analysis of the advances of CSFV enginerred vaccine researches. The preliminary immune effect of the constrcted vaccines were assessed in this study.
     Attenuated vaccines of CSF are widely used in the swine population in some countries. It is difficult to effectively differentiate the pigs or their products infected with CSFV wild virus or vaccine virus just by determining the CSF antibody in swine sera. This would has an influence on the trade of pigs and their products. A novel RT-PCR was developed for detecting and differentiating the wild and vaccine types of CSFV. The results that the specificity of developed RT-PCR was high and could be used to differentiate the CSFV infected pigs and vaccinated pigs.
     1. Three short hairpin RNAs (shRNAs) of single-stranded nucleotides target to the sequences at 115-132,137-154 and 210-228 of CSFV shimen strain 3′-NTR mRNA were designed according the sequences analysis respectively. The double-stranded shRNAs were formed by annealing and inserted into plasmid expressing vectors. Three recombinant plasmids expressing the shRNAs target to 3′-NTR of CSFV were obtained. There positive PK-15 cell lines target to 3′-NTR shRNA were developed by transfecting PK-15cells with recombinant plasmid respectively. The positive cells (P1, P2, P3) were infected with CSFV shimen virus respectively. The detection results showed that all of the three cell lines could interfere with proliferation of CSFV at transcriptional and protein level.
     2. RT-PCRs were developed for detecting and differentiating the wild CSFV from vaccine virus. A 187 bp PCR fragment response to CSFV Shimen strain and a 492 bp fragment response to vaccine virus were obntained using this PCR. No PCR products could be amplified in PCV2, TGEV and PRRSV, showed the designed primers were speicific to CSFV. The RT-PCRs can be used to detect and differentiate the wild from vaccine CSFV in the field.
     3. The suicidal vectored DNA vaccine (pSCA1-E2) was constructed by inserting E2 gene of CSFV into pSCA1 plasmid vector. E2 protein was determined in PK15 cells transfected with purified pSCA1-E2.The stimulation index (SI) of T lymphoid cell of mice were significant different between the experimental groups and the control group at10d (p<0.05), 20d and 30d (p<0.01) after the second immunization. The anti-CSFV serum antibodies could be screened in experimental pigs at 21d after the second immunization with pSCA1-E2.
     4. The E0 and E2 genes of CSFV as well as a LacZ reporter gene were all inserted into a non essential gene of fowlpox virus (FV282) by homologous recombinant and the recombinant fowlpox virus FV282-E0-E2 was constructed. The experimental mice and pigs immunized with FV282-E0-E2 could induce a high anti-CSFV antibody level, also showed that the E0 and E2 genes were expressed in experimental animals. Partial protective immunity was observed in the experimental pigs immunized with FV282-E0-E2 when they challenged with the highly virulence CSFV, 75% (6/8) immunoprotection was observed.
引文
桂祎,李琼,李彦兵. 2009.猪瘟病毒RT-PCR核酸检测与ELISA抗原检测应用研究.中国畜牧兽医, 36(7): 184-186
    江云波,方六荣,肖少波,等. 2006.猪繁殖与呼吸综合征病毒GP5和M蛋白共表达的自杀性DNA疫苗的构建及其免疫应答.中国农业科学, 39(5): 1011-1017
    江云波,方六荣,肖少波,张辉,陈焕春. 2006.猪繁殖与呼吸综合征病毒GP5和M蛋白共表达的自杀性DNA疫苗的构建及其免疫应答.中国农业科学, 39(5): 1011-1017
    李翠蓉,瞿鸥. 2009.应用免疫扩散试验检测猪瘟预防效果.山东畜牧兽医, 30(7): 2
    李明义,刘志军,徐太辉,白志娟,王福军,冯阳. 2004.猪瘟组织灭活疫苗与猪瘟弱毒冻干活疫苗免疫效力的比较.中国兽医科技, 34(4): 44-46
    李树春,王威. 1993.猪瘟间接血凝试验的研究.中国兽医科技, 23(7): 3-4
    李艳,仇华吉,王秀荣,张守发,朱庆虎,李娜,李国新,童光志. 2006.鉴别猪瘟强毒和弱毒的反转录-复合套式聚合酶链式反应.中国农业科学, 39(3): 1907-1914
    鲁建民,虎文君,朱辉. 2009.用分子标记鉴别猪瘟病毒疫苗毒株和流行毒株.西北农业学报, 18(3): 18-22
    吕宗吉,涂长春,余兴龙,吴健敏,李月红,马刚,张茂林. 2001.我国猪瘟的流行病学现状分析. 中国预防兽医学报, 23(4): 300-303
    孙元,刘大飞,王宇飞,李娜,李宏宇,梁冰冰,仇华吉. 2009.猪瘟甲病毒复制子载体DNA疫苗与重组腺病毒活载体疫苗联合免疫效果评价.生物工程学报,25(5): 679-685
    田宏. 2003.猪瘟病毒及其全长cDNA在猪肾细胞中增殖表达特性的比较研究.兰州:甘肃农业大学
    仝文斌高巍,费然,冯百芳,陶其敏. 1999.核酸扩增产物的量化酶免疫通用型检测方法.中华医学检验杂志,22(2): 83-86
    吴鑫,王军,张以芳. 2008.猪瘟病毒一步法RT-PCR检测方法的建立.中国畜牧兽医, 35(2): 64-66
    许德晖,黄辰,刘利英,宋土生. 2006.高效siRNA设计的研究进展.遗传, 28(11): 1457-1461
    殷进方,吴志鹏,江灿芬. 2009.猪瘟病毒的实时荧光RT-PCR检测.中国畜牧兽医, 36(10): 142-144
    余兴龙,涂长春,李作生,马正海,李红卫,吴健敏,吕宗吉,殷震. 1999.以重组mE2蛋白为抗原建立检测猪瘟病毒抗体间接ELISA方法的研究.中国预防兽医学报, 21(3): 220-222
    曾小娜刘中勇,朱道中,房红莹,蒋启荣,罗满林,刘镇明. 2009.猪瘟病毒RT-LAM P实验诊断初报.广东畜牧兽医科技, 34(4): 38-40
    张兴娟,孙元,刘大飞,仇华吉. 2009.猪瘟病毒野毒株RT-LAMP可视化检测方法的建立.中国预防兽医学报, 31(11): 864-868
    赵建军,成丹,李娜,孙元,史子学,涂长春,童光志,仇华吉. 2007.猪瘟病毒野毒株和兔化弱毒疫苗株复合实时荧光定量RT-PCR鉴别方法的建立.中国兽医科学, 37(5): 406-412
    Al-khatib K, B R Williams, R H Silverman, W Halford, D J Carr. 2003. The murine double-stranded RNA-dependent protein kinase PKR and the murine 2',5'-oligoadenylate synthetase-dependent RNase L arerequired for IFN-beta-mediated resistance against herpes simplex virus type 1 in primary trigeminal ganglion culture. Virology, 313(1): 126-35
    Andrew M E, C J Morrissy, C Lenghaus, P G Oke, K W Sproat, A L Hodgson, M A Johnson, B E Coupar. 2000. Protection of pigs against classical swine fever with DNA-delivered gp55. Vaccine, 18(18): 1932-8
    Avalos-Ramirez R, M Orlich, H J Thiel, P Becher. 2001. Evidence for the presence of two novel pestivirus species. Virology, 286(2): 456-65
    Avni D, S Shama, F Loreni, O Meyuhas. 1994. Vertebrate mRNAs with a 5'-terminal pyrimidine tract are candidates for translational repression in quiescent cells: characterization of the translational cis-regulatory element. Mol Cell Biol, 14(6): 3822-33
    Aynaud J M, J C Lejolly, C Bibard, C Galicher. 1971. [Studies of the properties of cold induced classical swine fever virus mutants. Application to vaccination]. Bull Off Int Epizoot, 75(9): 654-9
    Baker J A. 1946. Serial passage of hog cholera virus in rabbits. Proc Soc Exp Biol Med, 63(1): 183-7
    Bakheit M A, D Torra, L A Palomino, O M Thekisoe, P A Mbati, J Ongerth, P Karanis. 2008. Sensitive and specific detection of Cryptosporidium species in PCR-negative samples by loop-mediated isothermal DNA amplification and confirmation of generated LAMP products by sequencing. Vet Parasitol, 158(1-2): 11-22
    Bauhofer O, A Summerfield, Y Sakoda, J D Tratschin, M A Hofmann, N Ruggli. 2007. Classical swine fever virus Npro interacts with interferon regulatory factor 3 and induces its proteasomal degradation. J Virol, 81(7): 3087-96
    Beard C W, W M Schnitzlein, D N Tripathy. 1991. Protection of chickens against highly pathogenic avian influenza virus (H5N2) by recombinant fowlpox viruses. Avian Dis, 35(2): 356-9
    Becher P, M Orlich, A D Shannon, G Horner, M Konig, H J Thiel. 1997. Phylogenetic analysis of pestiviruses from domestic and wild ruminants. J Gen Virol, 78 ( Pt 6)(1357-66
    Behrens S E, C W Grassmann, H J Thiel, G Meyers, N Tautz. 1998. Characterization of an autonomous subgenomic pestivirus RNA replicon. J Virol, 72(3): 2364-72
    Birk A V, E J Dubovi, X Zhang, H H Szeto. 2008. Antiviral activity of geneticin against bovine viral diarrhoea virus. Antivir Chem Chemother, 19(1): 33-40
    Bjorklund H V, T Stadejek, S Vilcek, S Belak. 1998. Molecular characterization of the 3' noncoding region of classical swine fever virus vaccine strains. Virus Genes, 16(3): 307-12
    Boender G J, G Nodelijk, T J Hagenaars, A R Elbers, M C de Jong. 2008. Local spread of classical swine fever upon virus introduction into The Netherlands: mapping of areas at high risk. BMC Vet Res, 4(9 Bouma A, A J De Smit, M C De Jong, E P De Kluijver, R J Moormann. 2000. Determination of the onset of the herd-immunity induced by the E2 sub-unit vaccine against classical swine fever virus. Vaccine, 18(14): 1374-81
    Boursnell M E, P F Green, A C Samson, J I Campbell, A Deuter, R W Peters, N S Millar, P T Emmerson, M M Binns. 1990. A recombinant fowlpox virus expressing the hemagglutinin-neuraminidase gene of Newcastle disease virus (NDV) protects chickens against challenge by NDV. Virology, 178(1): 297-300
    Cai T, G Lou, J Yang, D Xu, Z Meng. 2008. Development and evaluation of real-time loop-mediated isothermal amplification for hepatitis B virus DNA quantification: a new tool for HBV management. J ClinVirol, 41(4): 270-6
    Carrere-Kremer S, C Montpellier-Pala, L Cocquerel, C Wychowski, F Penin, J Dubuisson. 2002.
    Subcellular localization and topology of the p7 polypeptide of hepatitis C virus. J Virol, 76(8): 3720-30
    Chang C Y, C C Huang, Y J Lin, M C Deng, H C Chen, C H Tsai, W M Chang, F I Wang. Antigenic domains analysis of classical swine fever virus E2 glycoprotein by mutagenesis and conformation-dependent monoclonal antibodies. Virus Res, 149(2): 183-9
    Chen C Y, A B Shyu. 1995. AU-rich elements: characterization and importance in mRNA degradation. Trends Biochem Sci, 20(11): 465-70
    Chen H T, J Zhang, L N Ma, Y P Ma, Y Z Ding, X T Liu, L Chen, L Q Ma, Y G Zhang, Y S Liu. 2009.
    Rapid pre-clinical detection of classical swine fever by reverse transcription loop-mediated isothermal amplification. Mol Cell Probes, 23(2): 71-4
    Clavijo A, M Lin, J Riva, E M Zhou. 2001. Application of competitive enzyme-linked immunosorbent assay for the serologic diagnosis of classical swine fever virus infection. J Vet Diagn Invest, 13(4): 357-60
    Conlan J V, S Khounsy, S D Blacksell, C J Morrissy, C R Wilks, L J Gleeson. 2009. Development and evaluation of a rapid immunomagnetic bead assay for the detection of classical swine fever virus antigen. Trop Anim Health Prod, 41(6): 913-20
    Coupar B E, T Teo, D B Boyle. 1990. Restriction endonuclease mapping of the fowlpox virus genome. Virology, 179(1): 159-67
    De Angioletti M L G, Sabato V, Carestia C. 2004. Beta+45 G --> C: a novel silent beta-thalassaemia mutation, the first in the Kozak sequence. Br J Haematol, 124 (2):224-231
    de Smit A J, A Bouma, C Terpstra, J T van Oirschot. 1999. Transmission of classical swine fever virus by artificial insemination. Vet Microbiol, 67(4): 239-49
    de Smit A J, A Bouma, H G van Gennip, E P de Kluijver, R J Moormann. 2001. Chimeric (marker) C-strain viruses induce clinical protection against virulent classical swine fever virus (CSFV) and reduce transmission of CSFV between vaccinated pigs. Vaccine, 19(11-12): 1467-76
    de Smit A J, P L Eble, E P de Kluijver, M Bloemraad, A Bouma. 2000. Laboratory experience during the classical swine fever virus epizootic in the Netherlands in 1997-1998. Vet Microbiol, 73(2-3): 197-208
    Deng R, K V Brock. 1993. 5' and 3' untranslated regions of pestivirus genome: primary and secondary structure analyses. Nucleic Acids Res, 21(8): 1949-57
    Dewulf J, H Laevens, F Koenen, K Mintiens, A De Kruif. 2001. An experimental infection with classical swine fever virus in pregnant sows: transmission of the virus, course of the disease, antibody response and effect on gestation. J Vet Med B Infect Dis Vet Public Health, 48(8): 583-91
    Dhennin L, B Larenaudie, M Remond. 1976. [A new inactivated vaccine against classical swine fever]. C R Acad Sci Hebd Seances Acad Sci D, 283(12): 1457-60
    Diaz de Arce H, J I Nunez, L Ganges, M Barreras, M T Frias, F Sobrino. 1998. An RT-PCR assay for the specific detection of classical swine fever virus in clinical samples. Vet Res, 29(5): 431-40
    Diaz de Arce H, L J Perez, M T Frias, R Rosell, J Tarradas, J I Nunez, L Ganges. 2009. A multiplex RT-PCR assay for the rapid and differential diagnosis of classical swine fever and other pestivirus infections. Vet Microbiol, 139(3-4): 245-52
    Dong X N, Y H Chen. 2006. Candidate peptide-vaccines induced immunity against CSFV and identified sequential neutralizing determinants in antigenic domain A of glycoprotein E2. Vaccine, 24(11):1906-13
    Dong X N, Y H Chen. 2007. Marker vaccine strategies and candidate CSFV marker vaccines. Vaccine, 25(2): 205-30
    Dong X N, Y Qi, J Ying, X Chen, Y H Chen. 2006. Candidate peptide-vaccine induced potent protection against CSFV and identified a principal sequential neutralizing determinant on E2. Vaccine, 24(4): 426-34
    Edwards S. 2000. Survival and inactivation of classical swine fever virus. Vet Microbiol, 73(2-3): 175-81
    Edwards S, A Fukusho, P C Lefevre, A Lipowski, Z Pejsak, P Roehe, J Westergaard. 2000. Classical swine fever: the global situation. Vet Microbiol, 73(2-3): 103-19
    Elbers A R, M J Gorgievski-Duijvesteijn, P G van der Velden, W L Loeffen. 2007. [Nonspecific clinical signs in pigs and use of exclusion diagnosis for classical swine fever: a survey among pig farmers and veterinary practitioners]. Tijdschr Diergeneeskd, 132(9): 340-5
    Elbers K, N Tautz, P Becher, D Stoll, T Rumenapf, H J Thiel. 1996. Processing in the pestivirus E2-NS2 region: identification of proteins p7 and E2p7. J Virol, 70(6): 4131-5
    Fernandez-Sainz I, L G Holinka, B K Gavrilov, M V Prarat, D Gladue, Z Lu, W Jia, G R Risatti, M V Borca. 2009. Alteration of the N-linked glycosylation condition in E1 glycoprotein of Classical Swine Fever Virus strain Brescia alters virulence in swine. Virology, 386(1): 210-6
    Floegel-Niesmann G. 2001. Classical swine fever (CSF) marker vaccine. Trial III. Evaluation of discriminatory ELISAs. Vet Microbiol, 83(2): 121-36
    Floegel-Niesmann G, S Blome, H Gerss-Dulmer, C Bunzenthal, V Moennig. 2009. Virulence of classical swine fever virus isolates from Europe and other areas during 1996 until 2007. Vet Microbiol, 139(1-2): 165-9
    Floegel G, A Wehrend, K R Depner, J Fritzemeier, D Waberski, V Moennig. 2000. Detection of classical swine fever virus in semen of infected boars. Vet Microbiol, 77(1-2): 109-16
    Flores E F, L C Kreutz, R O Donis. 1996. Swine and ruminant pestiviruses require the same cellular factor to enter bovine cells. J Gen Virol, 77 ( Pt 6):1295-303
    Freitas T R, L A Caldas, M A Rebello. 2003. Effect of prostaglandin A1 in porcine cells persistently infected with classical swine fever virus. J Basic Microbiol, 43(6): 468-72
    Fritzemeier J, J Teuffert, I Greiser-Wilke, C Staubach, H Schluter, V Moennig. 2000. Epidemiology of classical swine fever in Germany in the 1990s. Vet Microbiol, 77(1-2): 29-41
    Gamlen T, K H Richards, J Mankouri, L Hudson, J McCauley, M Harris, A Macdonald. Expression of the NS3 protease of cytopathogenic bovine viral diarrhea virus results in the induction of apoptosis but does not block activation of the beta interferon promoter. J Gen Virol, 91(Pt 1): 133-44
    Gil J, J Alcami, M Esteban. 1999. Induction of apoptosis by double-stranded-RNA-dependent protein kinase (PKR) involves the alpha subunit of eukaryotic translation initiation factor 2 and NF-kappaB. Mol Cell Biol, 19(7): 4653-63
    Grassmann C W, O Isken, N Tautz, S E Behrens. 2001. Genetic analysis of the pestivirus nonstructural coding region: defects in the NS5A unit can be complemented in trans. J Virol, 75(17): 7791-802
    Greiser-Wilke I, S Dreier, L Haas, B Zimmermann. 2006. [Genetic typing of classical swine fever viruses--a review]. Dtsch Tierarztl Wochenschr, 113(4): 134-8
    Hahn J, S H Park, J Y Song, S H An, B Y Ahn. 2001. Construction of recombinant swinepox viruses and expression of the classical swine fever virus E2 protein. J Virol Methods, 93(1-2): 49-56
    Hammond J M, E S Jansen, C J Morrissy, M M Williamson, A L Hodgson, M A Johnson. 2001. Oral and sub-cutaneous vaccination of commercial pigs with a recombinant porcine adenovirus expressing the classical swine fever virus gp55 gene. Arch Virol, 146(9): 1787-93
    Hanson R P. 1957. Origin of hog cholera. J. Am. Vet. Med. Assn., 131(5):211-8
    Heine H G, D B Boyle. 1993. Infectious bursal disease virus structural protein VP2 expressed by a fowlpox virus recombinant confers protection against disease in chickens. Arch Virol, 131(3-4): 277-92
    Hennecken M, J A Stegeman, A R Elbers, A van Nes, J A Smak, J H Verheijden. 2000. Transmission of classical swine fever virus by artificial insemination during the 1997-1998 epidemic in The Netherlands: a descriptive epidemiological study. Vet Q, 22(4): 228-33 http://www.oie.int/eng/ressources/CSF-EN.
    Hu W, W Hofstetter, X Wei, W Guo, Y Zhou, A Pataer, H Li, B Fang, S G Swisher. 2009.
    Double-stranded RNA-dependent protein kinase-dependent apoptosis induction by a novel small compound. J Pharmacol Exp Ther, 328(3): 866-72
    Huang Y L, V F Pang, C H Pan, T H Chen, M H Jong, T S Huang, C R Jeng. 2009. Development of a reverse transcription multiplex real-time PCR for the detection and genotyping of classical swine fever virus. J Virol Methods, 160(1-2): 111-8
    Hulst M M, F E Panoto, A Hoekman, H G van Gennip, R J Moormann. 1998. Inactivation of the RNase activity of glycoprotein E(rns) of classical swine fever virus results in a cytopathogenic virus. J Virol, 72(1): 151-7
    Hulst M M, D F Westra, G Wensvoort, R J Moormann. 1993. Glycoprotein E1 of hog cholera virus expressed in insect cells protects swine from hog cholera. J Virol, 67(9): 5435-42
    Ihira M, S Akimoto, F Miyake, A Fujita, K Sugata, S Suga, M Ohashi, N Nishimura, T Ozaki, Y Asano, T Yoshikawa. 2007. Direct detection of human herpesvirus 6 DNA in serum by the loop-mediated isothermal amplification method. J Clin Virol, 39(1): 22-6
    Ihira M, T Yoshikawa, Y Enomoto, S Akimoto, M Ohashi, S Suga, N Nishimura, T Ozaki, Y Nishiyama, T Notomi, Y Ohta, Y Asano. 2004. Rapid diagnosis of human herpesvirus 6 infection by a novel DNA amplification method, loop-mediated isothermal amplification. J Clin Microbiol, 42(1): 140-5
    Inacio J, O Flores, I Spencer-Martins. 2008. Efficient identification of clinically relevant Candida yeast species by use of an assay combining panfungal loop-mediated isothermal DNA amplification with hybridization to species-specific oligonucleotide probes. J Clin Microbiol, 46(2): 713-20
    Jiang Y, L Fang, S Xiao, B Li, Y Pan, R Luo, H Chen. 2009a. A suicidal DNA vaccine co-expressing two major membrane-associated proteins of porcine reproductive and respiratory syndrome virus antigens induce protective responses. Biotechnol Lett, 31(4): 509-18
    Jiang Y, L Fang, S Xiao, B Li, Y Pan, R Luo, H Chen. 2009b. A Suicidal DNA vaccine co-expressing two major membrane-associated proteins of porcine reproductive and respiratory syndrome virus antigens induce protective responses. Biotechnol Lett,31:509-518
    Kaden V, P Hubert, G Strebelow, E Lange, H Steyer, P Steinhagen. 1999. [Comparison of laboratory diagnostic methods for the detection of infection with the virus of classical swine fever in the early inspection phase: an experimental study]. Berl Munch Tierarztl Wochenschr, 112(2): 52-7
    Kao C C, A M Del Vecchio, W Zhong. 1999. De novo initiation of RNA synthesis by a recombinant flaviviridae RNA-dependent RNA polymerase. Virology, 253(1): 1-7
    Khromykh A A, N Kondratieva, J Y Sgro, A Palmenberg, E G Westaway. 2003. Significance in replication of the terminal nucleotides of the flavivirus genome. J Virol, 77(19): 10623-9
    Kimura H, M Ihira, Y Enomoto, J Kawada, Y Ito, T Morishima, T Yoshikawa, Y Asano. 2005. Rapid detection of herpes simplex virus DNA in cerebrospinal fluid: comparison between loop-mediated isothermal amplification and real-time PCR. Med Microbiol Immunol, 194(4): 181-5
    Knoetig S M, A Summerfield, M Spagnuolo-Weaver, K C McCullough. 1999. Immunopathogenesis of classical swine fever: role of monocytic cells. Immunology, 97(2): 359-66
    Konig M, T Lengsfeld, T Pauly, R Stark, H J Thiel. 1995. Classical swine fever virus: independent induction of protective immunity by two structural glycoproteins. J Virol, 69(10): 6479-86
    Kortekaas J, R P Vloet, K Weerdmeester, J Ketelaar, M van Eijk, W L Loeffen. Rational design of a classical swine fever C-strain vaccine virus that enables the differentiation between infected and vaccinated animals. J Virol Methods, 163(2): 175-85
    Kummerer B M, D Stoll, G Meyers. 1998. Bovine viral diarrhea virus strain Oregon: a novel mechanism for processing of NS2-3 based on point mutations. J Virol, 72(5): 4127-38
    Kummerer B M, N Tautz, P Becher, H Thiel, G Meyers. 2000. The genetic basis for cytopathogenicity of pestiviruses. Vet Microbiol, 77(1-2): 117-28
    Laddomada A. 2000. Incidence and control of CSF in wild boar in Europe. Vet Microbiol, 73(2-3): 121-30
    Laevens H, H Deluyker, F Koenen, G Van Caenegem, J P Vermeersch, A de Kruif. 1998. An experimental infection with a classical swine fever virus in weaner pigs. II. The use of serological data to estimate the day of virus introduction in natural outbreaks. Vet Q, 20(2): 46-9
    Laevens H, F Koenen, H Deluyker, A de Kruif. 1999. Experimental infection of slaughter pigs with classical swine fever virus: transmission of the virus, course of the disease and antibody response. Vet Rec, 145(9): 243-8
    Le S Y, A Siddiqui, J V Maizel, Jr. 1996. A common structural core in the internal ribosome entry sites of picornavirus, hepatitis C virus, and pestivirus. Virus Genes, 12(2): 135-47
    Leifer I, K Depner, S Blome, M F Le Potier, M Le Dimna, M Beer, B Hoffmann. 2009. Differentiation of C-strain "Riems" or CP7_E2alf vaccinated animals from animals infected by classical swine fever virus field strains using real-time RT-PCR. J Virol Methods, 158(1-2): 114-22
    Li M, Y F Wang, Y Wang, H Gao, N Li, Y Sun, B B Liang, H J Qiu. 2009. Immune responses induced by a BacMam virus expressing the E2 protein of classical swine fever virus in mice. Immunol Lett, 125(2): 145-50
    Li N, H J Qiu, J J Zhao, Y Li, M J Wang, B W Lu, C G Han, Q Hou, Z H Wang, H Gao, W P Peng, G X Li, Q H Zhu, G Z Tong. 2007a. A Semliki Forest virus replicon vectored DNA vaccine expressing the E2 glycoprotein of classical swine fever virus protects pigs from lethal challenge. Vaccine, 25(15): 2907-12
    Li N, J J Zhao, H P Zhao, Y Sun, Q H Zhu, G Z Tong, H J Qiu. 2007b. Protection of pigs from lethal challenge by a DNA vaccine based on an alphavirus replicon expressing the E2 glycoprotein of classical swine fever virus. J Virol Methods, 144(1-2): 73-8
    Li Y, J J Zhao, N Li, Z Shi, D Cheng, Q H Zhu, C Tu, G Z Tong, H J Qiu. 2007. A multiplex nestedRT-PCR for the detection and differentiation of wild-type viruses from C-strain vaccine of classical swine fever virus. J Virol Methods, 143(1): 16-22
    Lin G J, T Y Liu, Y Y Tseng, Z W Chen, C C You, S L Hsuan, M S Chien, C Huang. 2009. Yeast-expressed classical swine fever virus glycoprotein E2 induces a protective immune response. Vet Microbiol, 139(3-4): 369-74
    Lin M, E Trottier, M Mallory. 2005. Enzyme-linked immunosorbent assay based on a chimeric antigen bearing antigenic regions of structural proteins Erns and E2 for serodiagnosis of classical swine fever virus infection. Clin Diagn Lab Immunol, 12(7): 877-81
    Liu L, F Widen, C Baule, S Belak. 2007. A one-step, gel-based RT-PCR assay with comparable performance to real-time RT-PCR for detection of classical swine fever virus. J Virol Methods, 139(2): 203-7
    Liu S, X Yu, C Wang, J Wu, X Kong, C Tu. 2006. Quadruple antigenic epitope peptide producing immune protection against classical swine fever virus. Vaccine, 24(49-50): 7175-80
    Loeffen W L, A van Beuningen, S Quak, A R Elbers. 2009. Seroprevalence and risk factors for the presence of ruminant pestiviruses in the Dutch swine population. Vet Microbiol, 136(3-4): 240-5
    Luo X, D Ling, T Li, C Wan, C Zhang, Z Pan. 2009. Classical swine fever virus Erns glycoprotein antagonizes induction of interferon-beta by double-stranded RNA. Can J Microbiol, 55(6): 698-704
    McGoldrick A, E Bensaude, G Ibata, G Sharp, D J Paton. 1999. Closed one-tube reverse transcription nested polymerase chain reaction for the detection of pestiviral RNA with fluorescent probes. J Virol Methods, 79(1): 85-95
    Meyers G, T Rumenapf, H J Thiel. 1989. Molecular cloning and nucleotide sequence of the genome of hog cholera virus. Virology, 171(2): 555-67
    Meyers G, A Saalmuller, M Buttner. 1999. Mutations abrogating the RNase activity in glycoprotein E(rns) of the pestivirus classical swine fever virus lead to virus attenuation. J Virol, 73(12): 10224-35
    Mittelholzer C, C Moser, J D Tratschin, M A Hofmann. 1998. Porcine cells persistently infected with classical swine fever virus protected from pestivirus-induced cytopathic effect. J Gen Virol, 79 (12):2981-7
    Mittelholzer C, C Moser, J D Tratschin, M A Hofmann. 2000. Analysis of classical swine fever virus replication kinetics allows differentiation of highly virulent from avirulent strains. Vet Microbiol, 74(4): 293-308
    Moennig V, G Floegel-Niesmann, I Greiser-Wilke. 2003. Clinical signs and epidemiology of classical swine fever: a review of new knowledge. Vet J, 165(1): 11-20
    Montesino R, J R Toledo, O Sanchez, Y Zamora, M Barrera, L Royle, P M Rudd, R A Dwek, D J Harvey, J A Cremata. 2009. N-glycosylation pattern of E2 glycoprotein from classical swine fever virus. J Proteome Res, 8(2): 546-55
    Moormann R J, A Bouma, J A Kramps, C Terpstra, H J De Smit. 2000. Development of a classical swine fever subunit marker vaccine and companion diagnostic test. Vet Microbiol, 73(2-3): 209-19
    Moormann R J, H G van Gennip, G K Miedema, M M Hulst, P A van Rijn. 1996. Infectious RNA transcribed from an engineered full-length cDNA template of the genome of a pestivirus. J Virol, 70(2): 763-70
    Notomi T, H Okayama, H Masubuchi, T Yonekawa, K Watanabe, N Amino, T Hase. 2000. Loop-mediated isothermal amplification of DNA. Nucleic Acids Res, 28(12): E63
    Ophuis R J, C J Morrissy, D B Boyle. 2006. Detection and quantitative pathogenesis study of classical swine fever virus using a real time RT-PCR assay. J Virol Methods, 131(1): 78-85
    Otto G A, J D Puglisi. 2004. The pathway of HCV IRES-mediated translation initiation. Cell, 119(3): 369-80
    Pan C H, M H Jong, Y L Huang, T S Huang, P H Chao, S S Lai. 2008. Rapid detection and differentiation of wild-type and three attenuated lapinized vaccine strains of classical swine fever virus by reverse transcription polymerase chain reaction. J Vet Diagn Invest, 20(4): 448-56
    Paton D J, I Greiser-Wilke. 2003. Classical swine fever--an update. Res Vet Sci, 75(3): 169-78
    Paton D J, A McGoldrick, I Greiser-Wilke, S Parchariyanon, J Y Song, P P Liou, T Stadejek, J P Lowings, H Bjorklund, S Belak. 2000. Genetic typing of classical swine fever virus. Vet Microbiol, 73(2-3): 137-57
    Peeters B, K Bienkowska-Szewczyk, M Hulst, A Gielkens, T Kimman. 1997. Biologically safe, non-transmissible pseudorabies virus vector vaccine protects pigs against both Aujeszky's disease and classical swine fever. J Gen Virol, 78 ( Pt 12):3311-5
    Poole T L, C Wang, R A Popp, L N Potgieter, A Siddiqui, M S Collett. 1995. Pestivirus translation initiation occurs by internal ribosome entry. Virology, 206(1): 750-4
    Qu L, L K McMullan, C M Rice. 2001. Isolation and characterization of noncytopathic pestivirus mutants reveals a role for nonstructural protein NS4B in viral cytopathogenicity. J Virol, 75(22): 10651-62
    Reusken C B, T J Dalebout, P Eerligh, P J Bredenbeek, W J Spaan. 2003. Analysis of hepatitis C virus/classical swine fever virus chimeric 5'NTRs: sequences within the hepatitis C virus IRES are required for viral RNA replication. J Gen Virol, 84(Pt 7): 1761-9
    Ribbens S, J Dewulf, F Koenen, H Laevens, K Mintiens, A de Kruif. 2004. An experimental infection (II) to investigate the importance of indirect classical swine fever virus transmission by excretions and secretions of infected weaner pigs. J Vet Med B Infect Dis Vet Public Health, 51(10): 438-42
    Ribbens S, J Dewulf, F Koenen, D Maes, A de Kruif. 2007. Evidence of indirect transmission of classical swine fever virus through contacts with people. Vet Rec, 160(20): 687-90
    Richard E. Shope M D. 1957. The Swine Lungworm as A Reservoir and Intermediate Host for Hog Cholera Virus J. Exp. Med, 107(5): 14
    Risatti G R, M V Borca, G F Kutish, Z Lu, L G Holinka, R A French, E R Tulman, D L Rock. 2005. The E2 glycoprotein of classical swine fever virus is a virulence determinant in swine. J Virol, 79(6): 3787-96
    Risatti G R, L G Holinka, I Fernandez Sainz, C Carrillo, Z Lu, M V Borca. 2007. N-linked glycosylation status of classical swine fever virus strain Brescia E2 glycoprotein influences virulence in swine. J Virol, 81(2): 924-33
    Robertson A, G L Bannister, P Boulanger, M Appel, D P Gray. 1965. Hog cholera. V. Demonstration of the antigen in swine tissues by the fluorescent antibody technique. Can J Comp Med Vet Sci, 29(12): 299-305
    Rossi S, F Pol, B Forot, N Masse-Provin, S Rigaux, A Bronner, M F Le Potier. Preventive vaccination contributes to control classical swine fever in wild boar (Sus scrofa sp.). Vet Microbiol, 142(1-2): 99-107
    Rumenapf T, G Unger, J H Strauss, H J Thiel. 1993. Processing of the envelope glycoproteins of pestiviruses. J Virol, 67(6): 3288-94
    Sakoda Y, A Fukusho. 1998. Establishment and characterization of a porcine kidney cell line, FS-L3, which forms unique multicellular domes in serum-free culture. In Vitro Cell Dev Biol Anim, 34(1): 53-7
    Sakoda Y, M Hikawa, T Tamura, A Fukusho. 1998. Establishment of a serum-free culture cell line, CPK-NS, which is useful for assays of classical swine fever virus. J Virol Methods, 75(1): 59-68
    Salmon D E. 1889. Hog cholera: Its history, nature and treatment, as determined by the inquiries and investigations of the Bureau of Animal Industry. Rep.Chief, B~reau A~im. Ind., U. S. Dept. Agric Sandvik T, T Drew, D Paton. 2000. CSF virus in East Anglia: where from? Vet Rec, 147(9): 251
    Sasahara J, T Kumagai, Y Shimizu, S Furuuchi. 1969. Field experiments of hog cholera live vaccine prepared in guinea-pig kidney cell culture. Natl Inst Anim Health Q (Tokyo), 9(2): 83-91
    Saunders G C, E H Clinard, M L Bartlett, W M Sanders. 1977. Application of the indirect enzyme-labeled antibody microtest to the detection and surveillance of animal diseases. J Infect Dis, 136 Suppl:S258-66
    Seago J, S Goodbourn, B Charleston. The classical swine fever virus Npro product is degraded by cellular proteasomes in a manner that does not require interaction with interferon regulatory factor 3. J Gen Virol, 91(3): 721-6
    Sheng C, M Xiao, X Geng, J Liu, Y Wang, F Gu. 2007. Characterization of interaction of classical swine fever virus NS3 helicase with 3' untranslated region. Virus Res, 129(1): 43-53
    Siegel R W, L Bellon, L Beigelman, C C Kao. 1998. Moieties in an RNA promoter specifically recognized by a viral RNA-dependent RNA polymerase. Proc Natl Acad Sci U S A, 95(20): 11613-8
    Stark R, G Meyers, T Rumenapf, H J Thiel. 1993. Processing of pestivirus polyprotein: cleavage site between autoprotease and nucleocapsid protein of classical swine fever virus. J Virol, 67(12): 7088-95
    Stawicki S S, C C Kao. 1999. Spatial perturbations within an RNA promoter specifically recognized by a viral RNA-dependent RNA polymerase (RdRp) reveal that RdRp can adjust its promoter binding sites. J Virol, 73(1): 198-204
    Stojdl D F, N Abraham, S Knowles, R Marius, A Brasey, B D Lichty, E G Brown, N Sonenberg, J C Bell. 2000. The murine double-stranded RNA-dependent protein kinase PKR is required for resistance to vesicular stomatitis virus. J Virol, 74(20): 9580-5
    Summerfield A, F McNeilly, I Walker, G Allan, S M Knoetig, K C McCullough. 2001a. Depletion of CD4(+) and CD8(high+) T-cells before the onset of viraemia during classical swine fever. Vet Immunol Immunopathol, 78(1): 3-19
    Summerfield A, K Zingle, S Inumaru, K C McCullough. 2001b. Induction of apoptosis in bone marrow neutrophil-lineage cells by classical swine fever virus. J Gen Virol, 82(6): 1309-18
    Sun Y, D-F Liu, Y-F Wang, B-B Liang, D Cheng, N Li, Q-F Qi, Q-H Zhu. 2010. Generation and efficacy evaluation of a recombinant adenvovirus expressing the E2 protein of classical swine fever virus Research in Veterinary Scinece ,88:77-82
    Sun Y, D Liu, Y Wang, N Li, H Li, B Liang, H Qiu. 2009. [A prime-boost vaccination strategy using a Semliki Forest virus replicon vectored DNA vaccine followed by a recombinant adenovirus protects pigs from classical swine fever]. Sheng Wu Gong Cheng Xue Bao, 25(5): 679-85
    Tajima M, M Yuasa, M Kawanabe, H Taniyama, O Yamato, Y Maede. 1999. Possible causes of diabetes mellitus in cattle infected with bovine viral diarrhoea virus. Zentralbl Veterinarmed B, 46(3): 207-15
    Tang F, Z Pan, C Zhang. 2008. The selection pressure analysis of classical swine fever virus envelope protein genes Erns and E2. Virus Res, 131(2): 132-5
    Tautz N, K Elbers, D Stoll, G Meyers, H J Thiel. 1997. Serine protease of pestiviruses: determination of cleavage sites. J Virol, 71(7): 5415-22
    Taylor J, C Edbauer, A Rey-Senelonge, J F Bouquet, E Norton, S Goebel, P Desmettre, E Paoletti. 1990. Newcastle disease virus fusion protein expressed in a fowlpox virus recombinant confers protection in chickens. J Virol, 64(4): 1441-50
    Taylor J, R Weinberg, B Languet, P Desmettre, E Paoletti. 1988. Recombinant fowlpox virus inducing protective immunity in non-avian species. Vaccine, 6(6): 497-503
    Tews B A, G Meyers. 2007. The pestivirus glycoprotein Erns is anchored in plane in the membrane via an amphipathic helix. J Biol Chem, 282(45): 32730-41
    Thiel H J, R Stark, E Weiland, T Rumenapf, G Meyers. 1991. Hog cholera virus: molecular composition of virions from a pestivirus. J Virol, 65(9): 4705-12
    Thulke H H, D Eisinger, C Freuling, A Frohlich, A Globig, V Grimm, T Muller, T Selhorst, C Staubach, S Zips. 2009. Situation-based surveillance: adapting investigations to actual epidemic situations. J Wildl Dis, 45(4): 1089-103
    Toledo J R, O Sanchez, R Montesino, O Farnos, M P Rodriguez, P Alfonso, N Oramas, E Rodriguez, E Santana, E Vega, L Ganges, M T Frias, J Cremata, M Barrera. 2008. Highly protective E2-CSFV vaccine candidate produced in the mammary gland of adenoviral transduced goats. J Biotechnol, 133(3): 370-6
    Tratschin J D, C Moser, N Ruggli, M A Hofmann. 1998. Classical swine fever virus leader proteinase Npro is not required for viral replication in cell culture. J Virol, 72(9): 7681-4
    Tripathy D N, W M Schnitzlein. 1991. Expression of avian influenza virus hemagglutinin by recombinant fowlpox virus. Avian Dis, 35(1): 186-91
    Uttenthal A. 2002. PCR-detection of classical swine fever virus in meat juice. In: 5th Pestivirus Symposium.St. Johns College,Cambridge, UK, 26–29th
    van Oirschot J T. 2003. Emergency vaccination against classical swine fever. Dev Biol (Basel), 114:259-67
    van Rijn P A. 2007. A common neutralizing epitope on envelope glycoprotein E2 of different pestiviruses: implications for improvement of vaccines and diagnostics for classical swine fever (CSF)? Vet Microbiol, 125(1-2): 150-6
    van Zijl M, G Wensvoort, E de Kluyver, M Hulst, H van der Gulden, A Gielkens, A Berns, R Moormann. 1991. Live attenuated pseudorabies virus expressing envelope glycoprotein E1 of hog cholera virus protects swine against both pseudorabies and hog cholera. J Virol, 65(5): 2761-5
    Vandeputte J, G Chappuis. 1999. Classical swine fever: the European experience and a guide for infected areas. Rev Sci Tech, 18(3): 638-47
    Vanderhallen H, C Mittelholzer, M A Hofmann, F Koenen. 1999. Classical swine fever virus is genetically stable in vitro and in vivo. Arch Virol, 144(9): 1669-77
    Vazquez Blomquist D, P Green, S M Laidlaw, M A Skinner, P Borrow, C A Duarte. 2002. Induction of a strong HIV-specific CD8+ T cell response in mice using a fowlpox virus vector expressing an HIV-1 multi-CTL-epitope polypeptide. Viral Immunol, 15(2): 337-56
    Vilcek S, D Paton, P Lowings, H Bjorklund, P Nettleton, S Belak. 1999. Genetic analysis ofpestiviruses at the 3' end of the genome. Virus Genes, 18(2): 107-14
    Voigt H, C Merant, D Wienhold, A Braun, E Hutet, M F Le Potier, A Saalmuller, E Pfaff, M Buttner. 2007. Efficient priming against classical swine fever with a safe glycoprotein E2 expressing Orf virus recombinant (ORFV VrV-E2). Vaccine, 25(31): 5915-26
    Vydelingum S, T Tao, K Balazsi, R Hecker. 1998. Comparison of a reverse transcription-polymerase chain reaction assay and virus isolation for the detection of classical swine fever virus. Rev Sci Tech, 17(3): 674-81
    Wang Z, G Min, M Li, J Teng, M Ding. 2000. Study on the morphological processing of classical swine fever virus in cultured cells. Acta Microbiologica Sinica, 40(3): 237-42
    Warrener P, M S Collett. 1995. Pestivirus NS3 (p80) protein possesses RNA helicase activity. J Virol, 69(3): 1720-6
    Wickens M, P Anderson, R J Jackson. 1997. Life and death in the cytoplasm: messages from the 3' end. Curr Opin Genet Dev, 7(2): 220-32
    Will H, R Cattaneo, H G Koch, G Darai, H Schaller, H Schellekens, P M van Eerd, F Deinhardt. 1982. Cloned HBV DNA causes hepatitis in chimpanzees. Nature, 299(5885): 740-2
    Wolff J A, R W Malone, P Williams, W Chong, G Acsadi, A Jani, P L Felgner. 1990. Direct gene transfer into mouse muscle in vivo. Science, 247(4949): 1465-8
    Wolff J A, P Williams, G Acsadi, S Jiao, A Jani, W Chong. 1991. Conditions affecting direct gene transfer into rodent muscle in vivo. Biotechniques, 11(4): 474-85
    Wu H X, J F Wang, C Y Zhang, L Z Fu, Z S Pan, N Wang, P W Zhang, W G Zhao. 2001. Attenuated lapinized chinese strain of classical swine fever virus: complete nucleotide sequence and character of 3'-noncoding region. Virus Genes, 23(1): 69-76
    Xiao M, Y Bai, H Xu, X Geng, J Chen, Y Wang, B Li. 2008. Effect of NS3 and NS5B proteins on classical swine fever virus internal ribosome entry site-mediated translation and its host cellular translation. J Gen Virol, 89(Pt 4): 994-9
    Xiao M, J Chen, Y Wang, Y Zhen, W Lu, B Li. 2004a. Sequence, necessary for initiating RNA synthesis, in the 3'-noncoding region of the classical swine fever virus genome. Mol Biol (Mosk), 38(2): 343-51
    Xiao M, J Gao, W Wang, Y Wang, J Chen, B Li. 2004b. Specific interaction between the classical swine fever virus NS5B protein and the viral genome. Eur J Biochem, 271(19): 3888-96
    Xiao M, J Gao, Y Wang, X Wang, W Lu, Y Zhen, J Chen, B Li. 2004c. Influence of a 12-nt insertion present in the 3' untranslated region of classical swine fever virus HCLV strain genome on RNA synthesis. Virus Res, 102 (2): 191-8
    Xiao M, Y Wang, J Chen, B Li. 2003. Characterization of RNA-dependent RNA polymerase activity of CSFV NS5B proteins expressed in Escherichia coli. Virus Genes, 27(1): 67-74
    Xiao M, C Y Zhang, Z S Pan, H X Wu, J Q Guo. 2002a. Classical swine fever virus NS5B-GFP fusion protein possesses an RNA-dependent RNA polymerase activity. Arch Virol, 147(9): 1779-87
    Xiao M, Z Z Zhu, J Liu, C Y Zhang. 2002b. [Prediction of recognition sites for genomic replication of classical swine fever virus with information analysis]. Mol Biol (Mosk), 36(1): 48-57
    Xu H, H X Hong, Y M Zhang, K K Guo, X M Deng, G S Ye, X Y Yang. 2007. Cytopathic effect of classical swine fever virus NS3 protein on PK-15 cells. Intervirology, 50(6): 433-8
    Xu J, E Mendez, P R Caron, C Lin, M A Murcko, M S Collett, C M Rice. 1997. Bovine viral diarrhea virus NS3 serine proteinase: polyprotein cleavage sites, cofactor requirements, and molecular model of an enzyme essential for pestivirus replication. J Virol, 71(7): 5312-22
    Xu X G, M T Chiou, Y M Zhang, D W Tong, J H Hu, M T Zhang, H J Liu. 2008. Baculovirus surface display of E(rns) envelope glycoprotein of classical swine fever virus. J Virol Methods, 153(2): 149-55
    Xu X G, D W Tong, M T Chiou, Y C Hsieh, W L Shih, C D Chang, M H Liao, Y M Zhang, H J Liu. 2009. Baculovirus surface display of NS3 nonstructural protein of classical swine fever virus. J Virol Methods, 159(2): 259-64
    Yamamura M, K Makimura, Y Ota. 2009. Evaluation of a new rapid molecular diagnostic system for Plasmodium falciparum combined with DNA filter paper, loop-mediated isothermal amplification, and melting curve analysis. Jpn J Infect Dis, 62(1): 20-5
    Yamane D, M A Zahoor, Y M Mohamed, W Azab, K Kato, Y Tohya, H Akashi. 2009. Inhibition of sphingosine kinase by bovine viral diarrhea virus NS3 is crucial for efficient viral replication and cytopathogenesis. J Biol Chem, 284(20): 13648-59
    Yu M, L F Wang, B J Shiell, C J Morrissy, H A Westbury. 1996. Fine mapping of a C-terminal linear epitope highly conserved among the major envelope glycoprotein E2 (gp51 to gp54) of different pestiviruses. Virology, 222(1): 289-92
    Zamore P D. 2001. RNA interference: listening to the sound of silence. Nat Struct Biol, 8(9): 746-50 Zhao H P, J F Sun, N Li, Y Sun, Z H Xia, Y Wang, D Cheng, Q F Qi, M L Jin, H J Qiu. 2009.
    Assessment of the cell-mediated immunity induced by alphavirus replicon-vectored DNA vaccines against classical swine fever in a mouse model. Vet Immunol Immunopathol, 129(1-2): 57-65
    Zhao J J, D Cheng, N Li, Y Sun, Z Shi, Q H Zhu, C Tu, G Z Tong, H J Qiu. 2008. Evaluation of a multiplex real-time RT-PCR for quantitative and differential detection of wild-type viruses and C-strain vaccine of Classical swine fever virus. Vet Microbiol, 126(1-3): 1-10

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700