用户名: 密码: 验证码:
真空开关操动智能自适应控制的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着真空开关技术的不断发展及“低碳化”等环境保护概念的提出,真空开关在电力系统等工程领域得到了广泛的应用。如何改善真空开关性能、提高其智能化水平、实现相控技术及扩大真空开关在电力系统的应用范围成为了电气工程的研究热点。近些年出现的永磁操动机构出力特性能与真空管负载特性进行良好匹配,且具有可靠性高及可控性高的特点,为真空开关智能化提供了必要的硬件基础。
     永磁机构真空开关操动智能控制对真空开关性能及智能化水平的提高和电力系统选相投切技术的实现等具有重要意义,是智能化电器和智能电网的前沿课题。本文主要着眼于当前课题中电力系统对相控开关的需求,对永磁机构真空开关操动智能自适应控制进行了研究,以保证开关操动时间的稳定性及实现操动过程的可控性,从而推进电力系统相控开关技术的实现及提高电力开关的智能化水平。
     论文针对永磁机构真空开关的操动智能控制目标,首先,分析了永磁机构的工作原理及其动态模型,并分析永磁机构与真空开关的匹配性,确定了操动的控制方式。其次,根据对永磁机构真空开关动态模型的分析,对其操动智能控制进行了研究,提出在补偿部分主要环境影响因素(电容电压、环境温度)的基础上,进行行程反馈自适应实时控制,以同时实现开关操动时间的稳定性和开关操动过程的可控性,控制上选择了模糊PID算法。最后,针对所研究的反馈自适应控制方案及课题项目中对控制系统的要求,设计实现永磁机构真空开关智能控制系统,并进行了系统调试及实验验证,说明了控制系统的可行性及有效性。
     文中以DSP处理器为核心设计实现了永磁机构真空开关智能控制系统,系统驱动开关操动部分采用桥式IGBT电力电子驱动电路,具有控制方式较灵活及控制精度较高等特点。针对课题项目中永磁机构相控真空开关的控制要求,利用该智能控制系统对开关进行了同步关合动作时间自适应控制实验。实验证明,在环境变化时该智能控制系统使得原来29.3ms-38.3ms的合闸时间变化范围改善为33.5ms-34ms(控制给定目标为33.75ms),合闸时间误差稳定在±0.25ms以内。
With the development of the vacuum switch technology and the proposal of environment protection, such as "low-carbon technology", vacuum circuit breakers have been widely used in power system and other engineering. How to improve the performance and intelligence of vacuum circuit breakers and to achieve synchronous switching, making vacuum circuit breakers more widely used in power system, have been the research focus in Electrical engineering. The force output characteristic of Permanent magnetic actuator (PMA) which appears recently can be good match to the load characteristic of vacuum interrupter. And PMA has high reliability and controllability. It is the necessary hardware foundation for the intelligence of vacuum circuit breakers.
     The intelligent control of vacuum circuit breakers with PMA is important to improve the performance and intelligence of vacuum circuit breakers and to achieve phase-control switching in power system, and it is an advanced topic in the intelligent apparatus and smart grid. This paper studies the intelligent adaptive control of vacuum circuit breakers with PMA, mainly focusing on the requirement of phase-control switching in power system, to achieve stable operating time and high controllability for vacuum circuit breakers. It can promote the realization of phase-control switching in power system and improve the intelligence of circuit breakers.
     For achieving the intelligent control of vacuum circuit breakers with PMA, firstly, analyze the operating principle and dynamic model of PMA, studies the matching between PMA and vacuum interrupter, determine the method to control vacuum circuit breakers with PMA. Secondly, according to the analysis of dynamic model of vacuum circuit breakers with PMA, studies the intelligent control of its operating. And have proposed adaptive real-time feedback control for the travel of switches, based on the compensation of major environmental factors (capacitor voltage and ambient temperature). This method not only can achieve stable operating time for vacuum circuit breakers, but also make the travel of switches can be controlled. And fuzzy self-adaptive PID control is used in this method. Lastly, according to the requirement of the intelligent control and the projects, designs the intelligent control system for vacuum circuit breakers with PMA. Then debugs the system and makes some experiments to prove its feasibility and effectiveness.
     This paper uses DSP to design the intelligent control system, and uses IGBT power electronic H-type drive circuit to drive switches. Its control mode can be more flexible and control accuracy can be higher. According to the requirement of the projects about synchronous vacuum switching with PMA, uses the intelligent control system to do the experiments on adaptive control for operating time of switches. According to the results of experiments, the intelligent control system can make the original making time 29.3ms-38.3ms improve to 33.5ms-34ms under different environmental conditions (the target time is 33.75ms). The system can keep the making time error within±0.25ms under different environmental conditions.
引文
[1]王章启,何俊佳,邹积岩,等.电力开关技术[M].武汉:华中科技大学出版社,2003.
    [2]王季梅,苑舜.大容量真空开关理论及其产品开发[M].西安:西安交通大学出版社,2001.
    [3](日)岩原皓一.真空开关[M].北京:煤炭工业出版社,1981.
    [4]F Berger, R Boulter and M Vester. Maintenance-free vacuum circuit-breaker[C]. Second International Conference on the Reliability of Transmission and Distribution Equipment, Coventry, Mar.1995:37-42.
    [5]R W Sorensen and H E Mendenhall. Vacuum Switching Experiment of California Institute of Technology[J]. Transactions of the American Institute of Electrical Engineers,1926, 45:1102-1105.
    [6]L T Falkingham and G F Montillet. A History of Fifty Years of Vacuum Interrupter Development[C]. Power Engineering Society General Meeting, Jun.2004:706-711.
    [7]J Wang and J Wang. Review of theoretical research in vacuum arc and their applications in China[C]. In Proc.19th Int. Symp. Discharges and Elect. Insulation Vacuum, Xi'an, China,2000:133-149.
    [8]B Kondala Rao and Gopal Gajjar. Development and application of vacuum circuit breaker model in electromagnetic transient simulation[C]. Power India Conference, New Delhi, June 5.2006:7.
    [9]Zhiyuan Liu, Jimei Wang, Shixin Xiu, et al. Development of high-voltage vacuum circuit breakers in China[J]. IEEE Trans. on Plasma Science, Aug.2007,35(4):856-865.
    [10]Homma M, Sakaki M, Kaneko E, et al. History of vacuum circuit breakers and recent developments in Japan[J]. IEEE Trans. on Dielectrics and Electrical Insulation, Feb.2006,13(1):85-92.
    [11]Chaly A M, Chistjakov S P, Rakhovsky V I, et al. Russian vacuum circuit breakers for electrical networks[C]. In Proc. ISDEIV.17th International Symposium on Discharges and Electrical Insulation in Vacuum,Berkeley,Jul.1996,2:1051-1060.
    [12]Yundong Cao, Feng Li, Xiaoming Liu, et al. Research on intelligent vacuum circuit breaker controller based on Embedded Network Control System[C]. International Symposium on Discharges and Electrical Insulation in vacuum, Matsue, Sept.2006, 2:496-499.
    [13]苑舜.真空断路器开断与关合不同负载时的操作过电压[M].北京:中国电力出版社,2001.
    [14]蔡心一.国际大电网会议高电压真空开关设备工作组会议报导[J],电工电气,2010(5):60-61.
    [15]杨以涵.电力系统基础[M].北京:中国电力出版社,2007.
    [16]段雄英,廖敏夫,丁富华,邹积岩.相控开关在电网中的应用及关键技术分析[J].高压电器,2007,43(2):113-117.
    [17]方春恩.同步真空开关的相关理论及其应用研究[D].大连:大连理工大学电气工程学院,2004.
    [18]Ware B j. Synchronous switching of power system[C]. CIGRE.1990, Aug.26-Sep.1,1990.
    [19]H. Ito. Controlled Switching Technologies, State-of-the-Art[C]. Transmission and Distribution Conference and Exhibition,Otc.2002:1455-1460.
    [20]李六零.相位控制高压断路器在配电网络中的应用.高压电器,2002,38(1):40-42.
    [21]K Horinouchi, M Tsukima, N Tohya and H Sasao. Synchronous controlled switching by vacuum circuit breaker (VCB) with electromagnetic operation mechanism[C]. DRPT2004, Hong Kong, Apr,2004:529-534.
    [22]CIGRE Task Force 13.00.1 of Study Committee 13. Controlled Swithching-a State-of-the-art Survey. Electra No.162/164[R]. Paris:CIGRE.1996.
    [23]CIGRE Working Group 13.07. Controlled Switching of HVAC Circuit Breakers:Guide for Application Lines, Reactors, Capacitors, Transformers (1st Part/2nd Part). Electra No 183/185[R]. Paris:CIGRE,1999.
    [24]CIGRE Working Group A3.07. Controlled Switching of HVAC Circuit Beakers:Guidance for Further Applications Including Unloaded Transformer Switching, Load and Fault Interruption and Circuit-breaker uprating[R]. Paris:CIGRE,2004.
    [25]CIGRE Working Group A3.07. Controlled Switching of HVAC Circuit Breakers:Benefits & Economic Aspects[R]. Paris:CIGRE,2004.
    [26]CIGRE Working Group A3.07. Controlled Switching:Non-conventional Applications. Electra No.214[R]. Paris:CIGRE,2004.
    [27]Laszlo P, Gyorgy B, Gabor B, et al. Reducing the Magnetizing Inrush Current by Means of Controlled Energization and De-energization of Large Power Transformers [C]. International Conference on Power Systems Transients, New Orleans, USA,2003.
    [28]Portales E, Bui-van Q. New Control Strategy of Inrush Transient During Transformer Energization at Toulnustouc Hydropower Plant Using Double-break 330 kV Circuit Breaker[C]. International Conference on Power Systems Transients, New Orleans, USA,2003:1-6.
    [29]Filion Y, Isbister R, Coutu A. Experience with Controlled Switching Systems(CSS)Used for Shunt Capacitor Banks:Planning, Studies and Testing Accordingly with CIGRE A3-07 Working Group Guidelines[C].IEEE PES International Symposium Quality and Security of Electric Power DeliverySystems,2003:80-85.
    [30]Kobayashi T, Tsukao S, Ohno I, et al. Application of Controlled Switching to 500 kV Shunt Reactor Current Interruption[J]. IEEE Trans. on Power Delivery,2003,18(4): 480-486.
    [31]Edgar Dullni, Harald Fink, Christian Reuber. A vacuum circuit-breaker with permanent magnetic actuator and electronic control[C]. Proceeding CIRED 1999, Nice:150-156.
    [32]Peng Sun, D Koning. Optimal Controlling of the interruption of high short circuit currents with a monophase vacuum interrupter[C]. IEEE 19th ISDEIV. Xi'an,2000: 427-430.
    [33]J Kaumanns. Influence of the arcing time on the interruption behaviour and current zero conditions of vacuum circuit breakers [J]. IEEE 18th ISDEIV,1998:492-495.
    [34]王瑛,蔡威,邹积岩.真空开关触头的运动特性研究[J].高压电器,1997(2):13-15.
    [35]王建华,宋政湘,耿英三,等.智能电器理论与关键技术[J].电力设备,2008,9(3):1-4.
    [36]余贻鑫,栾文鹏.智能电网评述[J].中国电机工程学报,2009,29(34):1-8.
    [37]邹积岩.智能电器[M].北京:机械工业出版社,2005.
    [38]王建华,耿英三,宋政湘.智能电网与智能电器[J].电气技术,2010(8):1-3.
    [39]Zou J Y, Duan X Y, Dong E Y. Permanent magnetic actuator and electronic drive for vacuum switches[C]. Proc.5th Inter. Conf. on Elec. Machines and Systems,2001:1323-1326.
    [40]LinXin, WuYi, GaoHuijun. Development of the Permanent Magnetic Actuator With Intelligent Controlling System [C]. Proc.5th Inter. Conf. on Elec. Machines and Systems, 2001:201-204.
    [41]Ma Shaohua, and Wang Jimei. Research and Design of Permanent Magnetic Actuator for High Voltage Vacuum Circuit Breaker[C].20th Inter. Symp. on Discharges and Electrical Insulation in Vacuum,2002:487-490.
    [42]陈德桂,耿英三.开关电器的智能操作[J].电工技术杂志,2001(4):26-29.
    [43]丁富华,邹积岩,段雄英,等.采用数字信号处理器的永磁机构同步控制系统[J].电网技术,2005,29(19):39-42.
    [44]黄瑜珑,王静军,徐国政,等.配永磁机构的真空断路器行程特性控制技术的研究[J].高压电器,2005,41(5):321-323.
    [45]段雄英,黄智慧,廖敏夫,丁富华等.基于多元线性回归法的相控开关操作时间的补偿与预测[J].电力自动化设备,2009,29(7):72-74.
    [46]方春恩,周承鸣,邹积岩.同步断路器的统计特性分析及自适应控制[J].高压电器,2006,42(3):183-185.
    [47]Ke Wang, Xueqiang Zhang, Jianye Chen. An optimized sync control method for vacuum circuit breaker [C].ICEMS 2008, Wuhan,Otc.2008:4475-4478.
    [48]邵盛楠,黄瑜珑,王静君,徐国政,钱家骊.高压断路器电动机驱动操动机构的研究[J].高电压技术,2008,34(3):555-559.
    [49]曹荣江,顾霓鸿.高压交流断路器的运行条件[M].北京:北京工业大学出版社,1999.
    [50]林莘.永磁机构与真空断路器.北京:机械工业出版社,2002.
    [51]Li Wei, Fang Chun-en, Zhou Lili, et al. Simulation and Testing of Operating Characteristic of 27.5kV Vacuum Circuit Breaker with Permanent Magnetic Actuator [C].23rd Interna-tional Symposium on Discharges and Electrical Insulation in Vacuum, Bucharest, 2008:125-128.
    [52]Yoshihiro Kawase, Hiroyuki Mori, Shokichi Ito.3-D finite element analysis of electro-dynamic repulsion force instationary electric conacts taking into account asymmetric shape[J]. IEEE Trans. On Magnetics,1997,33(2):1994-1999.
    [53]Jong-Ho Kang, Chae-Yoon Bae, and Hyun-kyo Jung. Dynamic behavior analysis of permanent magnetic actuator in vacuum circuit breaker[C]. The Sixth International Conference on Electrical Machines and Systems, NOV.2003:100-103.
    [54]Liu Fugui, Guo Hongyong, Yang Qingxin, et al. An improved approach to calculate the dynamic characteristics of permanent magnetic actuator of vacuum circuit breaker[J]. IEEE Transactions on Applied Superconductivity,2004,14(2):1918-1921.
    [55]Lin Xin, Gao Huijun, Cai Zhiyuan. Magnetic field calculation and dynamic behavior analyses of the permanent magnetic actuator[C]. ⅪⅩth International Symposium on Dis-charges and Electrical Insulation in Vacuum,2000:532-535.
    [56]B A R Mcken, Dr C Reuber. Magnets and vacuum-the perfect match[C]. Fifth International Conference on Trends in Distribution Switchgear:400V-145kV for Utilities and Private Networks, London,1998, No.459:73-79.
    [57]Narendra K S, Valavani L S. Stable adaptive controller design----direct control[J]. IEEE Trans, on AC, Aug 1978,23(4):570-583.
    [58]Bai Er-Wei, Shankar Sastry. Adaptive control of partially known[C]. American Control Conference, Seattle WA, June 1986:103-108
    [59]Krstic M, Kanellakopoulos I, Kokotovic P. Nonlinear and adaptiove control design[C]. John Wiley&Sons. inc, New York,1995.
    [60]J G Ziegler and N B Nichols. Optimum settings for automatic controllers [J]. Trans. ASME, 1942,64:759-768.
    [61]L Wang, T J D Barnes, and W R Cluet. New frequency-domain design method for PID controllers[C]. In Proc. Inst. Elect. Eng. D—Control Theory Appl.,1995,142(4): 265-271.
    [62]IEE colloquium on getting the best out of PID in machine control[C]. In Proc. Dig. Inst.Elect. Eng. PG16 Colloquium (96/287), London, Oct 24,1996.
    [63]王顺晃,舒迪前.智能控制系统及其应用(第二版)[M].北京:机械工业出版社,2005.
    [64]Wang L X. Fuzzy systems are universal approximators[C]. In:Proceedings of IEEE Interna-tional Conference on Fuzzy Systems,San Diego, Mar 1992:1163-1170.
    [65]Labiod S, Boucherit M S, Guerra T M. Adaptive fuzzy control of a class of MIMO nonlinear systems[J]. Fuzzy Sets and Systems,2005,150(1):59-77.
    [66]严峻,戴琼海.基于模糊控制的自适应播放算法[J].清华大学学报,2008,48(1):157-160.
    [67]聂一雄,尹项根.人工智能与模糊控制在电力系统继电保护应用的研究现状及前景[J].电力系统及其自动化学报,2000,12(2):37-48.
    [68]Kai Yuan Cai,Lei Zhang. Fuzzy reasoning as a control problem[J]. IEEE Transactions on Fuzzy Systems, June 2008.16(3):600-614.
    [69]M Santos, J M de la Cruz, S Dormido, A P de Madrid. Between Fuzzy-PID and PID-Conventional Controllers:a Good Choice [J]. Fuzzy Information Processing Society, Jun 1996:123-127.
    [70]程武山.智能控制理论与应用[M].上海:上海交通大学出版社,2006.
    [71]Petrov M, Ganchev I, Taneva A. Fuzzy PID Control of Nonlinear plants [C]. In:Proceedings. 2002 First International IEEE Symposium. Intelligent Systems,2002:30-35.
    [72]刘金琨.先进PID控制MATLAB仿真(第二版)[M].北京:电子工业出版社,2004.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700