用户名: 密码: 验证码:
骨髓间充质干细胞治疗药物性聋的基础研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
感音神经性聋主要由耳蜗毛细胞或听觉神经病变引起。毛细胞位于耳蜗内,是高度特异性机械感受器,其功能障碍、损伤甚至缺失是耳蜗病变引起感音神经性聋的主要原因。相对于非哺乳动物,哺乳动物毛细胞损伤后不能自发再生,由此引起的听力损失难以恢复。应用干细胞进行细胞替代治疗是毛细胞缺失后恢复听力的一个主要治疗策略。骨髓间充质干细胞易于收集和增殖、能够自体移植、无临床应用伦理问题和免疫障碍,具有多潜能性,是目前进行干细胞替代治疗的主要干细胞来源。体外研究显示骨髓间充质干细胞在一定细胞蛋白作用下具有很强的可塑性,能够分化为神经元细胞类型。但是,骨髓间充质干细胞能否分化为内耳毛细胞或前体细胞,干细胞移植到内耳能否存活和分化,能否替代损伤的听毛细胞,这些都还不清楚。
     本课题对大鼠骨髓间充质干细胞体外定向诱导分化耳蜗毛细胞和骨髓间充质干细胞内耳导入正常和药物性聋耳蜗内的存活和分化情况进行了研究。本研究共分为两部分:
     第一部分骨髓间充质干细胞体外诱导分化为毛细胞样细胞
     目的:探讨骨髓间充质干细胞体外定向分化为耳蜗毛细胞的可行性。
     方法:1、体外分离培养骨髓间充质干细胞,观察不同换液方式对骨髓间充质干细胞纯化和增殖的影响;RT-PCR检测培养细胞表面分子表达;定向诱导培养细胞向成脂细胞、成骨细胞方向分化。2、采取不同细胞诱导因子定向诱导培养骨髓间充质干细胞地向分化为内耳毛细胞,培养后细胞进行免疫组化鉴定和扫描电镜观察。
     结果:1、24小时首次半量换液可使分离细胞在7天内迅速增殖铺满细胞培养皿,培养细胞表面分子SH2、CD31、CD44呈阳性表达,但不表达CD34,培养细胞可分别向脂肪细胞及成骨方向分化。2、体外骨髓间充质干细胞诱导后呈现神经干细胞样形态并表达其特异性标志Nestin,继续诱导分化表达内耳毛细胞特异性标志MyosinⅦa,电镜观察可见细胞表面长出微绒毛,类似毛细胞的静纤毛。
     结论:1、24小时首次半量换液培养有利于大鼠骨髓间充质干细胞的分离和纯化,培养细胞证实为骨髓间充质干细胞。2、骨髓间充质干细胞体外可定向诱导分化为内耳毛细胞样细胞。
     第二部分骨髓间充质干细胞内耳移植治疗药物性聋
     目的:1.探讨用于干细胞替代治疗研究的感音神经性聋动物模型的建立方法;2.观察骨髓间充质干细胞移植对正常耳蜗的影响;3.研究骨髓间充质干细胞移植到药物性聋耳蜗内的存活和分化情况。
     方法:1、应用不同剂量阿米卡星连续1周,通过听觉脑干反应阈值、耳蜗常规切片和扫描电镜观察,确定适合用于骨髓间充质干细胞移植的感音神经性聋大鼠动物模型。2、经鼓阶途径将骨髓间充质干细胞移植到正常听力大鼠耳蜗内,通过听觉脑干反应阈值、耳蜗常规切片观察骨髓间充质干细胞移植对耳蜗结构和功能的影响。3、经鼓阶途径将骨髓间充质干细胞移植到药物性聋大鼠耳蜗内,通过听觉脑干反应阈值、免疫组化和扫描电镜观察植入细胞对感音神经性聋听功能的影响及植入细胞在耳蜗内的分化情况。
     结果:1、应用阿米卡星按500mg·kg-1·d-1进行连续一周皮下注射,可造成大鼠听觉永久性阈移,3周后观察柯替器毛细胞缺失,支持细胞损伤,呈现立方上皮样结构。2、骨髓间充质干细胞鼓阶导入对正常大鼠听功能和耳蜗结构无明显影响,可在鼓阶和前庭阶内贴壁或游离存活至少4周。3、骨髓间充质干细胞移植到药物性聋动物耳蜗内可迁移到耳蜗基底膜处并具有听毛细胞特征,移植后8周听功能大多无明显改善。
     结论:1、应用阿米卡星可以建立起适合骨髓间充质干细胞替代治疗的理想动物模型。2、骨髓间充质干细胞移植适合进行耳蜗病变的替代治疗。3、骨髓间充质干细胞移植到药物性聋耳蜗内可以存活定位于基底膜外毛细胞区域,表现内耳听毛细胞特征。
Sensorineural hearing loss represents dysfunction in the chchlea or auditory nerve. The most common site of lesion is the hair cell, a specialized mechanoreceptor located in the organ of Corti in mammals. For patients with sensorinueral hearing loss, the causes are dysfunction, injury, or death of the hair cell.
     In contrast to non-mammals, hair cc(?)s do not regenerate following hair cell death in mammals, so that it is difficult to restore hearing after hair cell injury or loss. Cell replacement therapy with stem cells represents a major strategy for restoring hearing following hair cell loss. Stem cells are self-renewing pluripotent cells that can give rise to highly specialized cells in the organism depending on the microenvironment in which the stem cells reside, to replace lost, damaged, or defective human cell.
     Bone marrow mesenchymal stem cells(MSCs), easy to collect and propagate, be used in autologous transplantation, few ethical and immunologic barriers to clinical applications, be multipotent, represent a promising stem cell source for stem cell replacement therapy. It has been demonstrated that MSCs have the competence of differentiating into neureons. However, it is not clear whether MSCs differentiate into hair cells or progenitors in vitro and MSCs transplanted into inner ear survive and migrate to the sites hair cells reside to replace the lost inner ear hair cells.
     Our experiment carried out a series of researches, including differentiating into cochlear sensory hair cells of bone marrow MSCs in vitro and the survival, migration and differentiation of MSCs transplantation into cochlea in normal and deafened rats. The present study can be divided into following two parts:
     Part one:Bone marrow MSCs differentiate into hair cell-like cells in vitro
     Objective:To explore the feasibility of directionally inducing bone marrow MSCs to cochlear sensory hair cells in vitro.
     Methods:1. Rat bone marrow cells were separated and expanded by adherence culture. The surface molecule expressions of cells were examined by RT-PCR. Multilineage differentiation capability of cells was examined by culturing cells under conditions favorable for adipogenic and osteogenic differentiation in vitro. 2. By using special cell growth factors, bone marrow MSCs were induced to cochlear sensory hair cells, the characteristic marks of which were detected by immunohistochemisty and scanning electron microscope.
     Results:1. The medium was firstly half changed after primary culture for 24 hours, which made the isolated cells expand fast and cover with cell culture dishes in 7 days. Cultured cells expressed SH2, CD31, CD44, but lacked expression of CD44.The cells were successfully induced to adipocytes and osteogenesis.2. Bone marrow MSCs could be induced to differentiate into neural stem cells, and expressed specific neural marker, such as Nestin. Following that, the cells expressed specific markers of cochlear inner ear hair cell in the other growth factors, such as MyosinⅦa. Scanning electron microscopy showed microvillus on the surface of cells, silimar to the stereocilia of inner ear hair cells.
     Conclusions:1. The method that medium was firstly half changed after primary culture for 24 hours is benefit for isolation and purity of rat bone marrow MSCs.The cells isolated in this experiment have biological characteristics of bone marrow MSCs. 2. Bone marrow MSCs can be induced to convert into inner ear hair cell-like cells.
     Part two:The treatment to drug deafness with inner ear implantation of bone marrow MSCs
     Objective:1. To explore the methods of the sensorineural hearing loss animal model for stem cells replacement therapy to regenerate hair cells.2. To investigate the impact on normal cochlea after bone marrow MSCs transplantation into cochlea through scala tympani (ST).3. To explore survival and differentiation of rat MSCs after transplantation into drug deafened rat cochlea.
     Methods:1. Rats were treated hypodermically with different dose of amikacin for one week. Auditory brainstem response (ABR), light microscope and scanning electron microscope were used to evaluate to establish a sensorineural hearing loss animal model for bone marrow MSCs transplantation.2. Bone marrow MSCs were transplated into cochlea of normal hearing rats via ST. The cochlear structures and auditory function were measured by ABR, immunohistochemisty and scanning electron microscope.3. The impact on auditory function was evaluated by ABR and the survival, migration and differentiation of engrafted MSCs were examined by immnofluoresence method and scanning electron microscopy after bone marrow MSCs were transplated into cochlea of drug deafened rats.
     Results:1. There were permanent threshold shift after rats were treated hypodermically with amikacin 500mg-kg-1·d-1 for one week. Three weeks after treatment, loss of cells in the organ of Corti from sensory hair cells to supporting cells and the cuboidal epithelium were observed.2. There were no significantly impact on the auditory function and cochlear structures of normal rats after MSCs transplantation into cochlea via ST. MSCs could survive at least 4 wekks, locating in ST and scala vestibular, adherence or dissociation. 3. After transplantation, Grafted MSCs were visualized in the basilar membrane of every turn of the cochlea, having the characteristics of inner ear hair cells. There were no significant hearing improvements in 8 weeks.
     Conclusions:1. This amikacin deafness animal model is promise of an ideal animal model for the further study for acoustic hair cell regeneration through bone marrow MSCs replacement therapy. 2. Bone marrow MSCs transplantation is a potential strategy for cochlear lesion. 3. Rat bone marrow MSCs can survive in the sites of the outer hair cells died and have the characteristics of the inner ear hair cells.
引文
1. Corwin JT, Cotanche DA. Regeneration of sensory hair cells after acoustic trauma. Science.1988,240(4860):1772-1774.
    2. Ryals BM. Rubel EW. Hair cell regeneration after acoustic trauma in adult Coturnix quail. Science.1988,240(4860):1774-1776.
    3. Cruz RM, Lambert PR, Rubel EW. Light microscopic evidence of hair cell regeneration after gentamicin toxicity in chick clchlea. Arch Otolaryngol Head Neck Surg.1987,113(10):1058-1062.
    4. Adler HJ, Raphael Y. New hair cells arise from supporting cell conversion in acoustically damaged chick inner ear. Neurosci Lett.1996,205(10): 17-20.
    5. Stone JS, Cotaanche DA. Hair cell regeneration in the avian auditory epithelium. Int J Dev Biol.2007,51(6-7); 633-647.
    6. Roberson DW, Alosi JA, Cotanche DA. Direct transdifferentiation gives rise to the earliest new hair cells in regenerating avian auditory epithelium. J Neurosci Res.2004,78(4):461-471.
    7. Taylor RR, Forge A. Hair cell regeneration in sensory epithelia from the inner ear of a urodele amphibian. J Comp Neurol.2005,484(1):105-120.
    8. Roberson DW, Rubel EW. Cell division in the gerbil cochlea after acoustic trauma. Am J Otol.1994,15(1):28-34.
    9. Raphael Y. Cochlear pathology, sensory cell death and regeneration. Br Med Bull.2002,63:25-38.
    10. Kesser BW, Lalwani AK. Gene therapy and stem cell transplantation: strategies for hearing restoration. Adv Otorhinolaryngol.2009,66:64-86.
    11. Hildebrand MS, Newton SS, Gubbels SP,et al.Advances in molecular and cellular therapies for hearing loss.Mol Ther.2008 Feb;16(2):224-236.
    12. Schwartz RE, Reyes M, Koodie L, et al. Multipotent adult progenitor cells from bone marrow differentiate into functional hepatocyte-like cells. J Clin Invest.2002,109(10):1291-1302.
    13. Prockop DJ. Marrow stromal cells as stem cells for nonhematopoietic tissues. Science.1997,276(5309):71-74.
    14. Pittenger MF, Mackay AM, Beck SC, et al. Multilineage potential of human mesenchymal stem cells. Science.1999,284(5411):143-147.
    15. Kondo T, Johnson SA, Yoder MC, et al. Sonic hedgehog and retinoic acid synergistically promote sensory fate specification from bone marrow-derived pluripotent stem cells. Proc Natl Acad Sci U S A.2005, 102(13):4789-4794.
    16. Naito Y, Nakamura T, Nakagawa T, et al. Transplantation of bone marrow stromal cells into the cochlea of chinchillas. Neuroreport.2004,15(1):1-4.
    17. Matsuoka AJ, Kondo T, Miyamoto RT, et al. In vivo and in vitro characterization of bone marrow-derived stem cells in the cochlea. Laryngoscope.2006,116(8):1363-1367.
    18. Sharif S, Nakagawa T, Ohno T, et al. The potential use of bone marrow stromal cells for cochlear cell therapy. Neuroreport.2007,18(4):351-354.
    1. Jiang Y, Jahagirdar BN, Reinhardt RL, et al. Pluripotency of mesenchymal stem cells derived from adult marrow. Nature.2002,418(6893):41-49.
    2. Pauley S, Kopecky B, Beisel K, et al.Stem cells and molecular strateges to restore hearing. Panminerva Med.2008,50(1):41-53.
    3.秦贺,杨仕明,翟所强.骨髓间充质干细胞治疗感音神经性聋的基础研究进展.中国耳鼻咽喉头颈外科.2009,16(1):24-26.
    4. Dazzi F, Ramasamy R, Glennie S, et al. The role of mesenchymal stem cells
    in haemopoiesis. Blood Rev.2006,20(3):161-171.
    5. Sakaguchi Y, Sekiya I, Yagishita K, et al. Comparison of human stem cells derived from various mesenchymal tissues:Superiority of synovium as a cell source. Arthritis Rheum.2005,52(8):2521-2529.
    6.孙崇然,刘恩重.von Kossa染色的方法改进.哈尔滨医科大学学报.2006,40(1):70-71.
    7. Egusa H, Schweizer FE, Wang CC, et al. Neuronal differentiation of bone marrow-derived stromal stem cells involves suppression of discordant phenotypes through gene silencing. J Biol Chem.2005,280(25): 23691-23697.
    8.邱丽燕,王金福.骨髓间充质干细胞的研究进展册.生物工程学报.2003,19(2):136-140.
    9. Luria EA, Panasyuk AF, Friedenstein AY. Fibroblast colony formation from monolayer cultures of blood cells. Transfusion. 1971,11(6):345-349.
    10. Nagaya DT, Kangawa K, Itoh T, et al. Transplantation of mesenchymal stem cells improves cardiac function in a rat model of dilated cardiomyopathy. Circulation.2005,112(8):1128-1135.
    11.杨辉,蔡光先,刘柏炎,等.首次换液时间对贴壁法培养骨髓间充质干细胞纯度及增殖的影响.中国组织工程研究与临床康复.2007,11(20):3868-3871.
    12. Anokhina EB, Buravkova LB. Heterogeneity of stromal precursor cells isolated from rat bone marrow. Tsitologiia.2007,49(1):40-47.
    13. Jackson L, Jones DR, Scotting P, et al. Adult mesenchymal stem cells: Differentiation potential and therapeutic applications. J Postqrad Med.2007, 53(2):121-127.
    14. Dominici M, Le Blanc K, Mueller I, et al. Minimal criteria for defining multipotent mesenchymal stromal cells.The International Society for Cellular Therapy position statement. Cytotherapy.2007,9(3):301-302.
    15.杨仕明.听觉损伤后毛细胞再生与聋病基因治疗策略.中华耳科学杂志.2009,7(4):171-175.
    1. Jiang Y, Jahagirdar BN, Reinhardt RL, et al. Pluripotency of mesenchymal stem cells derived from adult marrow. Nature.2002,418(6893):41-49.
    2. Orlic D, Kajstura J, Chimenti S, et al. Bone marrow stem cells regenerate infarcted myocardium. Pediatr Transplant.2003,7(Suppl 3):86-88.
    3. Krause DS, Theise ND, Collector MI, et al. Multi-organ, multi-lineage engraftment by a single bone marrow-derived stem cell. Cell.2001,105(3): 369-377.
    4. Mezey E, Chandross KJ, Harta G, et al. Turning blood into brain:cells bearing neuronal antigens generated in vivo from bone marrow. Science. 2000,290(5497):1779-1782.
    5. Mezey E, Key S, Vogelsang G, et al. Transplanted bone marrow generates new neurons in human brains. Proc Natl Acad Sci U S A.2003,100(3): 1364-1369.
    6. Hermann A, Gastl R, Liebau S, et al. Efficient generation of neural stem cell-like cells from adult human bone marrow stromal cells. J Cell Sci.2004, 117(Pt 19):4411-4422。
    7. Satoh T, Fekete DM. Clonal analysis of the relationships between mechanosensory cells and the neurons that innervate them in the chicken ear. Development.2005,132(7):1687-1697.
    8. Ma Q, Anderson DJ, Fritzsch B, et al. Neurogenin 1 null mutant ears develop fewer, morphologically normal hair cells in smaller sensory epithelia devoid of innervation. J Assoc Res Otolaryngol.2000,1(2):129-143.
    9. Greco SJ, Zhou C, Ye JH, et al. An interdisciplinary approach and characterization of neuronal cells transdifferentiated from human mesenchymal stem cells. Stem Cells Dev.2007,16(5):811-826.
    10. Mareschi K, Novara M, Rustichelli D, et al. Neural differentiation of human mesenchymal stem cells:Evidence for expression of neural markers and eag K+ channel types. Exp Hematol.2006,34(11):1563-1572.
    11. Kamishina H, Deng J, Oji T, et al. Expression of neural markers on bone marrow-derived canine mesenchymal stem cells. Am J Vet Res.2006,67(11): 1921-1928.
    12. Satomura K, Derubeis A, Fedarko NS, et al. Receptor tyrosine kinase expression in human bone marrow stromal cells. J Cell Physical.1998,177(3): 426-438.
    13. Malgrange B, Belachew S, Thiry M, et al. Proliferative generation of mammalian auditory hair cells in culture. Mech Dev.2002,112(1-2):79-88.
    14. Doetzlhofer A, White PM, Johnson JE, et al. In vitro growth and differentiation of mammalian sensory hair cell progenitors:a requirement for EGF and periotic mesenchyme. Dev Biol.2004,272(2):432-447.
    15. Lambert PR. Inner ear hair cell regeneration in a mammal:identification of a triggering factor. Laryngoscope.1994,104(6 Pt 1):701-718.
    16. Qian X, Davis AA, Goderie SK, et al. FGF2 concentration regulates the generation of neurons and glia from multipotent cortical stem cells. Neuron. 1997,18(1):81-93.
    17. Guan K, Chang H, Rolletschek A, et al. Embryonic stem cell-derived neurogenesis. Retinoic acid induction and lineage selection of neuronal cells. Cell Tissue Res.2001,305(2):171-176.
    18. Lendahl U, Zimmerman LB, Mckay RD. CNS stem cells express a new class of intermediate filament protein. Cell.1990,60(4):585-595.
    19. Qian X, Davis AA, Goderie SK, et al. FGF2 concentration regulates the generation of neurons and glia from multipotent cortical stem cells. Neuron. 1997,18(1):81-93.
    20. Leon Y, Vazquez E, Sanz C, et al. Insulin-like growth factor-I regulates cell proliferation in the developing inner ear, activating glycosyl-phosphatidylinositol hydrolysis and Fos expression. Endocrinology. 1995,136(8):3494-3503.
    21. Li H, Liu H, Heller S. Pluripotent stem cells from the adult mouse inner ear. Nat Med.2003,9(10):1293-1299.
    22. Li H, Roblin G, Liu H, et al. Generation of hair cells by stepwise differentiation of embryonic stem cells. Proc Natl Acad Sci U S A.2003, 100(23):13495-13500.
    23. Hasson T, Gillespie PG, Garcia JA, et al. Unconventional myosins in inner-ear sensory epithelia. J Cell Biol.1997,137(6):1287-1307.
    24. Kawamoto K, Ishimoto S, Minoda R, et al. Mathl gene transfer generates new cochlear hair cells in mature guinea pigs in vivo. J Neurosci.2003, 23(11):4395-4400.
    25. Izumikawa M, Minoda R, Kawamoto K, et al. Auditory hair cell replacement and hearing improvement by Atohl gene therapy in deaf mammals. Nat Med. 2005,11(3):271-276.
    1.谢鼎华,杨伟炎,韩德民主编.听力与耳聋基础和临床现代进展.湖南科学技术出版社.2007.第1版:160-171.
    2. Kesser BW, Lalwani AK. Gene therapy and stem cell transplantation: strategies for hearing restoration. Adv Otorhinolaryngol.2009,66:64-86.
    3. Siddiqi A, Khan DA, Khan FA, et al. Therapeutic drug monitoring of amikacin in preterm and term infants. Singapore Med J.2009,50(5):486-489.
    4. Berger A, Kretzer V, Gludovatz P, et al. Evaluation of an amikacin loading dose for nosocomial infections in very low birth weight infants. Acta Paediatr. 2004,93(3):356-360.
    5. Anson BJ, Donaldson JA, Warpeha RL, et al. The surgical anatomy of the ossicular muscles and the facial nerve. Laryngoscope.1967,77(8): 1269-1294.
    6. Ferriols-Lisart R, Alos-Alminana M. Effectiveness and safety of once-daily aminoglycosides:a meta-analysis. Am J Health Syst Pharm.1996,53(10): 1141-1150.
    7. Rybak LP, Kelly T. Ototoxicity:bioprotective mechanisms. Curr Opin Otolaryngol Head Neck Surg.2003,11(5):328-33.
    8. Roland PS. New developments in our understanding of ototoxicity. Ear Nose Throat J.2004,83(9 Suppl 4):15-17.
    9. Tran Ba Huy P, Bernard P, Schacht J. Kinetics of gentamicin uptake and release in the rat. Comparison of inner ear tissues and fluids with other organs. J Clin Invest.1986,77(5):1492-1500.
    10. Raphael Y, Kim YH, Osumi Y, et al. Non-sensory cells in the deafened organ of Corti:approaches for repair. Int J Dev Biol.2007,51(6-7):649-654.
    11. Lowenheim H, Furness DN, Kil J, et al. Gene disruption of p27 (Kip1) allows cell proliferation in the postnatal and adult organ of corti. Proc Natl Acad Sci U S A.1999,96(7):4084-4088.
    12. Kuntz AL, Oesterle EC. Transforming growth factor alpha with insulin stimulates cell proliferation in vivo in adult rat vestibular sensory epithelium. J Comp Neurol.1998,399(3):413-423.
    13. Montcouquiol M, Corwin JT. Brief treatments with forskolin enhance s-phase entry in balance epithelia from the ears of rats. J Neurosci.2001,21(3): 974-982.
    14. Shou J, Zheng JL, Gao WQ. Robust generation of new hair cells in the mature mammalian inner ear by adenoviral expression of Hathl. Mol Cell Neurosci. 2003,23(2):169-179.
    15. Izumikawa M, Minoda R, Kawamoto K, et al. Auditory hair cell replacement and hearing improvement by Atohl gene therapy in deaf mammals. Nat Med. 2005,11(3):271-276.
    16. Fritzsch B, Beisel KW, Hansen LA. The molecular basis of neurosensory cell formation in ear development:a blueprint for hair cell and sensory neuron regeneration?. Bioessays.2006,28(12):1181-1193.
    17. Li H, Roblin G, Liu H, et al. Generation of hair cells by stepwise differentiation of embryonic stem cells. Proc Natl Acad Sci U S A.2003, 100(23):13495-13500.
    18. Li H, Liu H, Heller S. Pluripotent stem cells from the adult mouse inner ear. Nat Med.2003,9(10):1293-1299.
    1. Ito J, Kojima K, Kawaguchi S. Survival of neural stem cells in the cochlea. Acta Otolaryngol.2001,121(2):140-142.
    2. Hakuba N, Hata R, Morizane I, et al. Neural stem cells suppress the hearing threshold shift caused by cochlear ischemia. Neuroreport.2005, 16(14):1545-1549.
    3. Hildebrand MS, Dahl HH, Hardman J, et al. Survival of partially differentiated mouse embryonic stem cells in the scala media of the guinea pig cochlea. J Assoc Res Otolaryngol.2005,6(4):341-354.
    4. Coleman B, Hardman J, Coco A,et al. Fate of embryonic stem cells transplanted into the deafened mammalian cochlea. Cell Transplant.2006, 15(5):369-380.
    5. Hu Z, Wei D, Johansson CB, et al. Survival and neural differentiation of adult neural stem cells transplanted into the mature inner ear. Exp Cell Res.2005, 302(1):40-47.
    6. Kamiya K, Fujinami Y, Hoya N, et al. Mesenchymal stem cell transplantation accelerates hearing recovery through the repair of injured cochlear fibrocytes. Am J Pathol.2007, 171(1):214-226.
    7. Orita Y, Tsujigiwa H, Nishizaki K,et al. The engraftment of transplanted bone marrow-derived cells into the inner ear. Eur Arch Otorhinolaryngol. 2009,266(1):59-63.
    8. Qiu J, Olivius P, Tong B, et al. Ventral approach to rat preserves cochlear function.Acta Otolaryngol.2007,127(3):240-243.
    9. Zhao DC, Lei JX, Chen R, et al. Bone marrow-derived mesenchymal stem cells protect against experimental liver fibrosis in rats. World J Gastroenterol. 2005,11(22):3431-3440.
    10. Matsuoka AJ, Kondo T, Miyamoto RT, et al. In vivo and in vitro characterization of bone marrow-derived stem cells in the cochlea. Laryngoscope.2006,116(8):1363-1367.
    11.葛圣雷,谢鼎华,朱纲华,等.骨髓基质干细胞豚鼠内耳移植初步观察.听力学及言语疾病杂志.2005,13(3):177-178.
    1. Lowenheim H, Furness DN, Kil J, et al. Gene disruption of p27(Kipl) allows cell proliferation in the postnatal and adult organ of Corti. Proc Natl Acad Sci U S A.1999,96(7):4084-4088.
    2. Zheng JL, Gao WQ. Overexpression of Mathl induces robust production of extra hair cells in postnatal rat inner ears. Nat. Neurosci.2000,3(6):580-586.
    3. Raphael Y. Cochlear pathology, sensory cell death and regeneration, Br Med Bull.2002,63:25-38.
    4. Kawamoto K, Ishimoto S, Minoda R, et al. Mathl gene transfer generates new cochlear hair cells in mature guinea pigs in vivo. J Neurosci.2003, 23(11):4395-4400.
    5. Hu Z, Wei D, Johansson CB, et al. Survival and neural differentiation of adult neural stem cells transplanted into the mature inner ear. Exp Cell Res.2005,
    302(1):40-47.
    6. Vollweiler JL, Zielske SP, Reese JS, et al. Hematopoietic stem cell gene therapy:Progress toward therapeutic targets. Bone Marrow Transplant.2003, 32(1):1-7.
    7. Tomita S, Li RK, Weisel RD, et al. Autologous transplantation of bone marrow cells improves damaged heart function. Circulation.1999,100(19 Suppl):11247-11256.
    8. Jackson KA, Majka SM, Wang H, et al. Regeneration of ischemic cardiac muscle and vascular endothelium by adult stem cells. J Clin Invest.2001, 107(11):1395-1402.
    9. Orlic D, Kajstura J, Chimenti S, et al. Mobilized bone marrow cells repair the infarcted heart, improving function and survival. Proc Natl Acad Sci U S A. 2001,98(18):10344-10349.
    10.杨仕明.听觉损伤后毛细胞再生与聋病基因治疗策略.中华耳科学杂志.2009,7(4):271-277.
    11. Naito Y, Nakamura T, Nakagawa T, et al. Transplantation of bone marrow stromal cells into the cochlea of chinchillas. Neuroreport.2003,15(1):1-4.
    12. Matsuoka AJ, Kondo T, Miyamoto RT, et al. In vivo and in vitro characterization of bone marrow-derived stem cells in the cochlea. Laryngoscope.2006,16(8):1363-1367.
    13. Matsuoka AJ, Kondo T, Miyamoto RT,et al. Enhanced survival of bone-marrow-derived pluripotent stem cells in an animal model of auditory neuropathy. Laryngoscope.2007,117(9):1629-1635.
    14. Forge A, Li L, Corwin JT, et al. Ultrastructural evidence for hair cell regeneration in the mammalian inner ear. Science.1993,259(5101): 1616-1619.
    1. Dazzi F, Ramasamy R, Glennie S, et al. The role of mesenchymal stem cells in haemopoiesis. Blood Rev.2006,20:161-171.
    2. Raphael Y, Kim YH, Osumi Y, et al. Non-sensory cells in the deafened organ of Corti:approaches for repair. Int J Dev Biol.2007,51(6-7):649-654.
    3.杨仕明.听觉损伤后毛细胞再生和聋病基因治疗策略.中华耳科学杂志.2009,7(4):325-327.
    4.徐运,胡娅莉,刘卫彬,等.体外诱导胚胎干细胞分化为毛细胞的实验研究.中国神经精神疾病杂志.2004,30(6):454-455.
    5. Matsumoto M, Nakagawa T, Higashi T, et al. Innervation of stem cell-derived neurons into auditory epithelia of mice. Neuroreport.2005,16(8):787-790.
    6. Matsumoto M, Nakagawa T, Kojima K, et al. Potential of embryonic stem cell-derived neurons for synapse formation with auditory hair cells. J Neurosci Res.2008,86(14):3075-3085.
    7. Okano T, Nakagawa T, Endo T,et al. Engraftment of embryonic stem cell-derived neurons into the cochlear modiolus. Neuroreport.2005, 16(17):1919-1922.
    8. Hu Z, Andang M, Ni D, et al. Neural cograft stimulates the survival and differentiation of embryonic stem cells in the adult mammalian auditory system. Brain Res.2005,1051(1-2):137-144.
    9. Corrales CE, Pan L, Li H, et al. Engraftment and differentiation of embryonic stem cell-derived neural progenitor cells in the cochlear nerve trunk:growth of processes into the organ of Corti. J Neurobiol.2006,66(13):1489-1500.
    10. Coleman B, Hardman J, Coco A, et al. Fate of embryonic stem cells transplanted into the deafened mammalian cochlea. Cell Transplant.2006, 15(5):369-380.
    11. Li H, Roblin G, Liu H, et al. Generation of hair cells by stepwise differentiation of embryonic stem cells. Proc Natl Acad Sci U S A. 2003, 100(23):13495-13500.
    12. Tamura T, Nakagawa T, Iguchi F, et al. Transplantation of neural stem cells into the modiolus of mouse cochleae injured by cisplatin. Acta Otolaryngol
    Suppl.2004,551:65-68.
    13. Ito J, Kojima K, Kawaguchi S. Survival of neural stem cells in the cochlea. Acta Otolaryngol.2001,121(2):140-142.
    14.王英,董明敏.新生豚鼠海马神经干细胞分化为类毛细胞的体外实验.中国耳鼻咽喉头颈外科.2006,13(12):818-820.
    15. Parker MA, Corliss DA, Gray B, et al. Neural stem cells injected into the sound-damaged cochlea migrate throughout the cochlea and express markers of hair cells, supporting cells, and spiral ganglion cells. Hear Res.2007, 232(1-2):29-43.
    16. Kondo T, Johnson SA, Yoder MC, et al. Sonic hedgehog and retinoic acid synergistically promote sensory fate specification from bone marrow-derived pluripotent stem cells. Proc Natl Acad Sci U S A.2005,102(13):4789-4794.
    17. Jeon SJ, Oshima K, Heller S, et al. Bone marrow mesenchymal stem cells are progenitors in vitro for inner ear hair cells. Mol Cell Neurosci.2007,34(1): 59-68.
    18. Naito Y, Nakamura T, Nakagawa T, et al. Transplantation of bone marrow stromal cells into the cochlea of chinchillas. Neuroreport.2004,15(1):1-4.
    19. Iwai H, Lee S, Inaba M, et al. Bone marrow transplantation as a strategy for the treatment of autoimmune hearing loss in MRL/Mp-lpr/lpr mice. J Neuroimmunol.2005,168(1-2):76-82.
    20. Iwai H, Lee S, Inaba M, et al. Prevention of accelerated presbycusis by bone marrow transplantation in senescence-accelerated mice. Bone Marrow Transplant.2001,28(4):323-328.
    21. Sharif S, Nakagawa T, Ohno T, et al. The potential use of bone marrow stromal cells for cochlear cell therapy. Neuroreport.2007,18(4):351-354.
    22. Kamiya K, Fujinami Y, Hoya N, et al. Mesenchymal stem cell transplantation accelerates hearing recovery through the repair of injured cochlear fibrocytes. Am J Pathol.2007,171(1):214-226.
    23.袁先道,闫曦,杨华,等.人脂肪源性间充质干细胞向内耳毛细胞定向 诱导分化的实验研究.中华耳鼻咽喉头颈外科杂志.2009,44(4):323-328.
    24.秦贺,杨仕明,翟所强.骨髓间充质干细胞治疗感音神经性聋的基础研究进展.中国耳鼻咽喉头颈外科,2009,16(1):24-26.
    25. Li H, Liu H, Heller S. Pluripotent stem cells from the adult mouse inner ear. Nat Med.2003,9(10):1293-1299.
    26. Wang Z, Jiang H, Yan Y,et al. Characterization of proliferating cells from newborn mouse cochleae. Neuroreport.2006,17(8):767-771.
    27. Oshima K, Grimm CM, Corrales CE,et al. Differential distribution of stem cells in the auditory and vestibular organs of the inner ear. J Assoc Res Otolaryngol.2007,8(1):18-31.
    28. Kojima K, Murata M, Nishio T, et al. Survival of fetal rat otocyst cells grafted into the damaged inner ear. Acta Otolaryngol Suppl.2004,551:53-55.
    29. Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell.2006, 126(4):663-676.
    30. Yamanaka S. Induction of pluripotent stem cells from mouse fibroblasts by four transcription factors. Cell Prolif.2008,41:51-56.
    31. Okita K, Ichisaka T, Yamanaka S. Generation of germline-competent induced pluripotent stem cells. Nature.2007,448(7151):313-317.
    32. Nishimura K, Nakagawa T, Ono K,et al. Transplantation of mouse induced pluripotent stem cells into the cochlea. Neuroreport.2009,20(14):1250-1254.
    1. Kesser BW, Lalwani AK. Gene therapy and stem cell transplantation: strategies for hearing restoration. Adv torhinolaryngol.2009,66:64-86.
    2. Risbud MV, Shapiro IM, Guttapalli A, et al. Osteogenic potential of adult human stem cells of the lumbar vertebral body and the iliac crest. Spine.2006, 31(1):83-89.
    3. Vogel W, Grunebach F, Messam CA, et al. Heterogeneity among human bone marrow-derived mesenchymal stem cells and neural progenitor cell. Haematologica.2003,88(2):126-133.
    4. Covas DT, Siufi JL, Silva AR, et al. Isolation and culture of umbilical vein mesenchymal stem cells. Braz J Med Biol Res.2003,36(9):1179-1183.
    5. Nagaya N, Kangawa K, Itoh T, et al. Transplantation of mesenchymal stem cells improves cardiac function in a rat model of dilated cardiomyopathy. Circulation.2005,112(8):1128-1135.
    6. Kabos P, Ehtesham M, Kabosova A, et al. Generation of neural progenitor cells from whole adult bone marrow. Exp Neurol.2002,178(2):288-293.
    7. Honma T, Honmou O, Iihoshi S, et al. Intravenous infusion of immortalized human mesenchymal stem cells protects against injury in a cerebral ischemia model in adult rat. Exp Neurol.2006,199(1):56-66.
    8. Lambert PR. Inner ear hair cell regeneration in a mammal:identification of a triggering factor. Laryngoscope.1994,104(6 Pt 1):701-718.
    9. Li H, Liu H, Heller S. Pluripotent stem cells from the adult mouse inner ear. Nat Med.2003,9(10):1293-1299.
    10. Nakaizumi T, Kawamoto K, Minoda R, et al. Adenovirus-mediated expression of brain-derived neurotrophic factor protects spiral ganglion neurons from ototoxic damage. Audiol Neurootol.2004,9(3):135-143.
    11. Kondo T, Johnson SA, Yoder MC, et al. Sonic hedgehog and retinoic acid synergistically promote sensory fate specification from bone marrow-derived pluripotent stem cells. Proc Natl Acad Sci U S A.2005,102(13):4789-4794.
    12. Zheng JL, Gao WQ. Overexpression of Math 1 induces robust production of extra hair cells in postnatal rat inner ears. Nat Neurosci.2000,3(6):580-586.
    13. Izumikawa M, Minoda R, Kawamoto K, et al. Auditory hair cell replacement
    and hearing improvement by Atohl gene therapy in deaf mammals. Nat Med. 2005,11(3):271-276.
    14. Hu Z, Wei D, Johansson CB, et al. Survival and neural differentiation of adult neural stem cells transplanted into the mature inner ear. Exp Cell Res,2005, 302(1):40-47.
    15. Jeon SJ, Oshima K, Heller S, et al. Bone marrow mesenchymal stem cells are progenitors in vitro for inner ear hair cells. Mol Cell Neurosci.2007,34(1): 59-68.
    16. Sharif S, Nakagawa T, Ohno T, et al. The potential use of bone marrow stromal cells for cochlear cell therapy. Neuroreport.2007,18(4):351-354.
    17. Naito Y, Nakamura T, Nakagawa T, et al. Transplantation of bone marrow stromal cells into the cochlea of chinchillas. Neuroreport.2004,15(1):1-4.
    18. Iwai H, Lee S, Inaba M, et al. Bone marrow transplantation as a strategy for the treatment of autoimmune hearing loss in MRL/Mp-lpr/lpr mice. J Neuroimmunol.2005,168(1-2):76-82.
    19. Iwai H, Lee S, Inaba M, et al. Prevention of accelerated presbycusis by bone marrow transplantation in senescence-accelerated mice. Bone Marrow Transplant.2001,28(4):323-328.
    20. Kamiya K, Fujinami Y, Hoya N, et al. Mesenchymal stem cell transplantation accelerates hearing recovery through the repair of injured cochlear fibrocytes. Am J Pathol.2007,171(1):214-226.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700