用户名: 密码: 验证码:
等离子体活化接枝功能化CNTs及其环氧树脂纳米复合材料的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以简单、经济、环保的碳纳米管(CNTs)功能化途径,制备出可在热固性树脂基体中均匀分散,与树脂界面相容好、界面粘结强度高的高度功能化的CNTs为目的,着重研究了热引发等离子体诱导接枝聚马来酸酐功能化CNTs,马来酸酐(MA)固相升华等离子体聚合功能化CNTs的工艺条件,聚马来酸酐功能化CNTs表面聚合物链端官能团的化学修饰和功能化CNTs/环氧树脂纳米复合材料的制备等。
     本文采用氩等离子体处理CNTs,暴露于空气一段时间使其表面产生大量的羟基过氧化物和过氧化物,通过热引发,羟基过氧化物或过氧化物与带有活性基团的马来酸酐(MA)反应,实现CNTs的高度功能基化;接着采用胺类环氧树脂固化剂对功能化CNTs进行修饰,得到链端带有氨基的高度功能基化CNTs,将其与环氧树脂复合,制备出功能化CNTs/环氧树脂纳米复合材料。本文探讨了等离子体放电参数(如放电时间、放电功率、工作压力等)等离子体处理工艺参数对CNTs表面羟基过氧化物和过氧化物含量的影响,热引发温度、时间对接枝率的影响及CNTs的添加量对复合材料的热学和力学性能的影响;使用能谱分析仪(EDS)、描电子显微镜(SEM)、透射电子显微镜(TEM),红外光谱仪(IR)和热重分析仪(TGA)对相关产物的结构、组成、形貌进行了表征。动态力学分析仪(DMA)和材料万能试验机的测试结果表明,此功能化CNTs能显著提高环氧树脂基体的力学强度和耐热性能。
     本文还发展了MA固相升华等离子体聚合功能化CNTs的研究,考察了放电功率、压力、时间和温度对酸酐基团保留和薄膜厚度的影响,并选择最佳MA等离子体聚合条件实现其对CNTs的功能化,并制备出MA等离子体聚合功能化的CNTs/EP复合材料。借助SEM、XPS、IR及TGA等手段均证实了CNTs被高度功能化,其环氧复合材料SEM显示此功能化CNTs在环氧树脂中具有较好的分散性。
Highly functionalized carbon nanotubes (CNTs) with good dispersion, good interface compatibility and high interface bonding strength were prepared in a simple, economical and environment-friendly way.
     Argon plasma treated CNTs were exposed in the air to form peroxides and hydroperoxides on the surface. Through thermal initiation, these peroxides and hydroperoxides reacted with maleic anhydride (MA) to functionalize CNTs. The functionalized CNTs were further modified with amino groups. The as-obtained functionalized CNTs then reacted with epoxy matrix to prepare the CNTs/Epoxy composites. The effect of the plasma discharge parameters (discharge time, plasma power, working pressure, plasma time etc.) on the content of the peroxides and hydroperoxides on the surface of CNTs was investigated, as well as the effect of thermal initiation temperature and time on the grafting ratio. In addition, thermal and mechanical properties of the CNT/Epoxy composites were evaluated in correlation to the content of CNTs. Structure, composition and morphology of the related products were characterized by Energy spectrometers (EDS), Scanning electron microscopy (SEM) , Transmission electron microscopy (TEM), X-ray photoelectron spectrometers (XPS), Thermogravimetric anylyzer (TGA)and Infrared spectrometer (IR). Dynamic mechanics analyses (DMA) and mechanical testing results show that the functionalized CNTs can significantly improve the mechanical strength and heat resistance of the epoxy matrix.
     The technique of sublimation plasma polymerization of MA was also developed. The effect of the plasma discharge parameters on the anhydride group reservation and the thickness of the film were studied. The optimal plasma discharge parameters were selected to functionalize CNTs. SEM,XPS, IR, TGA and other methods all verified CNTs were highly functionalized, thus improve the CNTs’dispersion in the epoxy matrix.
引文
[1] Ajayan P M, Iijima, Sumio. Single-shell carbon nanotubes of 1-nm diameter. Nature 1993, 361(333), 333.
    [2] Dai H, Wong W, Lu Y, Fan S, Lieber C M. Synthesis and characterization of carbide nanorods. Nature ,1995, 375(769).
    [3] Wei B Q, Zhang Z J, Ajayan P M, et al. Growing pillars of densely packed carbon nanotubes on Ni-coated silica. Carbon, 2002, 40, 47.
    [4] Popov V N. mater. Interaction between concentric tubes in DWCNTs. Science Engineering Research, 2004, 43: 63~66.. Interaction between concentric tubes in DWCNTs
    [5] Wang Z L, Gao R P, Poncharal P, Heer W A, Dai Z R, Pan Z W. A new approach towards property nanomeasurements using in-situ TEM.mater. Materials Research Society, 2001, 598: 217~222.
    [6] Tsung Y C, King W Y. Direct modulation by Ca2+-calmodulin of cyclic nucleotide-activated channel of rat olfactory receptor neurons. Nature, 1994, 378: 545~548.
    [7] Lago R M, Tsung S C, Green M L H, et al. Filling carbon nanotubes with small palladium metal crystallites: the effect of surface acid groups. Chem.Commu, 1995, 1355-1356. [8 ] Liu J, Rinzler A G, Dai H, Hafner J H, et al. Fullerene pipes. Science, 1998, 280: 1253~1256.
    [9] Chen J, Hamon M A, Haddon R C, et al. Solution properties of single-walled carbon nanotubes Science, 1998, 282: 95~ 98.
    [10]李博,廉永福,施祖进(等).单层碳纳米管的化学修饰.高等学校化学学报, 2000, 21: l633~l635.
    [11] Fu K, Huang W J, Lin Y, et a1. AlGaN Schottky characteristics after hybrid photo-enhanced wet and inductively coupled plasma Nano Lett, 2001, 1(8): 439~441.
    [12] Qin Y J, Shi J H, Wu W, et a1. Concise route to functionalized carbon nanotubes. J Phys. Chem. B, 2003, 107(47): 12899~12901.
    [13] Chen J, Hamon M A, Haddon R C, et a1. Micromechanical "trampoline" magnetometers for use in large pulsed magnetic fields.Science, 1998, 282: 95~98.
    [14]李伟,成荣明.无机化学学报.羟基自由基对多壁碳纳米管表面和结构的影响. 2005, l21 (5): 1224~1231.
    [15] Mickelson E T, Huffman C B, Rinzler A G, et al. Fluorination of single-wall carbon nanotubes. Chemical Physics Letters, 1998, 1: 188~194.
    [16] Saini R K, Chiang I W, Peng H Q, Smalley R E, et al. Covalent sidewall functionalization of single wall carbon nanotubes. J Am Chem Soc, 2003, 125, 3617~3623.
    [17] Tagmatarchis N, Georgakilas V, Prato M, et al. Sidewall functionalization of single-walled carbon nanotubes through electrophilic addition. Chemical communitions, 2002, 2010~2011.
    [18] Boul E J, Liu J, Mickelson E, Huffman C B, et al. Reversible sidewall functionalization of buckytubes. Chem. Phys. Lett., 1999, 310: 367 ~372..
    [19] Zhang L, Kiny V U, Peng H, et al. Thermal Expansion and Phase Formation of ZrW2O8 Aerogels.J Chem. Mater., 2004, 16: 2055.
    [20] Chen Y, Haddon R C, Fang S, et a1. Chemical attachment of organic functional groups to single-walled carbon nanotube material. J mater. Res., 1998, 13: 2423~2431.
    [21] Georgakilas V, Kordatos K, Prato M, et al. Purification of HiPCO carbon nanotubes via organic functionalization . J Am Chem Soc, 2002, 124: 14318~7614319.
    [22] Holzinger M, Vostrowsky O. Sidewall functionalization of carbon nanotubes. Angew Chem. In.t Ed., 2001, 40: 4002~4005.
    [23] Umek P, Sco J, Hernadi K, et a1. Addition of carbon radicals generated from organic peroxides to single wall carbon nanotubes. Chem. Mater., 2003, 15(25): 4751~4755.
    [24] Pckkcr S, Solvetat J P, Jakab E, et a1. Hydrogenation of carbon nanotubes and graphite in liquid ammonia. J Phys. Chem. B, 2001, 105(33): 7938~7943.
    [25] Bahr J L, Yang J P, Kosynkin D V, et a1. Functionalization of carbon nanotubes by electrochemical reduction of aryl diazonium salts: A bucky paper electrode. J Am. Chem. Soc., 2001, 123: 6536~6542
    [26] Bahr J L, Tour J M. Covalent chemistry of single-wall carbon nanotubes. J mater Chem, 2002, 12: 1952~1958.
    [27] Kong H, Gao C, Yan D. Growing multihydroxyl hyperbranched polymers on the surfaces of carbon nanotubes by in situ ring-opening polymerization. J Am. Chem. Soc., 2004, 126~412
    [28] Liu C, Huang H M, Chang C Y, et al. maeromolecules, 2004, 37(2): 283~287.
    [29] Liu I C, Huang H M, Chang C Y, et al. Preparing a Styrenic Polymer Composite Containing Well-Dispersed Carbon Nanotubes: Anionic Polymerization of aNanotube-Bound p-Methylstyrene. Macromolecules, 2003, 36: 6286~6288.
    [30] Tong X, Yu C, Cheng H M, et a1. Fatigue failure mechanisms of single-walled carbon nanotube ropes embedded in epoxy. J App1. Poly. Sci., 2004, 92: 3697~3700.
    [31]胡征.等离子体化学基础.化工时刊, 1999 (11): 39~41..
    [32] Fidman A, Chirokov A, Gutsol A. Non-thermal Atmospheric Pressure Discharge. Jounal of Physics D: Applied Physics. 2005, (38): R1-R24.
    [33]陈杰瑢.低温等离子体化学及其应用[M].北京:科学出版社, 2001.
    [34]白希尧,白敏冬,张芝涛.非平衡等离子体化学研究进展.中国基础科学, 2003, (6): 30~37.
    [35]张燕,顾彪,王文春,王德真.常压辉光放电等离子体研究及聚合物表面改性.合成纤维工业. 2006, 29(3): 42~45.
    [36] Ghosh P. Modification of Low Density Polythylene by Graft Copolymerization with Some Acrylic Monomers. Polymer. 1998, 39: 193-201.
    [37]曾效舒,傅燮莲,曹东,李文唐,徐春水,马来酸酐包覆碳纳米管的研究,材料程, 2006, 10, 3~8.
    [38] Moon M W, Vaziri A. Surface modification of polymers using a multi-step plasma treatment. Scripta materialia. 2009, 60 (1): 44-47.
    [39] Yan M G, Liu L Q, Tang Z Q, Huang L, Li W, Zhou J, Gu J S, Wei X W, Yu H Y. Plasma surface modification of polypropylene microfiltration membranes and fouling by BSA dispersion. Chemical Engineering Journal. 2008, 145 (2): 218~224.
    [40] Hegemann. macroscopic Control of Plasma Polymerization Processes. Pure and Applied Chemistry. 2008, 80 (9): 1893~1900.
    [41] Schartel B, Kuhn G, Mix R, Friedrich J. Surface Controlled Fire Retardancy of Polymers Using Plasma Polymerization. macromolecular material and Engineering. 2002, 287 (9): 579~582.
    [42] Chu L Q, Knoll W, Forch R. Biologically Multifunctional Surfaces Using Plasma Polymerization Methods. Plasma Processes and Polymer. 2006, 3 (6-7): 498~505.
    [43] Kion Norrman, Peter Kingshott, Keld West. Characterization of Plasma-Polymerized Fused Polycyclic Compounds for Binding Conducting Polymers. Plasma Process and Polymer. 2005, 2 (4): 319~327.
    [44] Yasuda H K, Yu Q S, Reddy C M, Moffitt C E, Wieliczka D M. Adhesion of Spray Primers to plasma polymer coating. Journal of Applied Polymer Science. 2002, 85 (7): 1443-1457.
    [45]晁单明,陈靖禹,卢晓峰,陈梁,张万金,环氧树脂/碳纳米管复合材料的合成与表征,高等学校化学学报,2005,11(26),2176~2178.
    [46]赵化侨.等离子体化学与工艺[M].合肥:中国科学技术大学出版社,1993.
    [47] Treacy M. M. J., Ebbesen T. W., et al. Exceptionally high Young’s modulus observed for individual carbon nanotubes. Nature, 1996, 381, 678~680.
    [48] Lu J. P. Elastic properties of carbon nanotubes and nanoropes. Phys. Rev. Lett., 1997, 9, 1297~300.
    [49]Wong E. W., Sheehan P. E., Lieber C. M. Nanobeam mechanics: elasticity, strength, and toughness of nanorods and nanotubes. Science, 1997, 277, 1971~5.
    [50] Breuer O., Sundararaj U. A review of polymer/carbon nanotube composites. Polym Compos 2004, 25, 630~45
    [51] Xie X. L., mai Y. W. Zhou X. P. Dispersion and alignment of carbon nanotubes in polymer matrix: a review. mater Sci Eng R 2005,49,890~112.
    [52] Ajayan P M, Tour J M. Nanotube Composites [J]. Nature, 2007, 447: 1066~1068.
    [53] Wagner H D, Lourie O, Feldman Y, et al. Stress-Induced Fragmentation of Multiwall Carbon Nanotubes in a Polymer matrix [J]. Applied Physics Letters, 1998, 72(2): 188~190.
    [54] Jiang Z Y, Zhang H, Zhang Z, et al. Improved Bonding between PAN-Based Carbon Fibers and Fullerene-Modified Epoxy matrix [J]. Composites Part A, 2008, 39(11): 1762~1767.
    [55] Jan S, Montira S, Karl S, et al. Titania-Doped Multi-Walled Carbon Nanotubes Epoxy Composites: Enhanced Dispersion and Synergistic Effects in Multiphase Nanocomposites [J]. Polymer, 2008, 49(23): 5105~5112.
    [56] Ajayan P M, Schadler L S, Giannaris C, et al. Single-Walled Nanotube-Polymer Composites: Strength and Weaknesses [J]. Advanced materials, 2000, 12(10): 750~753.
    [57] Schadler L S, Giannaris S C, Ajayan P M. Load Transfer in Carbon Nanotube Epoxy Composites [J]. Applied Physics Letters, 1998, 73(26): 3842~3844.
    [58] Lucas M, Young R J. Raman Spectroscopic Study of the Effect of Strain on the Radial Breathing Modes of Carbon nanotubes in Epoxy/SWNT Composites [J]. Composites Science and Technology, 2004, 64(15): 2297~2302.
    [59] Wang S R, Richard L, Wang B, et al. Load-transfer in Functionalized Carbon Nanotubes/Polymer Composites [J]. Chemical Physics Letters, 2008, 457(4-6): 371~375.
    [60] Alejandra D L V, Josef Z K, Bauhofer W, Schulte K. Combined Raman and Dielectric Spectroscopy on the Curing Behavior and Stress Build up of Carbon Nanotube/Epoxy Composites [J]. Composites Science and Technology, 2009, 69(10): 1540~1546.
    [61] Pécastaings G, Delhaès P, DerréA, et al. Role of Interfacial Effects in Carbon Nanotube/Epoxy Nanocomposite Behavior [J]. Journal of Nanoscience and Nanotechnology, 2004, 4(7): 838~843.
    [62] Cooper C A, Cohen S R, Barber A H, et al. Detachment of Nanotubes from a Polymer matrix [J]. Applied Physics Letters, 2002, 81(20): 3873~3875.
    [63] Passeria D, Alippia A, Bettuccia A, et al. Characterization of Epoxy/Single-Walled Carbon Nanotubes Composite Samples via Atomic Force Acoustic Microscopy [J]. Physica E, 2008, 40(7): 2419~2424.
    [64] Gou J A, Minaie B, Wang B, et al. Computational and Experimental Study of Interfacial Bonding of Single-Walled Nanotube Reinforced Composites [J]. Computational materials Science, 2004, 31(3-4): 225~236.
    [65] Gou J A, Fan B, Song G B, et al. Study of Affinities between Single-Walled Nanotube Epoxy Resin using Molecular Dynamics simulation [J]. International Journal of Nanoscience, 2006, 5(1): 131~144.
    [66] Zhu R, Pan E, Roy A K. Molecular Dynamics Study of the Stress–Strain Behavior of Carbon/Nanotube Reinforced Epon 862 composites [J]. materials Science & Engineering A, 2007, 447(1-2): 51~57.
    [67]Sandler J, Shaffer M S P, Prasse T, et al. Development of a Dispersion Process for Carbon Nanotubes in an Epoxy matrix and the Resulting Electrical Properties [J]. Polymer, 1999, 40(21): 5967~5969.
    [68]Zou W, Du Z J, Liu Y X, et al. Functionalization of MWNTs Using Polyacryloyl Chloride and the Properties of CNT–Epoxy matrix Nanocomposites [J]. Composites Science and Technology, 2008, 68(15-16): 3259~3264.
    [69] Moisala A, Li Q, Kinloch A I, et al. Thermal and Electrical Conductivity of Single- and Multi-Walled Carbon Nanotube-Epoxy Composites [J]. Composites Science and Technology, 2006, 66(10): 1285~1288.
    [70] Amanda L H, Padraig G M, Michael C W. Carbon Nanotube Composite Curing through Absorption of Microwave Radiation [J]. Composites Science and Technology, 2008, 68: 3087~3092.
    [71] Gojny F H, Wichmann M H G, Kopke U, et al. Carbon Nanotube-Reinforced Epoxy-Composites: Enhanced Stiffness and Fracture Toughness at Low NanotubeContent [J]. Composite Science Technology, 2004, 64(15): 2363~2367.
    [72] Haiyan C, Jcobs O, Wu W, et al. Effect of Dispersion Method on Tribological Properties of Carbon Nanotube Reinforced Epoxy Resin Composites [J]. Polymer Testing, 2007, 26(3): 351~360.
    [73] Gojny F H, Wichmann M H G, Fiedler B, et al. Evaluation and Identification of Electrical and Thermal Conduction Mechanisms in Carbon Nanotube/Epoxy Composites [J]. Polymer, 2006, 47(6): 2036~2045.
    [74] Thostenson E T, Chou T W. Processing-Structure-Multi-Functional Property Relationship in Carbon Nanotube/Epoxy Composites [J]. Carbon, 2006, 44(14): 3022~3029.
    [75] Xu J W, Florkowski W, Gerhardt R. Shear Modulated Percolation in Carbon Nanotube Composite [J]. Journal of Physics Chemistry B, 2006, 110(25): 12289~12292.
    [76] Gojny F H, Schulte K. Functionalisation Effect on the Thermo-Mechanical Behaviour of Multi-Wall Carbon Nanotube/Epoxy-Composites [J]. Composites Science and Technology, 2004, 64(15), 2303~2308.
    [77] Wang J G, Fang Z P, Gu A J, et al. Effect of Amino-Functionalization of Multi-Walled Carbon Nanotubes on the Dispersion with Epoxy Resin matrix [J]. Applied Polymer Science, 2006, 100(1): 97~104.
    [78] Chen X H, Wang J F, Chen J H, et al. Mechanical and Thermal Properties of Epoxy Nanocomposites Reinforced with Amino-Functionalized Multi-Walled Carbon Nanotubes [J]. materials Science & Engineering A, 2008, 492(1-2): 236~242.
    [79] Sun L Y, Warrena G L, Reillya J Y O, et al. Mechanical Properties of Surface-Functionalized SWCNT/Epoxy Composites [J]. Carbon, 2008, 46(2): 320~328.
    [80] Park S J, Jeong H J, Nah C W. A Study of Oxyfluorination of Multi-Walled Carbon Nanotubes on Mechanical Interfacial Properties of Epoxy matrix Nanocomposites [J]. materials Science and Engineering A, 2004, 385(1-2): 13~16.
    [81] Zou W, Du Z J, Liu Y X, et al. Functionalization of MWNTs using Polyacryloyl Chloride and the Properties of CNTs/Epoxy matrix Nanocomposites [J]. Composites Science and Technology, 2008, 68(15-16): 3259~3264.
    [82] Valentini L, Puglia D, Carniato F, et al. Use of Plasma Fluorinated Single-Walled Carbon Nanotubes for the Preparation of Nanocomposites with Epoxy matrix [J]. Composites Science and Technology, 2008, 68(3-4): 1008~1014.
    [83] Hadjiev V G, Lagoudas D C, Oh E S, et al. Buckling Instabilities of Octadecylamine Functionalized carbon Nanotubes Embedded in Epoxy [J]. Composites Science and Technology, 2006, 66(1): 128~136.
    [84] Liu Y T, Zhao W, Huang Z Y, et al. Noncovalent Surface Modification of Carbon Nanotubes for Solubility in Organic Solvents [J]. Carbon, 2006, 44(8): 1581~1616.
    [85] Gong X Y, Liu J, Baskaran S, et al. Surfactant-Assisted Processing of Carbon Nanotube/Polymer Composites [J]. Chemistry material, 2000, 12(4): 1049~1052.
    [86] Geng Y, Liu M Y, Li J, et al. Effects of Surfactant Treatment on Mechanical and Electrical Properties of CNT/Epoxy Nanocomposites [J]. Composites Part A, 2008, 39(12): 1876~1883.
    [87] Cho J, Daniel I M, Dikin D A. Effects of Block Copolymer Dispersant and Nanotube Length on Reinforcement of Carbon/Epoxy Composites [J]. Composites Part A, 2008, 39(12): 1844~1850.
    [88] Liu B L, Grunlan J C. Clay Assisted Dispersion of Carbon Nanotubes in Conductive Epoxy Nanocomposites [J]. Advanced Functional materials, 2007, 17(14): 2343~2348.
    [89] Wang Z C, Xu C L, Zhao Y Q, et al. Fabrication and Mechanical Properties of Exfoliated Clay–CNTs/Epoxy Nanocomposites [J]. materials Science & Engineering A, 2008, 490(1-2): 481~487.
    [90] Wang H, Feng J Y, Hu X J. Tribological Behaviors of Aligned Carbon Nanotube/Fullerene-Epoxy Nanocomposites [J]. Polymer engineering and science, 2008, 48(8): 467~1475.
    [91] Wang H, Feng J Y, Hu X J. Tribological Behaviors of Aligned Carbon Nanotube/Fullerene-Epoxy Nanocomposites [J]. Polymer engineering and science, 2008, 48(8): 467~1475.
    [92] Ajayan P M, Stephen O, Colliex C, et al. Aligned Carbon Nanotube Arrays Formed by Cutting a Polymer Resin-Nanotube Composite [J]. Science, 1994, 265(5176): 1212~1214.
    [93] Xiao K Q, Zhang L C. Effective Separation and Alignment of Long Entangled Carbon Nanotubes in Epoxy [J]. Journal of materials science, 2005, 40(24): 6513~6516.
    [94] Choi E S, Brooks J S, Eaton D L, et a1. Enhancement of Thermal and Electrical Properties of Carbon Nanotube Polymer Composites by magnetic Field Processing [J]. Journal of Applied Physics, 2003, 94(9): 6034~6035.
    [95] martina C A, Sandlera J K W, Windlea A H, et al. Electric Field-Induced Aligned Multi-Wall Carbon Nanotube Networks in Epoxy Composites [J]. Polymer, 2005, 46(3): 877~886.
    [96] Choi Y K, Gotoh Y, Sugimoto K I, et al. Processing and Characterization ofEpoxy Nanocomposites Reinforced by Cup-Stacked Carbon Nanotubes [J]. Polymer, 2005, 46(25): 11489~11498.
    [97] Gao Y, Wang Z J, Wang R, et al. Preparation and Characterization MWNTS/E44 [J]. Journal of material Science Technology, 2006, 22(1): 117~121.
    [98] Yuen S M, ma C C, Wu H H, et al. Preparation and Thermal, Electrical, and Morphologica Properties of Multiwalled Carbon Nanotube and Epoxy Composites [J]. Journal of Applied Polymer Science, 2007, 103(2): 1272~1278.
    [99] Ceccia S, Turcatoa E A, maffettone P A, et al. Nanocomposite UV-cured Coatings: Organoclay Intercalation by an Epoxy Resin [J]. Progress in Organic Coatings, 2008, 63(1): 110~115.
    [100] Puglia D, Valentini L, Kenn J M. Analysis of the Cure Reaction of Carbon Nanotubes/Epoxy Resin Composites through Thermal Analysis and Raman [J]. Journal of Applied Polymer Science, 2003, 88(2): 452~458.
    [101] Choi W J, Powell R L, Kim D S. Curing Behavior and Properties of Epoxy Nanocomposites With Amine Functionalized Multiwall Carbon Nanotubes [J]. Polymer Composites, 2009, 30(4): 415~421.
    [102] Abdalla M, Dean D, Robinson P, et al. Cure behavior of Epoxy/MWCNT Nanocomposites: The effect of Nanotube Surface Modification. Polymer, 2008, 49(15): 3310~3317.
    [103] Yang K, Gu M Y, Jin Y P. Cure Behavior and Thermal Stability Analysis of Multiwalled Carbon Nanotube/Epoxy Resin Nanocomposites [J]. Journal of Applied Polymer Science, 2008, 110(5): 2980~2988.
    [104] Bae J, Jang J, Yoon S H. Cure Behavior of the Liquid-Crystalline Epoxy/Carbon Nanotube System and the Effect of Surface Treatment of Carbon Fillers on Cure Reaction [J]. macromolecule Chemistry Physics, 2002, 203(15): 2196~2204.
    [105] Xie H F, Liu B H, Yuan Z R, et al. Cure Kinetics of Carbon Nanotube/Tetrafunctional Epoxy Nanocomposites by Isothermal Differential Scanning Calorimetry [J]. Polymer Physics, 2004, 42(20): 3701~3712.
    [106] Yang K, Gu M Y, Jin Y P, et al. Influence of Surface Treated Multi-Walled Carbon Nanotubes on Cure Behavior of Epoxy Nanocomposites [J]. Composites Part A, 2008, 39(10): 1670~1678.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700