用户名: 密码: 验证码:
冶金因素对热轧深冲无间隙原子(IF)钢板组织性能影响的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
无间隙原子(IF)钢作为最新一代冲压用钢,具有十分优异的深冲性能和非时效性,被广泛用作汽车板等冲压件的原料。其传统生产工艺需经连铸—热轧—冷轧—退火等多道工序,工艺比较复杂,成本较高。随着市场竞争日益激烈,为简化深冲钢的生产工艺、降低成本,通过热轧生产深冲板引起冶金企业和钢板用户的普遍关注。近年来研究发现,IF钢在铁素体区热轧时的主要织构是{111}织构,这使通过热轧生产深冲板的设想在IF钢上成为可能。热轧IF钢生产周期短、成本低,具有明显的技术先进性和显著的经济效益,因此开展热轧IF钢的开发研制工作具有重要的理论意义和实用价值。
     本文以铁素体区热轧IF钢为对象,利用电子背散射衍射(EBSD)、X射线衍射(XRD)、光学显微镜(OM)、扫描电镜(SEM)、电子探针(EPMA)、透射电镜(TEM)以及拉伸试验等测试方法,深入系统地研究了冶金因素对热轧IF钢组织、织构和深冲性能的影响。
     研究了化学成分对热轧IF钢组织性能的影响。结果表明:固溶C、N严重损害热轧IF钢的深冲性能。未加Ti处理的ULC钢中由于固溶C、N的存在,热轧退火后不具有深冲性能;而Ti处理的IF钢中,Ti与C、N间隙原子化合形成TiN、TiS、Ti_4C_2S_2、TiC析出物将其从基体清除,热轧退火后获得良好深冲性能。两者深冲性能的显著差异主要归因于热轧组织中晶内剪切带含量的不同,而两者剪切带行为的差异则是热轧过程中固溶C、N与位错运动交互作用的结果。P可显著提高热轧IF钢的强度,但同时也导致其深冲性能降低。P的加入使Ti-IF钢的析出行为改变,在热轧和退火时沿晶界析出大量、细小FeTiP新相,热轧Ti+P-IF钢中P以置换固溶P原子和化合态FeTiP粒子两种形式存在。P原子的固溶强化作用是强度提高的主要因素;而退火时FeTiP粒子对有利织构发展的抑制则是深冲性能降低的主要原因。
     通过对不同铁素体区轧制温度和压下率下热轧Ti-IF钢组织、织构和性能的研究发现,铁素体区轧制温度和压下率对热轧Ti-IF钢的屈服强度、抗拉强度、总延伸率和(?)值影响较小,但对(?)值影响较大。随铁素体区轧制温度的降低和压下率的增加,(?)值显著增加。轧制温度的降低使{111}<112>及{554}<225>取向晶粒的形变储能增加,有利于其退火过程中优先形核长大,退火后形成了更强的{111}<112>及{554}<225>织构和更弱的{001}<110>~{223}<110>织构,是(?)值增加的内在原因。相同热轧温度下,铁素体区压下率的增加使热轧组织中有利织构组分强度增加,退火后有利织构进一步增强从而(?)值提高。
     研究了不同润滑条件下热轧IF钢的组织性能后发现,润滑条件对热轧IF钢的深冲性能有重要影响。未润滑热轧使Ti-IF钢的(?)值显著降低。未润滑热轧使板厚方向产生严重的不均匀变形,钢板表层由于剪切变形产生大量{110}等轴细晶粒并在退火后发生晶粒长大使{110}取向晶粒减少最终形成漫散织构状态,而中心层退火后形成少量{111}再结晶晶粒,表层和中心层晶粒取向差接近随机分布。这种板厚方向上织构的不均匀分布是(?)值大幅降低的本质原因。润滑热轧使板厚方向变形均匀,表层和中心层均形成长纤维状的{001}、{112}和{111}变形晶粒,退火后形成大量{111}再结晶晶粒,晶粒取向差偏离随机分布且小角度晶界含量较未润滑条件下高。因此,热轧IF钢为获得优异的深冲性能,良好的润滑条件是必须的。
     通过对热轧IF钢罩式退火再结晶规律的研究发现,在恒时3小时条件下,热轧Ti-IF钢在650℃退火时可发生完全再结晶;在恒温750℃条件下,保温1分钟后即可保证完全再结晶。退火温度对热轧Ti-IF钢的再结晶过程有显著影响,而保温时间的影响则取决于退火温度的高低。在较低温度退火时,保温时间的延长对热轧Ti-IF钢充分再结晶的进行至关重要。热轧Ti-IF钢经济合理的罩式退火工艺为:退火温度750℃,保温时间3小时。
     采用ODF分析和EBSD技术对热轧Ti-IF钢退火过程中的织构演变进行了深入研究,结果表明Ti-IF钢铁素体区热轧后形成较强的α-<110>//RD纤维织构和较弱的γ-<111>//ND纤维织构。变形组织中主要取向变形晶粒的形变储能按{001}<110>、{112}<110>、{111}<110>和{111}<112>的次序逐渐增加。再结晶初期,{111}变形晶粒的形变储能高,将优先形成{111}取向的晶核,织构转变发生在γ纤维织构内部,即{111}再结晶织构在形变的{111}晶粒中形成和发展;再结晶后期,变形组织中α取向晶粒被大量消耗,α纤维织构强度显著减弱,其中形变储能最低的{001}<110>组分最后被消耗,同时再结晶组织中的γ纤维织构增强。再结晶初期与后期及完全再结晶阶段再结晶晶粒的织构特征基本一致,再结晶初期的形核特点决定了再结晶织构,定向形核机制在热轧Ti-IF钢再结晶织构的形成中起主导作用。
Interstitial-Free (IF) steels which represent a new generation of deep drawing steels have been widely used as raw materials of automobile sheet because of its excellent deep drawability and no-aging property. Their conventional production includes multi-step processes, such as continuous casting, hot-rolling, cold-rolling, annealing etc.. The process is complicated and costly. With the increase of market competition, in order to simplify the process and reduce costs, the idea that producing steel sheets for deep-drawing operation by hot-rolling has attracted the attentions of both steel company and steel users. In recent years, it has been founded that the dominant texture is {111} texture after IF steels are hot-rolled in ferrite region, this fact make it possible that deep-drawing steel can be produced by hot-rolling. Hot-rolled IF steel is characteristic of shorter production cycle and lower cost. It is an advanced technology product and can bring significant economic benefits. Therefore, to carry out research work of hot-rolled IF steel is not only of great theoretical significance but also has practical value.
     In this paper, the effects of metallurgical processing on mechanical properties, microstructure and texture of ferritic hot-rolled IF steel were investigated by means of electron back-scatter diffraction (EBSD), X-ray diffractometer (XRD), optical microscope (OM), scanning electron microscope (SEM), electro-probe microanalyzer (EPMA), transmission electron microscope (TEM) and tensile test.
     By investigating the effects of chemical composition on microstructure and mechanical properties of hot-rolled IF steel, it has been shown that solute C, N cause detrimental effect on deep drawability of hot-rolled IF steel. In ultra-low-carbon (ULC) steel with no Ti addition, where solute C, N atoms exist, the deep drawability cannot be obtained even if hot-rolling is performed in ferrite region. But in Ti-stabilized IF steel, where Ti can combine C, N atoms to form TiN, TiS, Ti_4C_2S_2 and TiC precipitates and thus remove them from the matrix, good deep drawability is got after ferritic hot-rolling. The significant difference of deep drawability between the two experimental steels is mainly attributed to the different content of in-grain shear bands, and the difference of shear band behavior is in turn caused by the interaction of solute C, N and dislocation movement during ferritic hot-rolling. P enhances the strength of hot-rolled IF steel significantly, but it also reduces its deep drawability. The addition of P changes the precipitation behavior of Ti-IF steel, a large number of small FeTiP new phases precipitate along grain boundaries during ferritic hot rolling and annealing. That is to say, in hot-rolled Ti+P-IF steel, the phosphorus exists in the form of solid solution P atoms and compounds FeTiP particles. Solid solution strengthening of solute P atoms is the main factors in strength enhancing, and the inhibition of FeTiP particles to the development of favorable texture during annealing is the main reason for deep drawability reducing.
     Effects of ferritic hot-rolling temperature and reduction on microstructure, texture and mechanical properties were studied. Results show that ferritic rolling temperature and reduction have less influence on the yield strength, tensile strength, total elongation and n|--value of hot-rolled Ti-IF steel, but have a great influence on the r|--value. With the decrease of rolling temperature and the increase of reduction, the r|--value increases significantly. With the decrease of rolling temperature, stored energy of {111}<112> and nearby {554}<225> deformed grains increase which is beneficial for them to have priority to nucleation and grow up during recrystallization, so a stronger {111}<112> and {554}<225> recrystallization texture and a weaker {001}<110>~{223}<110> recrystallization texture are formed after annealing which is the reason for the increase of the r|--value. At the same hot-rolling temperature, the intensity of beneficial texture components is enhanced with the increase of reduction in ferrite region and their intensity would be further improved after annealing, so the r|--value increases.
     Lubrication condition has an important effect on deep drawability of hot-rolled IF steel, r|--value reduced significantly without lubricant condition. Inhomogeneous deformation is occurred when ferritic hot-rolled without using lubricant. Large amounts of {110} equiaxed fine grains are formed in the surface layer as a result of shear deformation during hot-rolling and the number of {110} grains reduces accompanied by grain growth during annealing, finally a weak texture is formed in the surface layer. In the center layer, a small amount of {111} recrystallization grain are formed after annealing. The misorientation of both surface and center layer are close to random distribution. This kind of texture inhomogeneity is the essence reason for r|--value decrease. Uniform deformed microstructure along the thickness direction is obtained when hot-rolling is done with good lubrication condition, long fibrous {001}, {112} and {111} deformed grains are formed in both surface and center layer. After annealing, large number of {111} recrystallized grains are developed in both layers, misorientation deviates from random distribution and the content of small-angle grain boundary is higher than that in the un-lubricant condition. Therefore, to obtain excellent deep drawability, good lubricant condition is necessary.
     The recrystallization behavior of hot-rolled IF steel sheet during batch annealing was investigated. The results show that it takes 3 hours for hot-rolled Ti-IF steel to be fully recrystallized at the annealing temperature of 650℃and when annealed at 750℃, the time that is needed is only 1 minute. Annealing temperature has significant effect on the recrystallization of hot-rolled Ti-IF steel, and the effect of holding time on recrystallization depends on the annealing temperature. Sufficient holding time is necessary for the complete recrystallization of hot-rolled Ti-IF steel when annealed at lower temperature. The economical and reasonable batch annealing process for hot-rolled Ti-IF steel is: annealing temperature 750℃and holding time 3 hours.
     The texture evolution of hot-rolled Ti-IF steel during annealing was investigated by using ODF analysis and EBSD techniques. It has been founded that a strongα-<110>//RD fiber texture and a weakγ-<111>//ND fiber texture are formed in ferritic hot-rolled Ti-IF steel and the stored energy of main deformed grains gradual increase in the sequence of {001}<110>, {112}<110>, {111} <110> and {111}<112> orientations. At the early stage of recrystallization, the {111} deformed grains which have higher stored energy will give priority to form {111}-oriented nuclei. Texture changes occur among the y fiber texture, that is, {111} recrystallization texture forms from {111} deformed grains. At the latter stage of recrystallization,α-oriented deformed grains are consumed gradually, and the intensity of a fiber texture decreased significantly and the {001}<110> component is consumed finally because of its smallest stored energy, while the intensity ofγfiber recrystallization texture is increased. The texture characteristics of recrystallized grains at the early and latter stage of recrystallization are basically the same as that at complete recrystallization. The initial recrystallization nucleation characteristics determines recrystallization texture and the oriented nucleation mechanism play a dominant role in the formation of recrystallization texture in hot-rolled Ti-IF steel.
引文
[1]康永林.现代汽车板的质量控制与成形性[M].北京:冶金工业出版社,1999:5-9.
    [2]王先进.薄板成形性能[M].北京:冶金工业出版社,1987:147-196.
    [3]W.T.Lankford,S.C.Snyder,L.A.Bauscher.New criteria for predicting the press performance of deep drawing sheets[J].Transactions of American Society of Metals,1950,42:1197-1208.
    [4]Ray R.K.,J.J.Jonas,R.E.Hook.Cold rolling and annealing textures in low carbon and extra low carbon steels[J].International Materials Reviews,1994,39(4):129-172.
    [5]W.B.Morrison,B.William.Effect of grain size on the stress-strain relationship in low-carbon steel[J].Transactions of American Society of Metals,1966,59:824-846.
    [6]J.A.Elias,R.E.Hook.In:Proceedings of the 13th Mechanical Working and Steel Processing Conference[C].ISS-AIME,1971:38.
    [7]A.W.Cramb,M.Byrne.Steelmaking and casting practices for high quality interstitial-free steels[A].In:R.Pradhan ed.,Proceedings of the International Conference on Metallurgy of Vacuum-degassed Steel Products[C].Indianapolis,USA:TMS-AIME,1990:3-28.
    [8]崔德理,王先进,金山同.超低碳钢的历史与发展[J].钢铁研究,1994,(5):50-60.
    [9]S.Satoh,et al.A new process for manufacturing deep-drawing cold-rolled steel sheet from ELC steels[J],Kawasaki Steel Technical Report,1995,(12):36-44.
    [10]A.Okamotto,et al.In:Proceedings of the6th International Conference on Texture of Materials[C].Tokyo,Japan:The Iron and Steel Institute of Japan,1981:739-748.
    [11]H.Inagaki.Fundamental aspect of texture formation in low carbon steel[J].ISIJ International,1994,34(4):313-321.
    [12]R.Yoda,I.Tsukatani,T.Inoue,T.Saito.Effect of chemical composition on recrystallization behavior and r-value in Ti-added ultra low carbon sheet steel[J],ISIJ International,1994,34(1):70-76.
    [13]Masatoshi,et al.In:Proceedings of 31st ISS Mechanical Working and Steel Processing Conference[C].Warrendale,USA:ISS,1990:547-562.
    [14]H.Katon,et al.In:R.Pradhan,Proceedings of the International symposium on Technology of Continuously Annealed Cold-Rolled Sheet Steel[C].Detroit,USA:TMS-AIME,1984:37-58.
    [15]R.Yoda,I.Tsukatani,T.Inoue,T.Saito.Effect of chemical composition on recrystallization behavior and r-value in ti-added ultra low carbon sheet steel[J].ISIJ International,1994,34(1):70-76.
    [16]T.Asamura.Recent development of modem LC and ULC sheet steels in Japan[A].In:W.Bleck ed.,Proceedings of International Symposium on Modern LC and ULC Sheet Steels for Cold Forming:Processing and Properties[C].Aachen,Germany:Institute of Ferrous Metallurgy,1998:1-14.
    [17]马衍伟,王先进.超深冲IF钢研究的最新进展[J].钢铁,1998,33(4):65-69.
    [18]马衍伟,王先进孔冰玉.宝钢IF钢的生产工艺与改进建议[J].钢铁,1998,33(6):32-36.
    [19]王先进,茹铮,马衍伟.我国汽车用钢板的现状和研究进展明[J].钢铁,1998,33(10):68-72.
    [20]何崇智,张倩,张志军.高n、r值超低碳无间隙原子钢的研究[J].钢铁,1997,32(11):51-54.
    [21]W.G.Burgers,P.C.Louwense.Z.Phys,1931,61:605-678.
    [22]C.S.Barrett et al.,Transaction of AIME,1940,137:128-149.
    [23]B.Hutchinson,E.Lindh.In:T.Sakuma ed.,Proceedings of International Forum on Physical Metallurgy of IF Steels[C].Tokyo,Japan:The Iron and Steel Institute of Japan,1994:127-140.
    [24]N.Hashimoto.Texture evolution of IF steel due to recrystallization[J].ISIJ International,1998,38(6):617-624.
    [25]W.B.Hutchinson.Development and control of annealing textures in low-carbon steels[J].International Metals Reviews,1984,29(1):25-42.
    [26]Y.Meyzaud,et al.In:Proceedings of the 5th International Conference on Texture of Materials[C].Berlin,Germany:Springer-Verlag,1978:243-253.
    [27]崔德理,IF钢再结晶过程组织及织构演变规律探索[D],博士后研究工作报告,北京科技大学,1995:14-16.
    [28]I.L.Dillamore,C.J.E.Smith,T.W.Watson.Oriented nucleation in the formation of annealing textures in iron[J].Metal Science Journal,1967,1:49-54.
    [29]B.Hutchinson,D.Artymowicz.Mechanisms and modeling of microstructure texture evolution in interstitial-free steel sheets[J],ISIJ International,2001,41(6):533-541.
    [30] U. Schlippenbach, F. Emren, K. Lǜcke. Investigation of the development of the cold rolling texture in deep drawing steels by ODF-analysis [J]. Acta Metallurgica, 1986, 34(7): 1289-1301.
    
    [31] F. Emren, U. Schlippenbach, K. Lucke. Investigation of the development of the cold rolling texture in deep drawing steels by ODF-analysis [J]. Acta Metallurgica, 1986, 34(11): 2105-2117.
    
    [32] T. Urabe, J. J. Jonas. Modeling texture change during the recrystallization of an IF steel [J]. ISIJ International, 1994, 34(5): 435-442.
    
    [33] P. Gangli. In: T. Sakuma ed., Proceedings of International Forum on Physical Metallurgy of IF Steels [C]. Tokyo, Japan: The Iron and Steel Institute of Japan, 1994: 95-98.
    
    [34] P. Gangli, L. Kestens, J. J. Jonas. The role of coincident site lattice boundaries during selective growth in interstitial-free steels [J]. Metallurgical and Materials Transactions A, 1996, 27(8): 2178-2186.
    
    [35] D. N. Lee, et al. In: Proceedings of the 11th International Conference on Texture of Materials [C]. Xi'an, China: International Academic Publishers (Beijing), 1996: 503-508.
    
    [36] Y. B. Park, D. N. Lee, G.Gottstein. In: Proceedings of the 11th International Conference on Texture of Materials [C]. Xi'an, China: International Academic Publishers (Beijing), 1996: 531-536.
    
    [37] Y. B. Park, D.N. Lee, G.Gottstein. Evolution of recrystallization textures from cold rolling textures in interstitial free steels [J]. Materials Science and Technology, 1997, 13(4): 289-298.
    
    [38] I. Samajdar, B. Verlinden, P. V. Houtte. Texture changes through grain growth in Ti-bearing IF-steel investigated by orientation imaging microscopy and X-ray diffraction [J]. ISIJ International, 1997, 37(10): 1010-1016.
    
    [39] S. Satoh, et al. Effect of precipitate dispersion on recrystallization texture of Nb steel sheet [J]. Transactions of the ISIJ, 1986, 26: 737-743.
    
    [40] M. Hillert, On the theory of normal and abnormal grain growth [J]. Acta Metallurgica, 1965, 13(3): 227-238.
    
    [41] S. V. Subramanian, M. Prikryl, B. D. Gaulin, et al. Effect of precipitate size and dispersion on lankford values of titanium stabilized interstitial-free steels [J]. ISIJ International, 1994, 34(1): 61-69.
    
    [42] S. V. Subramanian, et al. In: T. Sakuma ed., Proceedings of International Forum on Physical Metallurgy of IF Steels [C]. Tokyo, Japan: The Iron and Steel Institute of Japan, 1994: 53-66.
    [43]D.O.Wilshynsky-Dresler,D.K.Matlock,G.Krauss.Recrystallization of IF steels[A].In:T.Sakuma ed.,Proceedings of International Forum on Physical Metallurgy of IF Steels[C].Tokyo,Japan:The Iron and Steel Institute of Japan,1994:13-31.
    [44]商建辉,王先进,蒋冬梅,孔冰玉,陆匠心.Ti-IF钢第二相粒子在热轧过程中析出行为的热模拟研究[J].钢铁,37(1):56-60.
    [45]邱瑞青,沈汝美,陈名浩.IF钢相分析方法的研究及其应用[J].钢铁研究学报,1997,9(S1):76-80.
    [46]商建辉,王先进,初元璋.Ti-IF钢热轧时第二相粒子析出行为研究的最新进展[J].钢铁研究学报,2000,12(6):55-60.
    [47]景财年,王作成,韩福涛.IF钢中的析出物[J].材料导报,2005,19(5):50-53.
    [48]A.J.Deardo.Multi-phase microstructures and their properties in high strength low carbon steels[J],ISIJ International,1995,35(8):946-954.
    [49]M.Hua,et al..Identification of Ti-S-C-containing multi-phase precipitates in ultra-low carbon steels by analytical electron microscopy[J].ISIJ International,1997,37(11):1129-1132.
    [50]Y.Ishiguro,et al.A precise quantitative analysis of precipitates in Ti-bearing interstitial-free steel[J].Tetsu-to-Hagane/Journal of the Iron and Steel Institute of Japan(in Japanese),1997,83(8):479-484.
    [51]M.Pdkryl,Y.P.Lin,S.V.Subramanian.The identification of titanium sulphide and carbosulphide in ultra-low carbon steels[J].Scripta Metallurgica et Materialia,1990,24(2):375-380.
    [52]X.Yang,D.Vanderschueren,J.Dilewijns,et al..Solubility products of titanium sulfide and carbosulfide in ultra-low carbon steels[J].ISIJ International,1996,36(10):1286-1294.
    [53]S.Hinotani,et al.Isolation and determination of sulfides in Ti-bearing ultra low carbon steels [J].ISIJ International,1994,34(1):17-23.
    [54]M.Hua,C.I.Garcial,A.J.DeArdo.Precipitation behavior in ultra-low carbon steels containing titanium and niobium[J].Metallurgical and Materials Transactions A,1997,28(9):1769-1780.
    [55]G.Tither,C.I.Garcia,M.Hua,et al.Precipitation behavior and solute effects in interstitial-free steels[A].In:T.Sakuma Eed.,Proceedings of International Forum on Physical Metallurgy of IF Steels[C].Tokyo,Japan:The Iron and Steel Institute of Japan,1994:293-322.
    [56]N.Mizui.Precipitation control and related mechanical properties in ultra low carbon sheet steels[A].In:W.Bleck ed.,Proceedings of International Symposium on Modern LC and ULC Sheet Steels for Cold Forming:Processing and Properties[C].Aachen,Germany:Institute of Ferrous Metallurgy,1998:187-198.
    [57]S.Hashimoto,et al.In:I.Tamura ed.,Proceedings of the International Conference on Physical Metallurgy of Thermomechanical Processing of Steels and Other metals[C].Tokyo,Japan:Iron and Steel Institute of Japan,1988:652-659.
    [58]T.Senuma,H.Yada.Texture and deep drawability of low and ultra low carbon steel sheet hot rolled below Ar3 temperature[A].In:I.Tamura ed.,Proceedings of the International Conference on Physical Metallurgy of Thermomechanical Processing of Steels and Other metals[C].Tokyo,Japan:Iron and Steel Institute of Japan,1988:636-643.
    [59]T.Nakamura,K.Esaka.Development of hot rolled steel sheet with high r-value[A].In:I.Tamura ed.,Proceedings of the International Conference on Physical Metallurgy of Thermomechanical Processing of Steels and Other metals[C].Tokyo,Japan:Iron and Steel Institute of Japan,1988:644.
    [60]王作成,王仲仁,王先进.具有高r值的热轧IF钢的试验研究[J].材料科学与工艺,1997,5(2):29-31。
    [61]Wang Zuo-cheng,Wang Fang.Properties,microstructures and precipitate morphology of hot-rolled interstitial-free steel sheets[J].Journal of Material Science and Technology,2001,17(1):143-144.
    [62]毛新平.薄板坯连铸连轧铁素体轧制工艺[J].钢铁,2004,39(5):71-74.
    [63]刘正东,杨钢,房昕,程世长.铁素体区热轧的研究与应用[J].轧钢,2002,19(2):37-38.
    [64]C.J.Barrett,B.Wilshire.The production of ferritically hot rolled interstitial-free steel on a modern hot strip mill[J].Journal of Materials Processing Technology,2002,122(1):56-62.
    [65]A.Eisner,R.Kaspar.Deep-drawable steel strip produced by ferritic rolling[J].Materials Science Forum,2003,426-432:1349-1354.
    [66]S.Matsuoka,et al.Development of super deep drawable sheet by lubricant hot rolling in ferrite region[A].In:W.Bleck ed.,Proceedings of International Symposium on Modern LC and ULC Sheet Steels for Cold Forming:Processing and Properties[C].Aachen,Germany:Institute of Ferrous Metallurgy,1998:85-96.
    [67]M.R.Barnett,J.J.Jonas.Distinctive aspects of the physical metallurgy of warm rolling[J].ISIJ International,1999,39(9):856-873.
    [68]A.D.Paepe,J.C.Herman,V.Leroy.Deep drawable ultra low carbon Ti-IF steels hot rolled in the ferrite region[J].Steel Research,1997,68(11):479-486.
    [69]H.GroBheim,K.Schotten,W.Bleck.Physical simulation of hot rolling in the ferrite range of steels[J].Journal of Materials Processing Technology,1996,60(1-4):609-614.
    [70]H.Langer,W.Bleck,et al.Metallurgical aspect of ferritic hot rolling[A].In:W.Bleck ed.,Proceedings of International Symposium on Modern LC and ULC Sheet Steels for Cold Forming:Processing and Properties[C].Aachen,Germany:Institute of Ferrous Metallurgy,1998:301-312.
    [71]王昭东,郭艳辉,赵忠,孙大庆.应用铁素体区热轧工艺开发超低碳热轧深冲板[J].东北大学学报(自然科学版),2005,26(8):747-750.
    [72]李四军,曲家惠,王福,左良.铁素体区热轧IF钢冷轧退火时织构的形成与演变[J].东北大学学报(自然科学版),2007,28(3):345-348.
    [73]张锦刚,蒋奇武,刘沿东,左良.Ti-IF和Ti+Nb-IF钢铁素体区热轧组织和织构特征[J].东北大学学报(自然科学版),2005,26(10):968-971.
    [74]K.Eloot,K.Okuda,K.Sakata et al.Texture evolution during cold rolling and reerystallization of IF steel with a strong {111} hot band texture[J].ISIJ International,1998,38(6):602-609.
    [75]L.Kestens,J.J.Jonas.Modeling texture change during static recrystallization of a cold rolled and annealed ultra-low carbon steel previously warm rolled in the ferrite region[J].ISIJ International,1997,37(8):807-814.
    [76]K.M.Tiitto,C.Jung,P.Wray,C.I.Garcia,A.J.Deardo.Evolution of texture in ferritically hot rolled Ti and Ti+Nb alloyed ULC steels during cold rolling and annealing[J],ISIJ Intenrational,2004,44(2):404-413.
    [77]V.J.Martinez,J.I.Verdeja,J.A.Pero-Sanz.Interstitial free steel:influence of α phase hot rolling and cold rolling reduction to obtain extra deep drawing quality[J].Materials Characterization,2001,46(1):45-53.
    [78]J.Asensio,G.Romano,V.J.Martinez,J.I.Verdeja,J.A.Pero-Sanz.Ferritic steels-optimization of hot-rolled textures through cold rolling and annealing[J].Materials Characterization,2001,47(2):119-127.
    [79]G.Xu,C.Xu,J.Zhao et al.Flow stress constitutive model of ultra low carbon steel in warming deformation[J].ISIJ International,2006,46(1):166-168.
    [80]G.Xu,C.Xu,J.Zhao et al.Research on flow stress in ferrite deformation of a Ti-IF steel,Journal of Beijing University of Science and Technology(English version),2006,21(1):34-36.
    [81]徐光,赵嘉蓉,徐楚韶.超低碳IF钢铁素体热变形道次间软化规律研究[J].热加工工艺,2005,(11):57-58.
    [82]赵昆,何晓明,吴景晖,王昭东,刘相华,王国栋.铁素体热轧轧制力模型的改进,轧钢,2000,17(2):8-10.
    [83]N.Tsuji,Y.Matsubara,Y.Saito.Dynamic recrystallization of ferrite in interstitial free steel [J].Scripta Materialia,1997,37(4):477-484.
    [84]C.Huang,E.B.Hawbolt.Chen X,et al.Flow stress modeling and warm rolling simulation behavior of two Ti-Nb interstitial-free steels in the ferrite region[J].Acta materialia,2001,49(8):1445-1452.
    [85]G.H.Akbari,C.M.Sellars,J.A.Whiteman.Static restoration processes in warm rolled interstitial free steel[J].Materials Science and Technology,2002,18(8):885-891.
    [86]王昭东,何晓明,赵昆,张丕军,李白刚,刘相华,王国栋.Ti-IF钢铁素体区热变形行为研究和Zener-Hollomen参数方程的建立[J],材料科学与工艺,2000,8(4):6-10.
    [87]W.Bleck.Processing,properties and fabrication of ultra-low-carbon steels,ISS Continuing Education.Indianapolis,IN,1997:3.
    [88]A.Najafi-Zadeh,J.J.Jonas,S.Yue.Grain refinement by dynamic recrystallization during simulated warm-rolling of interstitial free steels[J].Metallurgical Transactions A,1992,23(9):2607-2617.
    [89]Y.Matsubara,N.Tsuji,Y.Saito.Dynamic recrystallization of ferrite in IF steel[A].In:T.Chandra,T.Sakai ed.,Proceedings of International Conference on Thermomechanical Processing of Steels and Other Materials[C].Warrendale,USA:TMS-AIME,1998:653-659.
    [90]P.R.Cetlin,S.Yue,J.J.Jonas.Simulated rod rolling of interstitial free steels[J].ISIJ International,1993,38(4):488-497.
    [91]M.R.Barnett.Carbon and the r Value of warm rolled and annealed strip[A].In:W.Bleck ed.,Proceedings of International Symposium on Modern LC and ULC Sheet Steels for Cold Forming: Processing and Properties[C].Aachen,Germany:Institute of Ferrous Metallurgy,1998:61-72.
    [92]V.Leroy,A.De Paepe,J.C.Herman.Ferritic hot rolling of thin gauge hot strips[A].In:W.Bleck ed.,Proceedings of International Symposium on Modern LC and ULC Sheet Steels for Cold Forming:Processing and Properties[C].Aachen,Germany:Institute of Ferrous Metallurgy,1998:51-60.
    [93]濑昭武秀,矢田浩,清永亮,成分对铁素体区热轧低碳薄板织构形成的影响[J],钢与铁,1989.
    [94]J.J.Jonas.Effect of shear band formation on texture development in warm-rolled IF steels[J].Journal of Materials Processing Technology,2001,117(3):293-299.
    [95]J.J.Jonas.Effects of dynamic strain aging,rate sensitivity and shear band formation on the annealing behavior of warm rolled LC and ULC steels[A].In:W.Bleck ed.,Proceedings of International Symposium on Modern LC and ULC Sheet Steels for Cold Forming:Processing and Properties[C].Aachen,Germany:Institute of Ferrous Metallurgy,1998:73-84.
    [96]冈本驾树,等.Mn和P对含Ti超低碳冷轧钢板再结晶织构的影响,超低碳汽车钢板,北京科技大学,1991:192-197.
    [97]王作成,王先进,朱学刚,凤佩华,王石杨.高强IF钢析出物的析出特征,[J].钢铁,1995,30(2):63-68.
    [98]大尺弘一,等.C与Cr、Si、P的组合对冷轧钢板的深冲性能影响,超低碳汽车钢板,北京科技大学,1991:239-247.
    [99]于凤云,铁素体区热轧高强IF钢微观组织及织构的研究[D],硕士学位论文,大连:大连理工大学.2006.
    [100]S.Satoh,et al.In:R.Pradhan ed.,Proceedings of the International symposium on Technology of Continuously Annealed Cold-Rolled Sheet Steel[C].Detroit,USA:TMS-AIME,1984:151-167.
    [101]S.Sanagi,T.Kawano,et al.Effect of hot rolling condition and chemical composition on mechanical properties of extra low carbon continuous annealed steel sheets[J].CAMP-ISIJ,1990,3:1768-1771.
    [102]S.Sanagi,et al.,Effect of Hot Rolling Condition on Sulfide Precipitation and Mechanical Properties of Extra Low Carbon Ti-bearing Cold Rolled Steel Sheets[J].CAMP-ISIJ,1989,2:2015.
    [103]M.P.Butron-Guillen,J.J.Jonas.Effect of finishing temperature on hot band textures in an IF steel[J].ISIJ International,1996,36(1):68-73.
    [104]M.R.Barnett,J.J.Jonas.Influence of ferrite rolling temperature on microstructure and texture in deformed low C and IF steels[J].ISIJ International,1997,37(7):697-705.
    [105]M.R.Barnett,J.J.Jonas.Influence of ferdte rolling temperature on grain size and texture in annealed low C and IF steels[J].ISIJ International,1997,37(7):706-714.
    [106]刘战英,周满春,王涛,刘相华,王国栋.IF钢铁素体区热轧工艺参数对深冲性能的影响[J].钢铁研究学报,2007,19(4):44-46.
    [107]T.Senuma,K.Kawasak.Texture formation in Ti-bearing IF steel sheets throughout the rolling and annealing processes in terms of the influence of hot rolling conditions on deep drawability[J].ISIJ International,1994,34(1):51-60.
    [108]S.Matsuoka,K.Sakata,S.Sotoh,T.Kato,Effect of hot-rolling strain rate in the ferrite region on the recrystallization texture of extra-low C sheets steels[J],ISIJ International,1994,34(1):77-84.
    [109]王作成,关小军,赵罕.多道次热轧温度及压下率对热轧IF钢深冲性能的影响[J],特殊钢,1999,20(3):21-23.
    [110]H.Zhao,S.C.Rama,G.C.Barber,et al.Experimental study of deep drawability of hot rolled IF steel[J].Journal of Materials Processing Technology,2002,128(1-3):73-79.
    [111]S.Matsuoka,M.Morita,O.Furukim,T,Obara,Effect of lubrication condition on recrystallization texture of ultra-low C sheet hot-rolled in ferrite region[J].ISIJ Intenrational,1998,33(6):633-639.
    [112]鹿岛高弘,铁素体区轧制时的润滑条件对超低碳钢加Ti冷轧钢板r值及织构的影响[J].武钢技术,1992,(8),59-66.
    [113]王作成,关小军,王先进.润滑条件对热轧IF钢的性能及组织的影响[J].钢铁,2000,35(11):44-46.
    [114]A.Tomitz,R.Kaspar.Ferritic rolling with additional annealing to produce a deep-drawable ultra-thin-gauge hot strip[J].Steel Research,2000,71:497-503.
    [115]A.Tomitz,R.Kaspar.Deep-drawable thin-gauge hot strip of steel as a substitution for cold strip[J].ISIJ International,2000,40(9):927-931.
    [116]王昭东,郭艳辉,田勇,赵忠,刘相华,王国栋.Ti-IF钢铁素体区热轧退火板的织构特 征和成形性能[J].钢铁研究学报,2006,18(7):35-38.
    [117]Z.Wang,Y.Guo,Z.Zhao,et al.Effect of processing condition on texture and drawability of a ferritic rolled and annealed interstitial-free steel.Journal of Iron and Steel Research International,2006,13(6):60-65.
    [118]H.Saitoh,K.Ushtoda,T.Senuma,et al.Structural and Textural Evolution during Subsequent Annealing of Steel Sheet Hot-Rolling in α Phase[A]In:I.Tamura ed.,Proceedings of the International Conference on Physical Metallurgy of Thermomechanical Processing of Steels and Other metals[C].Tokyo,Japan:Iron and Steel Institute of Japan,1988:628.
    [119]M.R.Barnett.Role of in-grain shear bands in the nucleation of<111>//ND recrystallization textures in warm rolling steel[J].ISIJ International,1998,38(1):78-85.
    [120]周玉,武高辉.材料分析测试技术-材料X射线衍射与电子显微分析[M].哈尔滨:哈尔滨工业大学出版社,1998:198-203.
    [121]陈世朴,等.金属电子显微分析[M].北京:机械工业出版社,1982.
    [122]张信钰.金属和合金的织构[M].北京:科学出版社,1976.
    [123]毛卫民,张新明.晶体材料织构定量分析[M],北京:冶金工业出版社,1995:61-89.
    [124]梁志德,徐家祯,王福.织构材料的三维取向分析术-ODF分析[M],沈阳:东北工学院出版社.1986:4-36.
    [125]H.J.Bnnge.Darstellung allgemeiner texture[J].Metallkunde.1965,56(3):872-881.
    [126]R.J.Roe.Description of crystallite orientation in polycrystalline materials[J].Journal of Applied Physics,1965,36(3):2024-2031.
    [127]刘庆,电子背散射衍射技术及其在材料科学中的应用,中国体视学与图像分析[J],2005,10(4):205-210.
    [128]杨平,EBSD技术在微织构分析中的应用[J],中国体视学与图像分析,2005,10(4):211-214
    [129]陈家光,李忠.电子背散射衍射在材料科学研究中的应用[J],理化检验-物理分册,2000,36(2):71-74.
    [130]D.Vanderschueern,N.Yoshinaga and K.Koyama.,Recrystallization of Ti-IF steel investigated with electron back-scattering pattern(EBSP)[J],ISIJ International,1996,36(8):1046-1054
    [131]D.A.Hughes.In:E.N.C.Dalder,T.Grobstein,C.S.Olsen ed.,Proceedings of the Evolution of Refractory Metals and Alloys[C].Warrendale,USA:TMS,1994:219-235.
    [132]沈汝美,陈名浩.含Ti、Nb无间隙原子钢中微量相的研究[J],钢铁研究学报,1994,6(2):71-76.
    [133]M.Hua,C.I.Garcial,A.J.DeArdo.Multi-phase precipitates in interstitial-free steels[J].Scripta Metallurgica et Materialia,1993,28(8):973-978.
    [134]M.Hua,C.I.Garicia,A.J.Deardo.The rational design of high performance ulrta-low carbon sheet steels[A].In:W.Bleck ed.,Proceedings of International Symposium on Modern LC and ULC Sheet Steels for Cold Forming:Processing and Properties[C].Aachen,Germany:Institute of Ferrous Metallurgy,1998:145-156.
    [135]N.Yoshinaga,et al.Precipitation behavior of sulfides in Ti-added ultra low-carbon steels in austenite[J].ISIJ International,1994,34(1):24-32.
    [136]N.Hashimoto,N.Yoshinaga and M.Suehiro.CAMP-ISIJ,1996,9:1346.
    [137]I.Baker,J.W.Martin.In:Proceedings of the 10th Int.Cong.on Electron Microscopy[C].Hamburg,Germany:1982:157
    [138]J.Hirsch,K.Lucke,M.Hatherly.Mechanism of deformation and development of rolling textures in polycrystalline F.C.C.metals-Ⅲ.The influence of slip inhomogeneities and twinning [J].Acta Metallurgica,1996,36(11):2905-2927.
    [139]G.H.Akbari,C.M.Sellars,J.A.Whiteman.Microstructural development during warm rolling of an IF steel[J].Acta Materialia,1997,45(12):5047-5058.
    [140]B.Bay,N.Hansen,D.A.Hughes,D.Kuhlmann-Wilsdorf.Evolution of F.C.C.deformation structures in polyslip[J].Acta Metallurgica et Materialia,1992,40(2):205-219.
    [141]K.Ushioda,H.Ohsoneand,M.Abe.In:Proceedings of the 6th International Conference on Texture of Materials[C].Tokyo,Japan:The Iron and Steel Institute of Japan,1981:829.
    [142]A.Haldar.Grain orientation dependence of microstructures in a warm rolled IF steel[J].Acta Materialia,2004,52:5405-5418.
    [143]A.Haldar.Microstructural and textural development in an extra low carbon steel during warm rolling[J].Materials Science and Engineering A,2005,391(1-2):402-407.
    [144]A.Okamoto,Mizui.Texture formation in ultra-low-carbon Ti-added cold-rolled sheet steel containing Mn and P[A].In:R.Pradhan ed.,Proceedings of the International Conference on Metallurgy of Vacuum-degassed Steel Products[C].Indianapolis,USA:TMS-AIME,1990: 161-180.
    [145]赵子苏,毛卫民,余永宁,王利.钛对高强IF钢第二相粒子析出规律和力学性能的影响[J].钢铁,2000,35(9):47-51.
    [146]M.Yamada,Y.Tokunaga,M.Yamamoto.Effect of Nb and Ti on resistant to cold-work embrittlement of extra-low-carbon high strength cold-rolled steel sheet containing phosphorus[J].Tetsu-to-Hagane/Journal of the Iron and Steel Institute of Japan(in Japanese),1987,73(8):133-140.
    [147]宋维锡.金属学[M].北京:冶金工业出版社,2000:157-158.
    [148]D.Daniel,J.J.Jonas.Measurement and prediction of plastic anisotropy in deep-drawing steels[J].Metallurgical and Materials Transactions A,1990,21(1):331-343.
    [149]S.S.葛列里克.金属和合金的再结晶[M],北京:机械工业出版社,1985.
    [150]毛卫民,赵新兵.金属的再结晶与晶粒长大[M],北京:冶金工业出版社,1994.
    [151]G.Ibe,K.Lucke et al.Canadian Metallurgical Quarterly,1974,13:267.
    [152]G.Kim,O.Kown,et al.Effect of friction on texture evolution in ferritic warm rolled IF steel [A].In:W.Bleck ed.,Proceedings of International Symposium on Modern LC and ULC Sheet Steels for Cold Forming:Processing and Properties[C].Aachen,Germany:Institute of Ferrous Metallurgy,1998:363-370.
    [153]S.Hashimoto,T Kashimoto,Effect of hot rolling in ferrite phase on r-value of cold rolled and annealed extra-low-carbon steel sheet[J],Kobelco Technology Review,1992,13:51-55.
    [154]刘国勋.金属学原理[M].北京:冶金工业出版社,1979:295-302.
    [155]李晋霞,IF钢冷变形及热处理工艺研究[D],博士学位论文,沈阳:东北大学,2002.
    [156]F.J.Humphreys,H.M.Chan.Discontinuous and continuous annealing phenomena in aluminium-nickel alloy[J].Materials Science and Technology,1996,12(2):143-148.
    [157]R.Pradham.In:T.Sakuma ed.,Proceedings of International Forum on Physical Metallurgy of IF Steels[C].Tokyo,Japan:The Iron and Steel Institute of Japan,1994:165-178.
    [158]P.Messien,T.Greday.Metallurgical Reports CRM,1976,49:3.
    [159]Y.Hayakawa,J.A.Szpunar.Modeling of texture development during recrystallization of interstitial free steel[J].Acta Matedalia,1997,45(6):2425-2434.
    [160]曹圣泉,无间隙原子(IF)钢晶界及织构的演变[D],博士学位论文,上海:上海交通大学,2005.
    [161] R. L. Every, M. Hatherly. Oriented nucleation in low-carbon steels [J]. Texture, 1974, 1(3): 183-194.
    
    [162] N. Rajmoban, Y. Hayakawa, J. A. Szpunar, J. H. Root Neutron diffraction method for stored energy measurement in interstitial free steel [J]. Acta Materialia, 1997, 45(6): 2215-2653.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700