用户名: 密码: 验证码:
食管鳞状细胞癌差异甲基化片段的筛选及相关基因的鉴定
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
食管癌是世界上最常见的10种恶性肿瘤之一,全世界每年约有41万新发病例并且大多发生于发展中国家,同时每年约有33万人死于食管癌。我国是食管癌的高发地区,食管癌占据恶性肿瘤发病率的第6位,死亡率为第4位。每年因食管癌死亡者约15万人,占全部恶性肿瘤死亡的15%左右。食管癌死亡率高的原因在于很难早期诊断,而早期食管癌患者预后较好,经治疗后5年生存率可达到90%以上;晚期患者预后很差,5年生存率仪为10%左右。因此,进一步深入研究食管癌的发病机理,发现新的早期诊断肿瘤标志物和发展新的治疗措施对于食管癌的防治十分重要。食管癌的发生与多种因素有关,外界环境因素的长期刺激在食管癌的发生发展过程中具有重要地位。近年来对肿瘤表观遗传学如基因启动子区的甲基化的研究发现,肿瘤相关基因的甲基化常常是肿瘤发生过程中的一个早期事件,是对外界环境长期刺激发生的早期而稳定的变化,肿瘤特异的甲基化基因多为细胞发育和代谢过程中某些通路的重要基因,并且这些基因的表观沉默可以被某些药物逆转。与其他肿瘤的研究相比,对食管鳞状细胞癌相关基因甲基化的研究比较少,有很大的研究空间。囚此,寻找和研究食管鳞状细胞癌相关的甲基化基因,在阐明肿瘤的发生机制、预测肿瘤的发生发展和肿瘤的治疗方面具有重要的研究意义和应用前景。
     研究目的:
     寻找食管鳞状细胞癌相关的异常甲基化的基因,并对筛选到的基因在肿瘤发生过程中的作用机制进行研究,为进一步研究食管鳞状细胞癌的早期诊断和治疗奠定基础。
     研究方法:
     首先利用甲基化敏感随机扩增PCR(methylation-sensitive AP-PCR,MS AP-PCR)技术,对部分食管鳞状细胞癌肿瘤组织和配对的癌旁组织进行筛选差异甲基化片段,克隆测序后进行生物信息学分析。利用亚硫酸盐修饰后基因组测序、RT-PCR和实时荧光定量PCR技术对筛选到的有意义的片段在肿瘤组织和细胞系中进行研究,分析这些片段在肿瘤发生发展中的意义。
     结果:
     1.食管鳞状细胞癌差异甲基化片段的筛选
     应用MS AP-PCR技术对食管鳞状细胞癌肿瘤组织和配对的癌旁组织进行全基因组甲基化分析,获得了食管鳞状细胞癌的甲基化差异图谱。最终筛选到12个差异表达的高甲基化片段(hypermethylated DNA fragments,HMDF),7个片段符合CpG岛特征。在符合CpG岛特征的片段中有5个定位于已知基因5′区域。生物信息学分析表明这7个片段均含有许多转录因子结合位点。
     2.食管鳞状细胞痛中差异甲基化片断的进一步鉴定和分析
     2.1启动子区呈异常高甲基化的基因
     2.1.1 TPEF基因的异常甲基化
     对22例食管癌患者进行了基因组和表达水平的检测,发现22例患者中有12例患者的肿瘤中发生了TPEF基因启动子区的高甲基化(54.5%),并伴随着表达的下调。细胞系实验发现在加入去甲基化药物5′-AZA作用后,随着启动子区甲基化水平的降低,TPEF基因的表达有明显的表达回复。
     2.1.2 EDNRB基因的异常甲基化
     对21例食管癌患者进行了基因组和表达水平的检测,发现21例患者中有5例肿瘤组织中发生了EDNRB基因启动子区的高甲基化(23.8%),并伴随着表达的下调。细胞系实验发现在加入去甲基化药物5′-AZA作用后,EDNRB基因启动子区甲基化水平降低,并伴有EDNRB基因明显的表达回复。
     2.2.长片断甲基化区域在食管鳞状细胞癌中的初步研究
     发现高甲基化片段HMDF3(EDNRB)和HMDF12均定位于染色体13q22.3,中间区域长约1.5M,含有多个参与重要功能代谢的基因。细胞系实验表明,经去甲基化药物处理后一定程度上恢复了该区域内的大部分基因表达。
     结论:
     本论文应用MS AP-PCR的方法对食管鳞状细胞癌进行了全基因组甲基化分析,获得特异的DNA甲基化差异图谱,筛选到一些具有重要意义的片段。首次报道了TPEF基因与EDNRB基因的启动子区在食管鳞状细胞癌中呈异常高甲基化状态,从而影响了该基因的正常表达。此外首次对食管鳞状细胞癌中一个长片段区域的甲基化状态进行了研究。
Esophageal carcinoma is one of the 10 most common malignant tumors in human, which accounts for 1.2 million new cases worldwide annually and most of them occurred in developmenting countries, meanwhile it claims about 330,000 lives worldwide each year. In China, esophageal cancer is the sixth most common cancer; meanwhile, it ranks as the fourth leading cause of cancer-related death, accounting for 150,000 deaths per year. The difficulty of early diagnosis contribute largely to the high mortality of esophageal cancer, for example, patients with early-stage esophageal cancer always have a good clinical outcome, whereas the overall 5-year survival is only about 10% in the late or advanced stage of ESCC. Therefore, further researches of screening new marker for early detection and developing new cancer treatment remain the best hope for a cure. Many factors were involved in the development of esophageal carcinoma, among them environment stimulus has been proved to be a high risk factor. During recent years, there has been a growing interest in the role of epigenetic changes in carcinogenesis, especially DNA cytosine methylation in gene promoter regions, which was the relatively early and stable reaction to long-term environment stimulus, therefore DNA methylation may be of great value in tumor early detection. Except that, as the methylated genes always play important factors in cell development and regulation and the epigenetic silencing can more or less be reversed by drug treatment, study of epigenetic modification shed light on new field in tumor therapy. Compared with numerous studies in other tumor types, it is being in the primary stage for ESCC epigenetic modification. Therefore, screening ESCC-related hypermethylated fragments and exploring their functions in tumorigenesis will significantly contribute to the further studies of tumor molecular mechanism, early detection measures and novel effective therapies.
     Objects: To screen novel tumor-related genes being aberrantly hypermethylated and study functions of those genes in the progression of ESCC, then go further to provide basement in the further research of early detection and effective therapeutic strategies in ESCC.
     Methods: Firstly, differentially methylated CpG islands were identified between several paired ESCC tumors and normal tissues by methylation-sensitive AP-PCR (MS AP-PCR) method, which were visualized as bands in the electrophoresis gels after silver staining, and then those fragments screened were isolated and subjected to bioinformatic analysis. Subsequently, the functions of those meaningful fragments were, in ESCC tumor tissues and cell lines, investigated with several methods including bisulfite-sequencing PCR(BSP), RT-PCR and Quantitative real time PCR (QRT-PCR), to explore their potential roles in the Carcinogenesis and Progression of ESCC.
     Result:
     (1) Identification of differentially methylated DNA fragments in ESCC
     Differently methylated maps of ESCC were obtained by screening paired tissues with genome-wide methylation analysis method. Twelve hypermethylated DNA fragments (HMDF) were identified, and seven of them containing the GC-rich sequences conformed to the minimal criteria that define CpG islands. Within those seven fragments containing CpG islands, five of them were located in the 5' region of known genes; meanwhile, all of them contain several transcript factor binding sites.
     (2) Further studies of meaningful fragments identified in ESCC
     2.1. Aberrant methylation of several corresponding genes in ESCC
     2.1.1 Aberrant promoter methylation of the TPEF gene
     Methylation status of TPEF gene promoter and expressions of TPEF transcript were detected in 22 ESCC samples, in which 12 (54.5%) of 22 ESCC tumors exhibited TPEF promoter hypermethylation accompanied by reduced expressions when compared with matched adjacent normal tissues. Studies on ESCC cell lines showed decreased methylation status of TPEF gene promoter and restored expressions of TPEF mRNA after treatment with the demethylating agent.
     2.1.2 Aberrant promoter methylation of the EDNRB gene
     Methylation status of EDNRB gene promoter and expressions of EDNRB transcripts were detected in 21 ESCC samples, in which 5 (23.8%) of 21 ESCC tumors exhibited EDNRB promoter hypermethylation and reduced expression occurred compared with matched adjacent normal tissues. Studies on ESCC cell lines showed decreased methylation status of EDNRB gene promoter and increased expression levels of EDNRB mRNA after treatment with the demethylating agent.
     2.2 The preliminary study of a large region being methylated in ESCC
     An interesting result was that two HMDFs (HMDF 12 and HMDF3) are both located at chromosome 13q22.3, the regions between them spanned about 1.5Mb and contained several important genes. Studies on ESCC cell lines showed that the mRNA levels of almost all genes located at the region were increased in different degrees after treatment with the demethylating agent.
     Conclusions:
     In our study, ESCC special genome-wide different DNA methylation profiles and meaningful hypermethyled fragments were obtained by MS AP-PCR, and it was the first report about aberrant hypermethylation of TPEF and EDNRB genes in ESCC. Meanwhile, we firstly explored a large hypermethylated region in ESCC, genes located in which were epigenetic silenced and mRNA expressions could be restored by treatment with the demethylating agent.
引文
1 Society AC. [Cancer Facts ans Figures 2007]. 2007.
    
    2 Parkin DM, Bray F, Ferlay J, Pisani P. Global cancer statistics, 2002. CA: a cancer journal for clinicians 2005; 55(2): 74-108.
    
    3 Chen J, Sankaranrayanan R, Li W. [Population-based survival analysis of primary liver cancer in a high-incidence area-Qidong, China during 1972-1991]. Zhonghua yu fang yi xue za zhi [Chinese journal of preventive medicine] 1997; 31(3): 149-52.
    
    4 Pisani P, Parkin DM, Bray F, Ferlay J. Estimates of the worldwide mortality from 25 cancers in 1990.International journal of cancer 1999; 83(1): 18-29.
    
    5 Vizcaino AP, Moreno V, Lambert R, Parkin DM. Time trends incidence of both major histologic types of esophageal carcinomas in selected countries, 1973-1995. International journal of cancer 2002; 99(6):860-8.
    
    6 Nasseri-Moghaddam S, Malekzadeh R. Esophageal and cardia cancers summit: report of the first meeting. Archives of Iranian medicine 2006; 9(4): 442-9.
    
    7 Layke JC, Lopez PP. Esophageal cancer: a review and update. American family physician 2006;73(12): 2187-94.
    
    8 Liu BQ, Jiang JM, Chen ZM, et al. [Relationship between smoking and risk of esophageal cancer in 103 areas in China: a large-scale case-control study incorporated into a nationwide survey of mortality].Zhonghua yi xue za zhi 2006; 86(6): 380-5.
    
    9 Jiang JM, Zeng XJ, Chen JS, et al. Smoking and mortality from esophageal cancer in China: a large case-control study of 19,734 male esophageal cancer deaths and 104,846 living spouse controls.International journal of cancer 2006; 119(6): 1427-32.
    
    10 Kanavos P. The rising burden of cancer in the developing world. Ann Oncol 2006; 17 Suppl 8:viiil5-viii23.
    
    11 Matsuo K, Hamajima N, Shinoda M, et al. Gene-environment interaction between an aldehyde dehydrogenase-2 (ALDH2) polymorphism and alcohol consumption for the risk of esophageal cancer.Carcinogenesis 2001; 22(6): 913-6.
    
    12 Yu HP, Zhang XY, Wang XL, et al. DNA repair gene XRCC1 polymorphisms, smoking, and esophageai cancer risk. Cancer detection and prevention 2004; 28(3): 194-9.
    
    13 Wang AH, Sun CS, Li LS, Huang JY, Chen QS, Xu DZ. Genetic susceptibility and environmental factors of esophageal cancer in Xi'an. World J Gastroenterol 2004; 10(7): 940-4.
    
    14 Macaluso M, Paggi MG, Giordano A. Genetic and epigenetic alterations as hallmarks of the intricate road to cancer. Oncogene 2003; 22(42): 6472-8.
    
    15 Ahmed FE. Colorectal cancer epigenetics: the role of environmental factors and the search for molecular biomarkers. Journal of environmental science and health 2007; 25(2): 101-54.
    
    16 An JY, Fan ZM, Zhuang ZH, et al. Proteomic analysis of blood level of proteins before and after operation in patients with esophageal squamous cell carcinoma at high-incidence area in Henan Province.World J Gastroenterol 2004; 10(22): 3365-8.
    
    17 Kim JH, Chung HS, Youn YH, et al. Treatment outcomes of 70 cases of early esophageal carcinoma: 12 years of experience. Dis Esophagus 2007; 20(4): 297-300.
    
    18 Du Plessis L, Dietzsch E, Van Gele M, et al. Mapping of novel regions of DNA gain and loss by comparative genomic hybridization in esophageal carcinoma in the Black and Colored populations of South Africa. Cancer research 1999; 59(8): 1877-83.
    19 Lehrbach DM, Nita ME, Cecconello I. Molecular aspects of esophagcal squamous cell carcinoma carcinogenesis. Arquivos de gastroenterologia 2003; 40(4): 256-61.
    
    20 Ito S, Ohga T, Saeki H, et al. p53 mutation profiling of multiple esophageal carcinoma using laser capture microdissection to demonstrate field carcinogenesis. International journal of cancer 2005; 113(1):22-8.
    
    21 Hirasaki S, Noguchi T, Mimori K, et al. BAC clones related to prognosis in patients with esophageal squamous carcinoma: an array comparative genomic hybridization study. The oncologist 2007; 12(4):406-17.
    
    22 Jones PA, Takai D. The role of DNA methylation in mammalian epigenetics. Science 2001; 293(5532):1068-70.
    
    23 Esteller M. Relevance of DNA methylation in the management of cancer. The lancet oncology 2003;4(6): 351-8.
    
    24 Laird PW. Cancer epigenetics. Human molecular genetics 2005; 14 Spec No 1: R65-76.
    
    25 Mulero-Navarro S, Esteller M. Epigenetic biomarkers for human cancer: The time is now. Critical reviews in oncology/hematology 2008.
    
    26 Kern I, Rossier MF, Chappuis PO. [Epigenetics and cancer]. Revue medicale suisse 2007; 3(100):540-2,4-5.
    
    27 Gronbaek K, Hother C, Jones PA. Epigenetic changes in cancer. Apmis 2007; 115(10): 1039-59.
    
    28 Nelson WG, Yegnasubramanian S, Agoston AT, et al. Abnormal DNA methylation, epigenetics, and prostate cancer. Front Biosci 2007; 12: 4254-66.
    
    29 Metivier R, Gallais R, Tiffoche C, et al. Cyclical DNA methylation of a transcriptionally active promoter. Nature 2008; 452(7183): 45-50.
    
    30 Weidman JR, Dolinoy DC, Murphy SK, Jirtle RL. Cancer susceptibility: epigenetic manifestation of environmental exposures. Cancer journal (Sudbury, Mass 2007; 13(1): 9-16.
    
    31 Jacob RA, Gretz DM, Taylor PC, et al. Moderate folate depletion increases plasma homocysteine and decreases lymphocyte DNA methylation in postmenopausal women. The Journal of nutrition 1998; 128(7):1204-12.
    
    32 Costello JF, Fruhwald MC, Smiraglia DJ, et al. Aberrant CpG-island methylation has non-random and tumour-type-specific patterns. Nature genetics 2000; 24(2): 132-8.
    
    33 Yu L, Liu C, Vandeusen J, et al. Global assessment of promoter methylation in a mouse model of cancer identifies ID4 as a putative tumor-suppressor gene in human leukemia. Nature genetics 2005; 37(3):265-74.
    
    34 Esteller M, Fraga MF, Paz MF, et al. Cancer epigenetics and methylation. Science 2002; 297(5588):1807-8; discussion -8.
    
    35 Schuebel K.E, Chen W, Cope L, et al. Comparing the DNA hypermethylome with gene mutations in human colorectal cancer. PLoS genetics 2007; 3(9): 1709-23.
    
    36 Esteller M. Epigenetic gene silencing in cancer: the DNA hypermethylome. Human molecular genetics 2007; 16 Spec No 1: R50-9.
    
    37 Esteller M, Corn PG, Baylin SB, Herman JG A gene hypermethylation profile of human cancer.Cancer research 2001; 61(8): 3225-9.
    
    38 Adorjan P, Distler J, Lipscher E, et al. Tumour class prediction and discovery by microarray-based DNA methylation analysis. Nucleic acids research 2002; 30(5): e21.
    
    39 Marsit CJ, Houseman EA, Christensen BC, et al. Examination of a CpG island methylator phenotype and implications of methylation profiles in solid tumors. Cancer research 2006; 66(21): 10621-9.
    
    40 Mori Y, Yin J, Sato F, et al. Identification of genes uniquely involved in frequent microsatellite instability colon carcinogenesis by expression profiling combined with epigcnetic scanning. Cancer research 2004; 64(7): 2434-8.
    
    41 Hsu LS, Lee HC, Chau GY, Yin PH, Chi CW, Lui WY. Aberrant methylation of EDNRB and p16 genes in hepatocellular carcinoma (HCC) in Taiwan. Oncology reports 2006; 15(2): 507-11.
    
    42 Hu N, Wang C, Hu Y, et al. Genome-wide loss of heterozygosity and copy number alteration in esophageal squamous cell carcinoma using the Affymetrix GeneChip Mapping 10 K array. BMC genomics 2006; 7: 299.
    
    43 So CK, Nie Y, Song Y, et al. Loss of heterozygosity and internal tandem duplication mutations of the CBP gene are frequent events in human esophageal squamous cell carcinoma. Clin Cancer Res 2004; 10(1 Pt 1): 19-27.
    
    44 Cheung AL, Si HX, Wang LD, An JY, Tsao SW. Loss of heterozygosity analyses of esophageal squamous cell carcinoma and precursor lesions from a high incidence area in China. Cancer letters 2005. 45 Rizwana R, Hahn PJ. CpG methylation reduces genomic instability. Journal of cell science 1999; 112(Pt 24):4513-9.
    
    46 Derks S, Postma C, Carvalho B, et al. Integrated analysis of chromosomal, microsatellite and epigenetic instability in colorectal cancer identifies specific associations between promoter methylation of pivotal tumour suppressor and DNA repair genes and specific chromosomal alterations. Carcinogenesis 2008; 29(2): 434-9.
    
    47 Kaup S, Grandjean V, Mukherjee R, et al. Radiation-induced genomic instability is associated with DNA methylation changes in cultured human keratinocytes. Mutation research 2006; 597(1-2): 87-97.
    
    48 Matsuzaki K, Deng G, Tanaka H, Kakar S, Miura S, Kim YS. The relationship between global methylation level, loss of heterozygosity, and microsatellite instability in sporadic colorectal cancer. Clin Cancer Res 2005; 11(24 Pt 1): 8564-9.
    
    49 Fujiki T, Haraoka S, Yoshioka S, Ohshima K, Iwashita A, Kikuchi M. p53 Gene mutation and genetic instability in superficial multifocal esophageal squamous cell carcinoma. International journal of oncology 2002; 20(4): 669-79.
    
    50 Feltus FA, Lee EK, Costello JF, Plass C, Vertino PM. Predicting aberrant CpG island methylation.Proceedings of the National Academy of Sciences of the United States of America 2003; 100(21): 12253-8.
    
    51 Sato F, Meltzer SJ. CpG island hypermethylation in progression of esophageal and gastric cancer.Cancer 2006; 106(3): 483-93.
    
    52 Liu ZJ, Maekawa M. Polymerase chain reaction-based methods of DNA methylation analysis.Analytical biochemistry 2003; 317(2): 259-65.
    
    53 Lyko F. Novel methods for analysis of genomic DNA methylation. Analytical and bioanalytical chemistry 2005; 381(1): 67-8.
    
    54 Shen L, Waterland RA. Methods of DNA methylation analysis. Current opinion in clinical nutrition and metabolic care 2007; 10(5): 576-81.
    
    55 Toyota M, Ho C, Ahuja N, et al. Identification of differentially methylated sequences in colorectal cancer by methylated CpG island amplification. Cancer research 1999; 59(10): 2307-12.
    
    56 Frigola J, Ribas M, Risques RA, Peinado MA. Methylome profiling of cancer cells by amplification of inter-methylated sites (AIMS). Nucleic acids research 2002; 30(7): e28.
    
    57 Gonzalgo ML, Liang G, Spruck CH, 3rd, Zingg JM, Rideout WM, 3rd, Jones PA. Identification and characterization of differentially methylated regions of genomic DNA by methylation-sensitive arbitrarily primed PCR. Cancer research 1997; 57(4): 594-9.
    
    58 Zhu YM, Lin J, Huang Q, Lai MD. [Screening the differentially methylated DNA sequences of colorectal cancer by methylated CpG islands amplification coupled with representational difference analysis]. Zhonghua yi xue yi chuan xue za zhi = Zhonghua yixue yichuanxue zazhi = Chinese journal of medical genetics 2003; 20(5): 425-9.
    
    59 Liang G, Salem CE, Yu MC, et al. DNA methylation differences associated with tumor tissues identified by genome scanning analysis. Genomics 1998; 53(3): 260-8.
    
    60 Young J, Biden KG, Simms LA, et al. HPP1: a transmembrane protein-encoding gene commonly methylated in colorectal polyps and cancers. Proceedings of the National Academy of Sciences of the United States of America 2001; 98(1): 265-70.
    
    61 Liang G, Robertson KD, Talmadge C, Sumegi J, Jones PA. The gene for a novel transmembrane protein containing epidermal growth factor and follistatin domains is frequently hypermethylated in human tumor cells. Cancer research 2000; 60( 17): 4907-12.
    
    62 Gardiner-Garden M, Frommer M. CpG islands in vertebrate genomes. Journal of molecular biology 1987; 196(2): 261-82.
    
    63 Untawale S, Blick M. Oncogene expression in adenocarcinomas of the colon and in colon tumor-derived cell lines. Anticancer research 1988; 8(1): 1-7.
    
    64 Jackson CE. The two-hit theory of neoplasia: implications for the pathogenesis of hyperparathyroidism. Cancer genetics and cytogenetics 1985; 14(1-2): 175-8.
    
    65 Saglio G, Benetton G, Cambrin GR, Scaravaglio P, Novero D, Palestro G. Proto-oncogene and tumor suppressor gene involvement in human lymphomas. Leukemia 1991; 5 Suppl 1:7-11.
    
    66 Rodenhiser D, Mann M. Epigenetics and human disease: translating basic biology into clinical applications. Cmaj 2006; 174(3): 341-8.
    
    67 Feinberg AP, Ohlsson R, Henikoff S. The epigenetic progenitor origin of human cancer. Nature reviews 2006; 7(1): 21-33.
    
    68 Allegrucci C, Wu YZ, Thurston A, et al. Restriction landmark genome scanning identifies culture-induced DNA methylation instability in the human embryonic stem cell epigenome. Human molecular genetics 2007; 16(10): 1253-68.
    
    69 Shames DS, Girard L, Gao B, et al. A genome-wide screen for promoter methylation in lung cancer identifies novel methylation markers for multiple malignancies. PLoS medicine 2006; 3(12): e486.
    
    70 Markl ID, Cheng J, Liang G, Shibata D, Laird PW, Jones PA. Global and gene-specific epigenetic patterns in human bladder cancer genomes are relatively stable in vivo and in vitro over time. Cancer research 2001; 61(15): 5875-84.
    
    71 Costa FF, Paixao VA, Cavalher FP, et al. SATR-1 hypomethylation is a common and early event in breast cancer. Cancer genetics and cytogenetics 2006; 165(2): 135-43.
    
    72 Geddert H, Kiel S, Iskender E, et al. Correlation of hMLH1 and HPP1 hypermethylation in gastric, but not in esophageal and cardiac adenocarcinoma. International journal of cancer 2004; 110(2): 208-11.
    
    73 Takahashi T, Shivapurkar N, Riquelme E, et al. Aberrant promoter hypermethylation of multiple genes in gallbladder carcinoma and chronic cholecystitis. Clin Cancer Res 2004; 10(18 Pt 1): 6126-33.
    
    74 Schulmann K, Sterian A, Berki A, et al. Inactivation of pl6, RUNX3, and HPP1 occurs early in Barrett's-associated neoplastic progression and predicts progression risk. Oncogene 2005; 24(25): 4138-48.
    
    75 Hamilton JP, Sato F, Greenwald BD, et al. Promoter methylation and response to chemotherapy and radiation in esophageal cancer. Clin Gastroenterol Hepatol 2006; 4(6): 701-8.
    
    76 Turker MS. Gene silencing in mammalian cells and the spread of DNA methylation. Oncogene 2002;21(35): 5388-93.
    
    77 Khodosevich K, Lebedev Y, Sverdlov ED. Large-scale determination of the methylation status of retrotransposons in different tissues using a methylation tags approach. Nucleic acids research 2004; 32(3):e31.
    78 Toyooka S, Tokumo M, Shigematsu H, et al. Mutational and epigenetic evidence for independent pathways for lung adenocarcinomas arising in smokers and never smokers. Cancer research 2006; 66(3):1371-5.
    
    79 Rauch TA, Zhong X, Wu X, et al. High-resolution mapping of DNA hypermethylation and hypomethylation in lung cancer. Proceedings of the National Academy of Sciences of the United States of America 2008; 105(1): 252-7.
    
    80 Kim BH, Cho NY, Choi M, Lee S, Jang JJ, Kang GH. Methylation profiles of multiple CpG island loci in extrahepatic cholangiocarcinoma versus those of intrahepatic cholangiocarcinomas. Archives of pathology & laboratory medicine 2007; 131(6): 923-30.
    
    81 Napieralski R, Ott K, Kremer M, et al. Methylation of tumor-related genes in neoadjuvant-treated gastric cancer: relation to therapy response and clinicopathologic and molecular features. Clin Cancer Res 2007; 13(17): 5095-102.
    
    82 Suzuki M, Shigematsu H, Shivapurkar N, et al. Methylation of apoptosis related genes in the pathogenesis and prognosis of prostate cancer. Cancer letters 2006; 242(2): 222-30.
    
    83 Suzuki M, Shigematsu H, Shames DS, et al. DNA methylation-associated inactivation of TGFbeta-related genes DRM/Gremlin, RUNX3, and HPP1 in human cancers. British journal of cancer 2005; 93(9): 1029-37.
    
    84 Ebert MP, Mooney SH, Tonnes-Priddy L, et al. Hypermethylation of the TPEF/HPP1 gene in primary and metastatic colorectal cancers. Neoplasia (New York, NY 2005; 7(8): 771-8.
    
    85 Hanabata T, Tsukuda K, Toyooka S, et al. DNA methylation of multiple genes and clinicopathological relationship of non-small cell lung cancers. Oncology reports 2004; 12(1): 177-80.
    
    86 Lo KW, Tsang YS, Kwong J, To KF, Teo PM, Huang DP. Promoter hypermethylation of the EDNRB gene in nasopharyngeal carcinoma. International journal of cancer 2002; 98(5): 651-5.
    
    87 Chen SC, Lin CY, Chen YH, et al. Aberrant promoter methylation of EDNRB in lung cancer in Taiwan. Oncology reports 2006; 15(1): 167-72.
    
    88 Nelson JB, Lee WH, Nguyen SH, et al. Methylation of the 5' CpG island of the endothelin B receptor gene is common in human prostate cancer. Cancer research 1997; 57(1): 35-7.
    
    89 Pflug BR, Zheng H, Udan MS, et al. Endothelin-1 promotes cell survival in renal cell carcinoma through the ET(A) receptor. Cancer letters 2007; 246(1-2): 139-48.
    
    90 Appella E, Weber IT, Blasi F. Structure and function of epidermal growth factor-like regions in proteins. FEBS letters 1988; 231(1): 1-4.
    
    91 Gery S, Sawyers CL, Agus DB, Said JW, Koeffler HP. TMEFF2 is an androgen-regulated gene exhibiting antiproliferative effects in prostate cancer cells. Oncogene 2002; 21(31): 4739-46.
    
    92 Patel K. Follistatin. The international journal of biochemistry & cell biology 1998; 30(10): 1087-93.
    
    93 Kupprion C, Motamed K, Sage EH. SPARC (BM-40, osteonectin) inhibits the mitogenic effect of vascular endothelial growth factor on microvascular endothelial cells. The Journal of biological chemistry 1998; 273(45): 29635-40.
    
    94 Nelson J, Bagnato A, Battistini B, Nisen P. The endothelin axis: emerging role in cancer. Nat Rev Cancer 2003; 3(2): 110-6.
    
    95 Smollich M, Wulfing P. The endothelin axis: a novel target for pharmacotherapy of female malignancies. Current vascular pharmacology 2007; 5(3): 239-48.
    
    96 Naomi S, Iwaoka T, Disashi T, et al. Endothelin-1 inhibits endothelin-converting enzyme-1 expression in cultured rat pulmonary endothelial cells. Circulation 1998; 97(3): 234-6.
    
    97 Bohm F, Pemow J, Lindstrom J, Ahlborg G ETA receptors mediate vasoconstriction, whereas ETB receptors clear endothelin-1 in the splanchnic and renal circulation of healthy men. Clin Sci (Lond) 2003; 104(2):143-51.
    98 Pla P,Larue L.Involvement of endothelin receptors in normal and pathological development of neural crest cells.The International journal of developmental biology 2003;47(5):315-25.
    99 Puffenberger EG,Hosoda K,Washington SS,et al.A missense mutation of the endothelin-B receptor gene in multigenic Hirschsprung's disease.Cell 1994;79(7):1257-66.
    100 Takaoka M,Smith CE,Mashiba MK,et al.EGF-mediated regulation of IGFBP-3 determines esophageal epithelial cellular response to IGF-I.American journal of physiology 2006;290(2):G404-16.
    101 Friess H,Fukuda A,Tang WH,et al.Concomitant analysis of the epidermal growth factor receptor family in esophageal cancer:overexpression of epidermal growth factor receptor mRNA but not of c-erbB-2 and c-erbB-3.World journal of surgery 1999;23(10):1010-8.
    102 Wulfing P,Gotte M,Sonntag B,et al.Overexpression of Endothelin-A-receptor in breast cancer:regulation by estradiol and cobalt-chloride induced hypoxia,international journal of oncology 2005;26(4):951-60.
    103 Levy L,Hill CS.Alterations in components of the TGF-beta superfamily signaling pathways in human cancer.Cytokine & growth factor reviews 2006;17(1-2):41-58.
    104 Jiao WJ,Xu J,Pan H,Wang TY,Shen Y.Effect of endothelin-1 in esophageal squamous cell carcinoma invasion and its correlation with cathepsin B.World J Gastroenterol 2007;13(29):4002-5.
    105 Frigola J,Song J,Stirzaker C,Hinshelwood RA,Peinado MA,Clark SJ.Epigenetic remodeling in colorectal cancer results in coordinate gene suppression across an entire chromosome band.Nature genetics 2006;38(5):540-9.
    [1]Parkin DM.Global cancer statistics in the year 2000.Lancet Oncol,2001;2:533-543
    [2]Antequera F,Bird A.Number of CpG islands and genes in human and mouse.Proc Natl Acad Sci USA,1993,90(24):11995.
    [3]Mompaler RL,Bovenzi V.DNA methylation and cancer.J Cell Physiol,2000,183(2):145
    [4]Eng C,Herman J G,Baylin SB.A bird's eye view of global methylation.Nat Genet,2000,24(2):101
    [5]Esteller M.CpG island hypermethylation and tumorsuppressor genes:a booming present,a brighter future.Oncogene,2002,21(35):5427
    [6]Esteller M,Corn PG,Baylin SB,et al.A gene hypermethylation profile of human cancer.Cancer Res,2001,61(8):3225.
    [7] Joseph FC, Michael CF, Dominic JS, et al. Aberrant CpG island methylation has non random and tumour type specific patterns. Nature Genetics, 2000, 25(2): 132.
    
    [8] Kinzler KW, Vogelstein B. Lessons from hereditary colorectal cancer. Cell, 1996;87:159 - 170.
    [9] Maesawa C, Tamura G, Suzuki Y, et al. Aberrations of tumorsuppressor genes (p53, apc, mcc and Rb) in esophageal squamous-cell carcinoma. Int J Cancer. 1994;57:21 - 25.
    [10] Shibagaki I, Shimada Y, Wagata T, Ikenaga M, Imamura M, Ishizaki K. Allelotype analysis of esophageal squamous cell carcinoma. Cancer Res 1994;54:2996-3000
    [11] Kawakami K, Brabender J, Lord RV, Groshen S, Greenwald BD, Krasna MJ, Yin J, Fleisher AS,Abraham JM, Beer DG, Sidransky D, Huss HT, Demeester TR, Eads C, Laird PW,Ilson DH,Kelsen DP, Harpole D, Moore MB, Danenberg KD, Danenberg PV, Meltzer SJ.Hypermethylated APC DNA in plasma and prognosis of patients with esophageal adenocarcinoma. J Natl Cancer Inst 2000;92:1805-1811
    [12] Sato F, Shimada Y, Watanabe G, Uchida S, Makino T, Imamura M. Expression of vascular endothelial growth factor, matrix metalloproteinase-9 and E-cadherin in the processof lymph node metastasis in oesophageal cancer. Br JCancer. 1999;80:1366 - 1372.
    [13] Shinomiya T, Mori T, Ariyama Y, et al. Comparative genomic hybridization of squamous cell carcinoma of the esophagus: the possible involvement of the DPI gene in the 13q34 amplicon.Genes Chromosomes Cancer. 1999;24:337 - 344.
    [14] Takeno S, Noguchi T, Fumoto S, Kimura Y, Shibata T, Kawahara K. E-cadherin expression in patients with esophageal squamous cell carcinoma: promoter hypermethylation, snail overexpression, and clinicopathologic implications. Am J Clin Pathol. 2004 Jul; I22(1):78-84
    [15] Druck T, Hadaczek P, Fu TB,et al. Structure and expression of the human FHIT gene in normal and tumor cells. Cancer Res. 1997 Feb 1 ;57(3):504-12.
    [16] Lee EJ, Lee BB, Kim JW et al. Aberrant methylation of Fragile Histidine Triad gene is associated with poor prognosis in early stage esophageal squamous cell carcinoma. Eur J Cancer. 2006 Mar 23
    [17] Liu CX, Li Y, Obermoeller-McCormick, L M, Schwartz AL. The putative tumor suppressor LRP1B, a novel member of the low density lipoprotein (LDL) receptor family, exhibits both overlapping and distinct properties with the LDL receptor-related protein. J Biol Chem. 2001 Aug 3;276(31):28889-96.
    [18] Sonoda I, Imoto I, Inoue J, et al. Frequent silencing of low density lipoprotein receptor-related protein 1B (LRP1B) expression by genetic and epigenetic mechanisms in esophageal squamous cell carcinoma. Cancer Res. 2004 Jun 1;64(11):3741-7.
    [19] Zhang L, Lu W, Miao X, et al. Inactivation of DNA repair gene O6-methylguanine-DNA methyltransferase by promoter hypermethylation and its relation to p53 mutations in esophageal squamous cell carcinoma. Carcinogenesis. 2003 Jun;24(6): 1039-44. Epub 2003 Apr 24.
    [20] Xing EP, Nie Y, Song Y, et al. Mechanisms of inactivation of p14/ARF, p15/INK4b, and p16/INK4a genes in human esophageal squamous cell carcinoma. Clin Cancer Res. 1999;5: 2704-2713.
    [21] Tarmin L, Yin J, Zhou X, et al. Frequent loss of heterozygosity on chromosome 9 in adenocarcinoma and squamous cell carcinoma of the esophagus. Cancer Res. 1994;54:6094 -6096.
    [22] Esteve A, Martel-Planche G, Sylla BS, Hollstein M, Hainaut P, Montesano R. Low frequency of p16/CDKN2 gene mutations in esophageal carcinomas. Int J Cancer. 1996;66:301 - 304.
    [23] Takeuchi H, Ozawa S, Ando N, et al. Altered pl6/MTS1/ CDKN2 and cyclin D1/PRAD-1 gene expression is associated with the prognosis of squamous cell carcinoma of the esophagus. Clin Cancer Res. 1997;3:2229 - 2236.
    [24] Mandelker DL, Yamashita K, Tokumaru Y,et al. PGP9.5 promoter methylation is an independent prognostic factor for esophageal squamous cell carcinoma. Cancer Res. 2005 Jun 1;65(11):4963-8.
    
    [25] Inazawa J. CGH database, vol. 2005, Tokyo.
    [26] Dragnev KH, Freemantle SJ, Spinella MJ, Dmitrovsky E. Cyclin proteolysis as a retinoid cancer prevention mechanism. Ann N Y Acad Sci. 2001;952:13 - 22.
    [27] Mathe E. RASSF1 A, the new guardian of mitosis. Nat Genet. 2004;36:117-118.
    [28] Kuroki T, Trapasso F, Yendamuri S, et al. Allele loss and promoter hypermethylation of VHL,RAR-beta, RASSF1A, and FHIT tumor suppressor genes on chromosome 3p in esophageal squamous cell carcinoma. Cancer Res. 2003;63: 3724 - 3728.
    [29] Shibagaki I, Shimada Y, Wagata T, Ikenaga M, Imamura M, Ishizaki K. Allelotype analysis of esophageal squamous cell carcinoma. Cancer Res. 1994;54:2996 - 3000.
    [30] Wong ML, Tao Q, Fu L, Wong KY, et al. Aberrant promoter hypermethylation and silencing of the critical 3p21 tumour suppressor gene, RASSF1A, in Chinese oesophageal squamous cell carcinoma. Int J Oncol. 2006 Mar; 28(3):767-73.
    [31] Abbaszadegan MR, Raziee HR, Ghafarzadegan K, Shakeri MT, Afshamezhad S, Ghavamnasiry MR. Aberrant p16 methylation, a possible epigenetic risk factor in familial esophageal squamous cell carcinoma. Int J Gastrointest Cancer. 2005;36(1):47-54.
    [1]Society AC.[Cancer Facts ans Figures 2007].2007.
    [2]Jackson CE.The two-hit theory of neoplasia:implications for the pathogenesis of hyperparathyroidism.Cancer genetics and cytogenetics 1985;14(1-2):175-8.
    [3]Laird PW.Cancer epigeneties.Human molecular 2005,9:65-76.
    [4]Turker MS.Gene silencing in mammalian cells and the spread of DNA methylation.Oncogene 2002;21(35):5388-93.
    [5]范保星,张开泰,吴德昌.DNA甲基化与肿瘤[J].国外医学分子生物学分册2002,24(3):139-143.
    [6]Peterson CL,Laniel MA.Histones and histone modifieations.CurrBiol 2004,14(14):R546-551.
    [7]Rountree MR,Baehman KE,Herman JG,Baylin SB.DNA methylation,chromatin inheritance and cancer.Oncogene 2001,20(24):3156-3165.
    [8]Feinberg AP,Tyeko B.The history of cancer epigenetics.Nat Rev Cancer 2004,4(2):143-153.
    [9]Elgin SC,Grewal SI.Heterochromatin:silence is golden.CurrBiol 2003,13(23):R895-898.
    [10]Ehrenhofer-Murray AE.Chromatin dynamics at DNA replication,transcription and repair.Eur J Biochem 2004,271(12):2335-2349.
    [11]Robertson KD.DNA methylation and chromatin-unraveling the tangled web.Oncogene 2002,21(35):5361-5379.
    [12] Freiman RN,Tjian R. Regulating the regulators: lysine modifications make their mark. Cell 2003,112(1):11-17.
    
    [13] Felsenfeld G, Groudine M. Controlling the double helix. Naure 2003,421 (6921):448-53.
    
    [14] Morgan HD, Santos F, Green K, Dean W, Reik W. Epigenetic reprogramming in mammals .Hum Mol Genet 2005,14 Spec No IR47-58
    [15] Sato F, Meltzer SJ. CpG island hypermethylation in progression of esophageal and gastric cancer.Cancer 2006,106(3):483-93.
    
    [16] Bird AP. The relationship of DNA methylation to cancer.Cancer surv 1996,2887-101.
    [17] Jones PA, BaylinSB. The fundamental role of epigenetic events in cancer.Nat Rev Genet 2002,3(6):415-28.
    
    [18] Das PM, Singal R. DNA methylation and cancer J clin Oncol 2004,22(22):4632-642.
    [19] Deltour S, ChoPin V, LePrinee. Epigenetics and cancer.Med Sci(Paris) 2005, 21(4):405-4l 1.
    [20] Filion GJ, Defossez PA. Epigenetics and cancer. Bull Cancer 2006,93(4):343-347.
    [21] Hortobagyi GN. Treatment of breast cancer. N Engl J Med 1998,339(14):974-984.
    [22] Yang X, Yan L, Davidson NE. DNA methylation in breast cancer.Endocr Relat Cancer,2001,8(2): 115-127.
    [23] LaPidus RG, Nass SJ, Butash KA, Parl FF, Weltzman SA, Graff JG, et al. Mapping of ER gene CpG island methylation-specific polymerase chain reaction.Cancer Res, 1998, 58(12):2515-2519.
    [24] Ortaviano YL, Issa JP, Parl FF, Smith HS, Baylin SB, Davidson NE. Methylation of the estrogen receptor gene CpG island marks 1 oss of estrogen receptor expression in human breast cancer cells.Cancer Res,1994,54(10):2552-2555.
    [25] Ferguson AT, Lapidus RG, BaylinSB, Davidson NE. Demethylation of the estrogen receptor gene in estrogen receptor-negativ ebreast cancer cells can reactivate estrogen receptor gene exression.Cancer Res,1995,55(11):2279-2283.
    [26] Li LC, Chui R, Nakajima K, Oh BR, Au HC, Dahiya R. Frequent methylation of estrogen receptor in prostate cancer:correlation with tumor progression.Cancer Res 2000, 60(3):702-706.
    [27] MelkiJR, Vineent PC, Clark SJ. Concurrent DNA hypermethylation of multiple genes in aeute myeloid leukemia. Cancer Res 1999,59(15):3730-3740.
    [28] Egger G, Liang G, AParicio A, Jones PA. Epigenetics in human disease and prospects for epigenetic therapy. Nature 2004,429(6990):457-63.
    [29] Estelle rM. DNA methylation and cancer the rapy:new developments and expectations. Curr Opin Oncol 2005,17(1):55-60.
    [30] Zelent A, Waxman S, Cardueei M, Wright J, Zweibel J, Gore SD. State of the translation science:summary of Baltimore workshop on gene re-expression as a therapeutic target in cancer. Clin Cancer Res 2004,10(14):4622-629.
    [31] DiCroee L, Raker VA, Corsaro M, Fazi F, Fanelli M, Faretta M, et al. Methyltransferase recruitment and DNA hypermethylation of target promoters by an oncogenic transcription factor.Science 2002,295(5557): 1079-1082.
    
    [32] Issa JP, Kantarjian HM, KirkPatriek P. Azacitidine. Nat Rev Drug Discov 2005,4(4):275-276.
    [33] ANON. New treatment for rare bone marrow condition. FDA Consum 2006,40(4):6.
    [34] Cheng JC, Matsen CB, Gonzales FA, Ye W, Greer S, Marquez VE, et al. Inhibition of DNA methylation and reactivation of silenced genes by zebularine. J Natl Cancer Inst 2003,95(5):399-409.
    [35] Cheng JC, Yoo CB, Weisenberger DJ, Chuang J, Wozniak C, Liang G,et al. Preferential response of cancer cells to zebularine. Cancer Cell 2004,6(2): 151-158.
    [36] Cheng JC, Weisenberger DJ, Gonzales FA, Liang G, Xu GL, Hu YG, et al. Continuous zebularine treatment effectively sustains demethylation in human bladder cancer cells. Mol Cell Biol 2004,24(3):1270-1278.
    [37] Juttermann R, Li E, Jaenisch R. Toxicity of 5-aza-2,-deoxyeytidine to mammalian cells is mediated primarily by covalent trapping of DNA methyltransferase rather than DNA demethylation. Proc Natl Acad Sci USA 1994,91(25): 11797-11801.
    [38] Jaekson-GrusbyL, Laird PW, Magge SN, Moeller BJ, Jaeniseh R.Mutagenieityo 5-aza-2,-deoxyeytidine is mediated by the mammalian DNA methyltransferase. Proc Natl Acad Sci USA 1997,94(9):4681-4685.
    [39] Laird PW. The power and the promise of DNA methylation markers. Nat Rev Cancer 2003,3(4):253-66.
    [40] Leon SA, ShaPiro B, Sklaroff DM, Yaros MJ. Free DNA in the serum of cancer patients and the effect of therapy. Cancer Res 1977,37(3):646-650.
    [41] Donson AM, Addo-Yobo SO, Handler MH, Gore L, Foreman NK. MGMT promoter Methylation correlates with survival benefit and sensitivity to temozolomide in pediatrie glioblastoma. Pediatr Blood Cancer 2007,48(4):403-07.
    [42] Sakuma M, Akahira J, Ito K, Niikura H, Moriya T, Okamura K, et al. Promoter methylation status of the cyclinD2 gene is associated with poor prognosis in human epithelia ovarian cancer.Cancer Sci 2007,98(3):380-386.
    [43] Ikoma H, Iehikawa D, Koike H, Ikoma D, Tani N ,Okamoto K et al. Correlation between Serum DNA methylation and prognosis in gastric cancer patients. Anticancer Res 2006 26(3B):2313-2316.
    [44] Brock MV, Gou M, Akiyama Y, Muller A, Wu TT, Montgomery E, et al. Prognostic importance of promoter hypermethylation of multiple genes in esophageal adenocarcinoma. Clin Cancer Res 2003,9(8):2912-2919.
    [45]Sehulmann K,Sterian A,Berki A,Yin J,Sato F,Xu Y,et al.Inactivation of P16,RUNX3,and HPP1 occurs early in Barrett's-associated neoplastic progression and predicts progression risk.Oncogene 2005 24(25):4138-148.
    [46]白桦,邓大君.CpG岛甲基化检测技术比较.国外医学分子生物学分册2003,25(2):121-125.
    [47]周翠兰,殷宇芳,张佳,陈琳玲,肖莉,廖端芳等.DNA甲基化的生物学意义及其检测方法.库华丈学学舰医尝战2005,33(2):148-153.
    [48]武立鹏,朱卫国.DNA甲基化的生物学应用及检测方法进展.中华检验医学杂志.200427(7):468-74.
    [49]邓大君,邓国仁,吕有勇,周静,辛慧君.变性高效液相色谱法检测CpG岛胞嘧啶甲基化.中华医学杂志;2001,81(3):158-161.
    [50]Herman JG,Graff JR,Myohanen S,Nelkin BD,Bayln SB.Methylation-specific PCR:Novel PCR assay for methylation status of CpG islands.Proc Natl Acad Sci USA,1993(18):9821-9826.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700