用户名: 密码: 验证码:
微生物对煤的表面改性作用及浮选应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以从肥煤中筛选的煤源细菌黄单胞杆菌、实验室前期从褐煤中分离的胶红酵母及微生物表面改性中常用的草分枝杆菌为研究对象,考察了不同种类的微生物对煤的表面改性作用以及煤泥生物浮选的效果。首先研究了微生物菌体细胞在肥煤原煤表面的吸附,并以细胞在石英、高岭土、黄铁矿及浮选尾煤表面的吸附作为对照;通过分析微生物处理前后样品ζ电位和接触角的变化,证明了菌体细胞能够选择性吸附在煤粒表面,并不同程度地增大煤表面的ζ电位绝对值和接触角,有利于提高浮选的选择性;同时借助红外光谱分析、扫描电镜观察和吸附等温方程的构建,并结合DLVO理论,深入分析了微生物在煤表面的选择性吸附模式和作用机理;利用其选择性吸附和表面改性作用,将上述三种微生物的菌体细胞作为浮选药剂对不同煤质和粒度的原煤进行生物浮选,结果表明在一定细胞浓度和原煤粒度条件下,微生物能够促进煤泥浮选。微生物浮选药剂选择性好、作用力强、对细粒煤的作用效果显著,且环境友好,深入的研究和开发切实可行。
For the purpose of this paper, surface modification of microbial adhesion on coal surface and coal bio-flotation effects were researched. Bacteria Xanthomonas hortorum which was newly separated from fat coal, lignite-source Yeast Rhodotorula mucilaginosa and a in-depth studied actinomyce in bio-mineral processing Mycobacterium phlei were chosen as research objects. First, the adhesion of three different kinds of microorganisms on raw coal surface were through researched; respective studies of bio-adhesion of typical coal gangue minerals and flotation tailing were performed, the changes of ξ potential and contact angel of minerals after microbial treatment proved that microbes had different surface modification abilities to minerals, their adhesion on coal surface were selective and stronger than others, the adhesion enlarged ξ potential and contact angel of coal suface and was able to improve the selectivity in flotation process. Infrared spectrum analysis, scanning electron microscope test and adsorption isotherm equation simulation as well as DLVO theory were used to analyze the mechanism. Based on their remarkable surface modification abilities, microorganisms were used as bio-reagents in coal flotation; the effects of different coal types and particle size distributions were compared. According to their high efficiency, good selectivity, remarkable effects for fine particle and nontoxic properties, further research and application of microbial flotation reagents are feasible.
引文
1.江泽民.对中国能源问题的思考[J].上海交通大学学报,2008,03:345-359.
    2.国家能源局.国家能源科技“十二五”规划[R],2012.
    3. BP. BP Statistical Review of World Energy,2013[R]. http://bp. com/statisticalreview.2013.
    4. Organization for Economic Co-operation and Development (OECD), Cleaner Coal in China [M],2006.
    5.国家能源局.煤炭工业发展“十二五”规划[R],2011.
    6. IEA. Coal Information 2010 [R],2010.
    7.刘峰.我国跨世纪选煤科学技术的发展[J].选煤技术,1999,(1):1-6
    8. Union of Concerned Scientists. Coal vs. Wind[R]. Retrieved 2008-12-30.
    9.国务院.大气污染防治行动计划[R],2013.
    10.王建设,陈仲元,李惠民,等.煤炭综合利用系统分析与评价[J].发展论坛,2006,4:38-39.
    11.刘炯天.关于我国煤炭能源低碳发展的思考[J].中国矿业大学学报(社会科学版),2011,1:5-12.
    12.陈清如.中国洁净煤战略思考[J].黑龙江科技学院学报,2004,15(5):261~264.
    13.闫继宏,王鹏,赵书慧等.对细粒煤分选技术的见解[J].煤质技术,2010,(01):52~53.
    14.程敢,徐宏祥,贾凯等.细粒煤分选技术与设备的发展[J].矿山机械,2012,08:1-6.
    15.王丹,王吉祥.提高细粒煤分选回收的策略研究[J].煤炭加工与综合利用,2012,05:6~8+65.
    16.宋书宇,赵磊,吴广玲等.螺旋分选机分选细粒煤的试验研究[J].选煤技术,2012,06:56~58.
    17.谢广元.选矿学[M].徐州:中国矿业大学出版社,2001.
    18.杨久流.微细粒矿物分选技术[J].国外金属矿选矿,2005(8):117~119.
    19.翟爱峰,刘炯天,张敏等.充填介质在矿物浮选柱中的应用研究[J].矿山机械,2008,13:87~90.
    20.刘炯天,王永田,曹亦俊等.浮选柱技术的研究现状及发展趋势[J].选煤技术,2006,05:25~29+91~92.
    21.程敢,曹亦俊,徐宏祥.浮选柱技术及设备的发展[J].选煤技术,2011(1):66~69.
    22.邱冠周,伍喜庆,王毓华等,近年浮选进展[J].金属矿山,2006,01:41-52.
    23.李振,刘炯天,王永田等,浮选技术的发展现状及展望[J].金属矿山,2008,01:1-6.
    24.赵培培,曹亦俊.细粒矿物浮选技术和高效浮选柱研究进展[J].金属矿山,2011,12:78~81.
    25.郭梦熊.浮选[M].中国矿业大学出版社.1989.
    26.王淀佐.浮选理论的新进展[M].北京,科学出版社,1992.
    27. Cao X F, Liu C M, Hu Y H. Research on the Relationship of Three Amine Collector's Structure and Their Flotation Performances on Three Aluminosilicate[C]. Proceedings of XXIV, Beijing. IMPC,2008,1513-1517.
    28. Makanza AT, Vermaak MKG, Davidtz JC. The flotation of auriferous pyrite with a mixture of collectors[J]. International Journal of Mineral Processing,2008,86:85-93.
    29.杨慧芬,张强,王化军.微生物选矿药剂的应用研究现状及发展方向[J].矿产综合利用,2001.1:32~35.
    30. Miettinen, R., Ra"tto',M., Leppinen, J., Smith, R.W.,2003a. Biobeneficiation with bacteria, Internal report, VTT, Outokumpu, Finland.
    31. Miettinen, R., Ra'tto", M., Leppinen, J., Smith, R. W.,2003b. Flocculation of apatite, calcite and quartz using bacteria, Internal report, VTT, Outokumpu, Finland.
    32. Ross W. Smith, Mauno Miettinen. Microorganisms in flotation and flocculation:Future technology or laboratory curiosity? [J]. Minerals Engineering,2006,19:548-553.
    33. Subramanian S, Santhiya D, Natarajan K A. Surface modification studies on sulfide minerals using bio-reagents [J]. Miner Process,2003,72:175-188
    34. Gary J H, Fled I L, Davis E G. Chemical and physical beneficiation of Florida phosphate slimes[M]. U.S. Dept. of the Interior, Bureau of Mines,1963.
    35. VijayalakshmI S P, Raichur A M. The utility of bacillus subtilisas a bioflocculant for fine coal [J]. Colloids and Surfaces:B,2003,29:265-275
    36. Schneider I AH, Misra M, Smith R W. Bioflocculation of fine mineral suspensions by Candida Parapsilosis and its sonication products[J]. Reagents for Better Metallurgy.1994.
    37.周德庆.微生物学教程(第二版)[M].高等教育出版社,2002
    38.李安,李宏煦,郭云驰,王琳.生物选矿的基本理论及研究进展[J].金属矿山,2010,06:109~113+122
    39.蒋鸿辉,王琨.生物选矿的应用研究现状及发展方向[J].中国矿业,2005,09:76~78.
    40.K.A.马提斯.金属离子吸附浮选回收[J].国外金属矿选矿,2004
    41.王建龙,韩英健,钱易.微生物吸附金属离子的研究进展[J].微生物学报,2000,27(6):449~45.
    42. K. A. Matis, Flotation Science and Engineering[M], Marcel Dekker, Inc. New York,1995
    43. A. I. Zouboulis, K. A. Matis, Hydrophobicity in biosorptive flotation for metal ion removal [J], Intenational Journal of Environmental Technology and Management 2010,01,12.4.
    44.A.1.佐布利斯等.应用生物表面活性剂浮选除去金属离子[J].国外金属矿选矿,2004.
    45. Liu YY, Fu JK. Studies on biosorption of Pd2+ by bacteria[J]. Acta Microbiol Sin,2000,40(5): 536-539.
    46. Kuyucak N, Volesky B. Accumulation of cobalt by marinealga[J]. Biotechnol Bioeng 1989; 33(7):809-14.
    47. J Misra M, Smith R W, Dubel J, et.al. Biofloculation of finely divided minerals[J]. Bioproeessing, Minerals Engineering,1991,(5):90-103.
    48. Smith R W, Misra M. Mineral Bioprocessing. War-rend ale:The Minerals, Metals and Materials Society,1991:91-103.
    49. Misra M, Chen S, Smith R W, et al. Mycobacterium phlei as a flotation collector for hematite [J]. Miner Metall Process,1993 (10):170-174.
    50. Schneider IAH, Misra M, Smith R W. Bioflocculation of fine mineral suspensions by Candida Parapsilosis and its sonication products[J]/Mulukutla P S. Reagents for Better Metallurgy. Dearborn SME,1994:2933-01.
    51. Schneider IA H, Misra M, Smith R W. Bioflocculation of hematite suspensions with products from yeast cell rupture[J]. Devel Chem EngM in Process,1994(4):248-252.
    52. Raichur A M, Misra M, Bukka K, et al. Flocculation and flotation of coal by adhesion of hydrophobic Mycobacterium phlei[J]. Coll Surf:B,1996 (8):13-24.
    53. Partha Patra, Natarajan K A. Microbially induced flocculation and flotation for pyrite separation from oxide gangue minerals[J]. Miner Eng,2003,16:965-973.
    54. Partha Patra, Natarajan K A. Microbially induced flocculation and flotation for separation of chalcopyrite from quartz and calcite [J]. Miner Process,2004,74:143-155.
    55. Partha Patra, Natarajan K A. Microbially induced flocculation and flotation of pyrite and sphalerite [J]. Colloids and Surfaces:B,2004,36:91-99.
    56. Haas S R, Nascimen to F R, Schneider IA H, et al. Flocculation of fine fluorite particles with Corynebacterium xerosis[J]. Revista de'Microbiologia,1999,30:225-230.
    57. Haas S R, Nascimento F R, Schneider IA H. Flocculation of fine calcite particles with Corynebacterium xerosis[C]/Proceedings of the XXI Int Miner Process Congr:Vol A. Rome: [sn],2000:57-61.
    58. Subramanian S, Santhiya D, Natarajan K A. Surface modification studies on sulfide minerals using bio-reagents [J]. Miner Process,2003,72:175-188.
    59. Dubel J, Smith R W, Misra M, et al. Microorganisms as chemical reagents:the hematite system [J]. Minerals Engineering,1992,3(5):547-556.
    60. Smith R W, Misra M, Chen S. Adsorption of a hydrophobic bacterium on to hematite: Implications in the froth flotation of hematite [J]. Industrial Microbiology,1993,11(2):63-67.
    61. Zheng X, Smith R W, Mehta R K, et al. Anionic flotation of apatite from dolomite modified by the presence of bacteria [J]. Miner Metal Process,1998,15:52-56.
    62. Solojenken PM, Lyubavina L L, Larin V K, et al. A new collector in non-sulfide ore flotation [J]. Bullet in Nonferrous Metal,1976,16:21-31.
    63. Anal Elisa, Casas Botero, et al. Fundamental studies of Rhodococcus opacus as a biocollector of calcite and magnesite [J]. Minerals Engineering,2007,20:1026-1032.
    64. Atkins A S, Bridgewood E W, Davis A J. A study of the suppression of pyritic sulfur in coal flotation by Thiobacillus ferroox id ans [J]. Coal Prep,1987(5):1-13.
    65. Townsley C C, Atkins A S, Davis A J. Suppression of pyrite sulfurduring flotation by Thiobacillus ferrooxidans [J]. Biotech Bioeng,1987,30:1-8.
    66. Vogt N V, Gock E, S and W. Sulfide ore flotation with extracellular polymeric substances(EPS) as biological depressant reagents[C]/Lorenzen L, Bradshaw D J. Proceedings of the 22nd International Mineral Processing Congress:Vol 2. Cape Town:[s.n],2003:997-1006
    67. VijayalakshmI S P, Raichur A M. The utility of bacillus subtilis as a bioflocculant for fine coal [J]. Colloids and Surfaces:B,2003,29:265-275.
    68. Vijayalakshmi, S. P., Raichur, A. M.,2002. Bioflocculation of high-ash Indian coals using Paenibacillus polymyxa[J]. Int. J. Miner. Process.67:199-210.
    69.张东晨,张明旭,陈清如,等.疏水性微生物对细粒煤的絮凝试验研究[J].洁净煤技术.2006,12(2):20~22.
    70.吴学凤,张东晨,陈章宝.白腐真菌作为煤用微生物絮凝剂的试验研究[J].选煤技术.2006.1:10~13.
    71.于进喜.煤系黄铁矿的理化特性分析及其浮选抑制剂研究[D].中国矿业大学(北京),2013.
    72. Clomer A R, Hinkle M E. The role of microorganisms in acid mine drainage:a preliminary report[J]. Science,1947,106:253-256.
    73. Kargi F. Enhancement of microbial removal of pyritic sulfur from coal using concentrated cell suspension of A. ferrooxidans and an external carbon dioxide supply[J]. Bioengineering,1982, 24:749-752.
    74. Monticella D J, Finnerty W R. Microbial desulfurization of fossil fuels[J]. Microbiology,1985, 37:371-389.
    75. Olson G J, Brinckmann F E. Bioprocessing of coal [J]. Fuel,1986,65:1638-1646.
    76. Klein J, Beyer M, Afferden M, et al. Coal in biotechnology[J]. Biotechnology,1988,6: 497-567.
    77. Kitae Baek, Chung-Sik Kim, Hyun-Ho Lee, et. al. Microbial desulfurization of solubilized coal[J]. Biotechnology Letters,2002,24:401-405.
    78.张东晨,张明旭,陈清如,李庆,吴学凤.草分枝杆菌选择性絮凝脱除煤中黄铁矿硫的研究[J].煤炭学报,2004,29(5):585~589.
    79.周长春,陶秀祥,刘炯天.红假单胞菌浮选脱硫影响因素研究[J].煤炭转化,2005,28(3):35~38.
    80.张明旭,孙剑峰.球红假单胞菌用于煤炭生物浸出脱硫的研究[J].选煤技术,2009,(4):6-11.
    81.张东晨.煤炭脱硫微生物菌种选育及脱除煤中黄铁矿硫的研究[D].徐州:中国矿业大学博士学位论文,2004.
    82.陶秀祥,巩冠群,文杨明,骆振福,陈巍.煤炭脱硫微生物生长代谢的电化学调控[J].中国矿业大学学报,2005,34(6):698~702.
    83. Henry Lutz Ehrlich, Dianne K. Newman. Geomicrobiology, Fifth Edition[M], CRC Press,2008.
    84.杨履渭.微生物学及检验技术[M].广州:广东科学技术出版社,1992.4.
    85.布坎南R E,吉本斯N E.伯杰细菌鉴定手册(第8版)[M].北京:科学出版社,1984.
    86.张纪忠.微生物分类学[M].上海:复旦大学出版社,1990.
    87. Koburger, J. A. Microbiology of coal:growth of bacteria in plain and oxidised coal slurries, 39th Annu. Session West Virginia Acad. Sci., Proc. West Virginia Acad. Sci.36,26-30.
    88. J C. Radway, J. H. Tuttle, NJ Fendinger et. al.. Microbially Mediated Leaching of Low-Sulfur Coal in Experimental Coal Columns. Appl Environ Microbiol 53:1056-1063.
    89.李卫旗,姚恕.黄原胶发酵生产工艺研究[J].杭州大学学报,1996,24(3):280~284.
    90.王永宏,张兴XenoRhabdus nematophila YL001部养基筛选和培养条件优化[J],生物工程通报,2006(03).
    91. Baron S, Salton MRJ, Kim KS. "Structure". In Baron S et al.. Baron's Medical Microbiology (4th ed.). Univ of Texas Medical Branch. ISBN 0-9631172-1-1. PMID 21413343.
    92.王立艳,王中奇,陈瑜,朱书全,吴鹏.褐煤微生物对细粒煤的表面改性作用[J].选煤技术,2012,04:10~14.
    93.张明旭,单忠健.煤炭微生物脱硫新技术—细菌表面改性预处理[J].中国煤炭,1997,02:30~34+56.
    94. H. Helmholtz, "Ueber einige Gesetze der Vertheilung elektrischer Strome in korperlichen Leitern mit Anwendung auf die thierisch-elektrischen Versuche" (in German), Annalen der Physik und Chemie 165 (6):(1853) pp.211-233.
    95.蔡璋.浮游选煤与选矿[M].北京:煤炭工业出版社.1991.
    96.单忠健.煤炭洗选环境工程[M].北京:煤炭工业出版社,1986,261~262.
    97.D.C.Grahame.The electrical double layer and the theory of electrocapillarity[J],Chem.Rev., 1947(41):441-503.
    98.Stern,O.Zur.Theorie Der Elektrolytischen Doppelschicht(the theory of the electrolytic double-layer)[J].Z.Electrochem.1924(30),508-516.
    99.王立艳,朱书全,卢瑶等.煤炭中胶红酵母的分离及对煤的表面改性作用[J].煤炭学报, 2012,S2:478-484.
    100.贾春云.微生物在硫化物矿物表面的选择性吸附[D].东北大学,2008.
    101.王立艳.褐煤中微生物筛选及胶红酵母对细粒煤的表面改性作用[D].中国矿业大学(北京),2012.
    102.Natarajan,K.A.,Namita Deo.Role ofbacterial interaction and bioreagents in iron ore flotation, International Journal of Mineral Processing.2001,62(1-4),143-157.
    103.盛艳玲,张强,王化军.微生物絮凝剂絮凝铝土矿和石英的比较研究[J].金属矿山,2006,10:31-33+40.
    104.杨慧芬,张强.草分枝杆菌与赤铁矿和石英间的作用力分析[J].金属矿山,2006,04:15~18.
    105.李海普.改性高分子药剂对铝硅矿物浮选作用机理及其结构—性能研究[D].中南大学,2002.
    106.Rand B,Melton I.E.Particle interactions in aqueous kaolinite suspcnsions.Journal of Colloid and Interface Science,1977,60(2):308-320.
    107.卢瑶.煤用微生物絮凝剂的开发及应用研究[D],中国矿业大学(北京),2011.
    108.梁海军,魏德洲.氧化亚铁硫杆菌抑制黄铁矿可浮性作用机理[J].东北大学学报(自然科学版),2009,10:1493~1496.
    109.贾春云;李培军;魏德洲等.微生物在矿物表面吸附的研究进展,《微生物学通报》2012,04~20.
    110.张兴,肖雷,王永志.3种细菌对煤中黄铁矿抑制作用的研究[J].中国矿业大学学报,2001,06:78~81.
    111.王军,钟康年,译.细菌对硫化矿可浮性影响的研究.国外金属矿选矿,1996(5):4-10.
    112.David R.Lide.CRC Hand book of Chemistry and Physics[M],NewYork:CRC Press, 1999-2000.
    113.M Misra,R W Smith.Biofloculation of minerals[J].Mineral Bioprocessing,1991,3:91-104.
    114.刘金艳.氧化亚铁硫杆菌优化培养及其煤炭生物脱硫的界面作用研究[D].中国矿业大学,2010.
    115.Peter Larkin,Infrared and Raman Spectroscopy;Principles and Spectral Interpretation[M], Elsevier.2011.
    116.朱银惠,王中慧.煤化学[M],化学工业出版社,169~177.
    117.徐宝成,刘建学,易军鹏等.红外光谱技术在微生物研究中的应用进展[J].中国酿造,2007,3:8-10.
    118.Naumann D,Helm D, Labischinski H. Microbiological Characterizations by FT-IR Spectroscopy[J].Nature.1991.351:81-82.
    119.吴海.傅立叶变换红外光谱技术对微生物研究的探索实验[J].中国资源综合利用,2009, 5:23~25.
    120.慈云祥,臧凯赛,高体玉.几种微生物的红外光谱研究[J].高等学校化学学报,2002,06:1047~1049.
    121.胡纪华,杨兆禧等.胶体与界面化学[M],华南理工大学出版社,151~154.
    122.黄波,界面分选技术[M],煤炭工业出版社,2004.
    123.李宏煦.硫化矿细菌浸出过程的电化学机理及工艺研究[D].长沙:中南大学博士学位论文,2001.
    124. Lesia Harahuc. Control of iron and sulfur oxidation activities of Thiobacillus ferrooxidans and bacterial leaching of metals from sulfide ores[J]. Manitoba, Canada:University of Manitoba doctor thesis,2000.
    125. Crundwell F. The formation of biofilms of iron-oxidising bacteria on pyrite[J]. Mineral Engineering,1996,9:1081-1089.
    126. Hall-Stoodley L, Costerton JW, Stoodley P. Bacterial biofilms:from the natural environment to infectious diseases. Nature Reviews Microbiology 2 (2):95-108.2004.
    127. Lear, G; Lewis, GD (editor). Microbial Biofilms:Current Research and Applications[M]. Caister Academic Press.2012.
    128.Katsutoshi Hori, Shinya Matsumoto, Bacterial adhesion:From mechanism to control[J], Biochemical Engineering Journal,2010,48,3,424.
    129.周长春,陶秀祥,刘炯天.红假单胞菌在煤系黄铁矿表面吸附量的测定[J].中国矿业大学学报,2007,0 1:81~84+90.
    130. C. J. Van Oss, Hydrophobicity of biosurfaces origin, quantitative determination and interaction energies, Colloids Surf. B 5 (1995) 91-110.
    131. Marshall K C. Interfaces in Microbial Ecology[M].Cambridge:Harvard University Press, 1976.
    132.邱冠周,胡岳华,王淀佐.颗粒间相互作用与细粒浮选[M].湖南:中南工业大学出版社,1993:26~119.
    133.胡岳华、邱冠周、王淀佐,细粒浮选体系中扩展的DLVO理论及应用[J],中南矿冶学院学报,1994,25(3):310~314.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700