用户名: 密码: 验证码:
太阳能干燥褐煤的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国煤炭种类繁多,其中褐煤产量丰富,价格低廉,但由于褐煤“二高三低”的特点,目前在国内开采较少,利用不广。如何降低褐煤水分,提高褐煤的利用效率,成为减低褐煤利用成本,增强褐煤市场竞争力的有效方法。
     本文结合褐煤高吸收率的自身的特性和我国褐煤产地丰富的太阳能资源的特点,提出利用太阳能对褐煤进行干燥处理,并从以下几个方面开展了相关工作。
     采用褐煤空气干燥法,对褐煤在等温条件下的干燥特性进行研究分析,得出褐煤在等温干燥下,干燥过程主要发生在降速干燥阶段。
     设计并构建两套太阳能干燥系统:温室型太阳能干燥系统和温室-集热型太阳能干燥系统。在温室型太阳能干燥系统上进行了褐煤太阳能干燥技术研究,得出在同等条件下,平衡时褐煤可达到比水和空气更高的温度,因此褐煤较适合太阳能干燥。对于预热和不预热干燥系统的条件下,褐煤太阳能干燥具有不同的干燥性质。研究中还对太阳辐射强度、煤粒大小、煤层厚度等影响因素对褐煤太阳能干燥效果进行了探索,研究表明辐射强度越强、煤粒越小、煤层越薄,越有利于褐煤的干燥。
     在温室.集热型太阳能干燥系统内主要研究了薄层褐煤的干燥特性,以及辐射强度、煤粒大小、通风量等因素对褐煤太阳能干燥影响。研究结果表明太阳能干燥薄层褐煤主要发生在降速干燥阶段,干燥曲线和干燥速率曲线呈指数变化。
     在实验的基础上,本文还对褐煤太阳能干燥进行了数学拟合,通过几个干燥模型的比较,选择了精确度较高,模拟效果较好的Logarithmic模型对褐煤的太阳能干燥进行模拟。实验和计算结果表明无论是室内人工太阳能装置下的干燥还是室外真实太阳光下的干燥,实验数据和干燥模型计算值的拟合较好,相关系数为0.99左右。因此Logarithmic模型可作为褐煤的太阳能的干燥模型,并由此得到褐煤太阳能干燥方程。
     文章在最后利用热平衡的原理计算两种干燥器的效率,结果表明在于燥前期,两种干燥器效率都较高,,其中温室-集热型太阳能干燥器对褐煤干燥效果较好,太阳能热利用效率较高,效率为19.7%,而温室型为14.5%。从整个实验阶段来看,两种装置的效率差距较小,均在11%左右。
Lignite has low price and worldwide abundant minable reserves. However, due to the high moisture content and low heat value, lignite is not widely used. Dewatering and improving efficiency of lignite when lignite is transported to be utilized is an effective way of reducing costs and enhancing the market competitiveness.
     Solar drying of lignite is originally proposed here based on high absorptivity of lignite due to its black brown color and rich, clean and renewable solar energy in lignite producing areas. A series of work were performed as follows:
     Using an oven, the drying characteristics of lignite under isothermal conditions was investigated. It can be concluded that drying process occurred mainly in falling rate drying period when isothermal drying of lignite.
     Two sets of solar drying systems were designed and built:direct-mode type solar drying systems and mixed type solar drying systems. In the former one, feasibility and preliminary study on solar drying of lignite was conducted. It concluded that the temperature of lignite was much higher than water and air under the same experimental conditions. Therefore, the technology of solar drying is good for lignite. Lignite has different drying characteristics in solar drying preheating and without preheating. Moreover, influencing factors in solar drying of lignite, including the effect of solar radiation intensity, the particle size of lignite and the thickness of lignite layer, were investigated. The results indicated that strong solar radiation, small lignite particles and thin lignite layer are good for the increase of the performance of solar drying of lignite.
     Thin layer drying characteristics of lignite was studied in the mixed type solar drying systems. It concluded that thin layer solar drying lignite mainly occurred in the falling rate drying period. Besides drying curve and drying rate curves expressed as exponential function.
     Characteristics of Solar drying lignite were simulated using origin software. Six mathematical models of thin layer drying are selected in order to estimate the suitable model for describing the drying curves. Logarithmic model gives the best prediction of the drying curves. Experimental and computational results show that Logarithmic model can fit the data of indoor experiment under artificial solar systems and outdoor experiment under real sunlight very well with a correlation coefficient R of about 0.99.Therefore logarithmic model can be considered as model of solar drying of ignites.
     The efficiency of two kinds of drying systems was calculated at last. Both of them have higher efficiency in the earlier period of drying than efficiency in the later period. As a comparison, the efficiency of mixed type solar drying systems is 19.7%, while 14.5% for direct-mode type solar drying systems in the earlier period of drying. the efficiency of the two in whole Stage has little gap, were around 11%.
引文
[1]宋卫东,方彤,王乾坤,周原彬.2009年《世界能源展望》要点综述[J].能源开发与应用,2010,22(1):18-22.
    [2]姚强,陈超.洁净煤技术[M].北京:化学工业出版社,2006:4-9。
    [3]刘刚,谭红军,叶菲.大型褐煤锅炉及其制粉系统的特点与选择[J].电力建设,2008,29(5):54-57。
    [4]H. Nakagawa, A. Namba, M. Bohlmann and K. Miura. Hydrothermal dewatering of brown coal and catalytic hydrothermal gasification of the organic compounds dissolving in the water using a novel Ni/carbon catalyst[J]. Fuel.2004.83:719-725.
    [5]万永周,肖雷,陶秀祥等.褐煤脱水预干燥技术进展[J].煤炭工程.2008.(8):91-93.
    [6]Chun-zhu li. Advances in the science of Victorian Brown coal.B. R.Stanmore and A. R. Boyd. "Removal of water from brown coal by treatment with steam," [J], Fuel Processing Technology,1978,1:305-313.
    [7]熊友辉.高水分褐煤燃烧发电的集成干燥技术[J].锅炉技术.2006.37:46-49.
    [8]Wilver PJ, Brumbaugh CA. Thermal drying of low rank coals using the fluid bed method.13th Biennial lignite symposium[M]. Bosmarck North Dakota.1985: 520-542.
    [9]高俊荣,陶秀祥,侯彤,万永周.褐煤干燥脱水技术的研究进展[J].煤质技术.2008.14(6):72-75.
    [10]Potter OE, Keogh AJ. Cheaper power from high moisture brown coals [J], Energy. 1979.52:143-146
    [11]Ewera J, Klutz H-J,Renzenbrink W, Scheffknecht G. Development of predrying and BoA-Plus technology. VGB Conference-Power plants in competition Technology [M], Operation and Environment.2003:19-20.
    [12]Bergins C. Kinetics and mechanism during mechanical/thermal dewatering of lignite [J]. Fuel.2003.82(4):355-364.
    [13]Brockway DJ, Jcckson PJ. Improving the efficiency of lignite based power generation.12th International Conference on Coal Science [J]. Australia:Cairns. 2003:59-76
    [14]J. Hulston, G. Favas and A.L. Chaffee. Physico-chemical properties of Loy Yang lignite dewatered by mechanical thermal expression [J]. Fuel.2005.84: 1940-1948.
    [15]C. J. Butler, A. M. Green, A. L. Chaffee. The Fate of Trace Elements During MTE and HTD Dewatering of Latrobe Valley Brown Coals [J]. International Journal of Coal Preparation and Utilization,2007.27:210-229.
    [16]罗运俊,何梓年,王长贵.太阳能技术[M].北京:化学工业出版社.2005:25-35.
    [17]Atul Sharma, C.R. Chen, Nguyen Vu Lan. Solar-energy drying systems:A review [J]. Renewable and Sustainable Energy Reviews.2009.13(6-7) 1185-1210.
    [18]Sodha MS, Dang A, Bansal PK, et al. An analytical and experimental study of open sun drying and a cabinet type drier [J]. Energy Convers Manage.1985. 25(3):263-271.
    [19]K.S. Jairaj, S.P. Singh, K. Srikant. A review of solar dryers developed for grape drying[J].Solar Energy.2009.83(9):1698-1712.
    [20]Ekechukwu OV, Norton B. Review of solar-energy drying systems Ⅱ:an overview of solar drying technology. Energy Convers Manage.1999.40(6): 615-655.
    [21]于业宇.太阳能在干燥领域的应用及展望[J].中国工程师,1997,(6):46-46.
    [22]Sreekumar A, Manikantan PE, Vijayakumar KP. Performance of indirect solar cabinet dryer [J]. Energy Convers Manage.2008.49(6):1388-1395.
    [23]Kreider SF, Kreith F. Solar energy handbook. New York[M]. USA:McGraw Hill Book Co.1981:39-69.
    [24]李立敦,刘森元.国外大型太阳能干燥器现状[J].新能源,1989,11(5):3-6.
    [25]刘森元,李立敦.太阳能干燥利用研究及其在工农业生产中的应用[J].新能 源,2000.22(1):9-15.
    [26]魏广学,徐建华,陈伍平,佟树声,孙巧如.褐煤脱水提质工艺的研究[J]。农村能源,1994.2(54):16-20.
    [27]张璧光.太阳能干燥技术及应用前景[J].太阳能,2007,(7):21-25.
    [28]Zhimin Li, Hao Zhong, Runsheng Tang, Tao Liu,Wenfeng Gao, Yue Zhang. Experimental investigation on solar drying of salted greengages [J]. Renewable energy.2006.31:837-847.
    [29]A. Fadhel, S. Kooli, A. Farhat, A. Bellghith. Study of the solar drying of grapes by three different processes [J]. Desalination.2005.185:535-541.
    [30]M. A. Basunia, T. Abe. Thin-layer solar drying characteristics of rough rice under natural convection [J]. Journal of Food Engineering.2001.47:295-301.
    [31]V. Shanmugam, E. Natarajan. Experimental study of regenerative desiccant integrated solar dryer with and without reflective mirror [J].2007.27: 1543-1551.
    [32]雷海燕,李惟毅,郑宗和.污泥的太阳能干燥实验研究[J].太阳能学报,2004,25(4):479-482.
    [33]L. Ait Mohamed, M. Kouhila, A. Jamali. Single layer solar drying behaviour of Citrus aurantium leaves under forced convection [J]. Energy Conversion and Management.2005.46:1473-1483.
    [34]L. Ait Mohamed, C.S. Ethmane Kane, M. Kouhila. Thin layer modelling of Gelidium sesquipedale solar drying process [J]. Energy Conversion and Management.2008.49:940-946.
    [35]Adnan Midilli, Haydar Kucuk. Mathematical modeling of thin layer drying of pistachio by using solar energy [J].Energy Conversion and Management.2003. 44:1111-1122.
    [36]Dilip Jain. Modeling the system performance of multi-tray crop drying using an inclined multi-pass solar air heater with in-built thermal storage[J]. Journal of Food Engineering.2005.71:44-54.
    [37]S. Boughali, H. Benmoussa, B. Bouchekima. Crop drying by indirect active hybrid solar-Electrical dryerin the eastern Algerian Septentrional Sahara [J].Solar Energy.2009.83(12):2223-2232.
    [38]V.L. Mathioudakis, A.G. Kapagiannidis, E. Athanasoulia, et al. Extended Dewatering of Sewage Sludge in Solar Drying Plants[J]. Desalination.2009. 248(1-3):733-739.
    [39]K.S. Jairaj, S.P. Singh, K. Srikant. A review of solar dryers developed for grape drying [J].Solar Energy.2009.83(9):1698-1712.
    [40]D. Luna J.P, Nadeau Y. Jannot. Solar timber kilns:State of the art and foreseeable developments [J]. Renewable and Sustainable Energy Reviews.2009. 13:1446-1455.
    [41]Afzal TM, Abe T. Simulation of moisture changes in barley during far infrared radiation drying [J]. Compute Electron Agric.2000.26:137-45.
    [42]Ozdemir M, Devres YO. The thin layer drier characteristics of hazelnut during roasting [J]. Food Engage.1999.42:225-33.
    [43]Lewis W.K. The rate of drying of solid materials[J]. Journal of Industrial Engineering Chemistry.1921.13:427-432.
    [44]Zhang Q, Litchfield J.B. An optimization of intermittent corn drying in a laboratory scale thin layer dryer [J]. Drying Technology.1991.9:383-395.
    [45]Diamente L.M, Munro P.A. Mathematical modeling of thin layer solar drying of sweet potato slices[J]. Solar Energy.1993.51:271-276.
    [46]Overhults D.D, White G.M, Hamilton M.E, Ross.I.J. Dryingsoybeans with heated air [J]. Transactions of the ASAE.1973.16:195-200.
    [47]Yagcioglu A, Degirmencioglu A, Cagatay F. Drying characteristicof laurel leaves under different conditions. Turkey:Bascetincelik.1999:565-569.
    [48]Henderson, S.M. Progress in developing the thin layer drying equation [J]. Transactions of the ASAE.1974.17:1167-1172.
    [49]Sharaf-Eldeen Y.I, Blaisdell J.L., Hamd.M.Y. A model for corn drying [J]. Transactions of the ASAE.1980.23:1261-1271.
    [50]Yaldiz O, Ertekin C. Thin layer solar drying some different vegetables[J]. Drying Technology.2001.19(3):583-596.
    [51]Verma L.R, Bucklin R.A, Endan J.B, Wratten F.T. Effects of drying air parameters on rice drying models [J]. Transactions of the ASAE.1985.28: 296-301.
    [52]Midilli A, Kucuk H, Yapar Z. A new model for single layer drying[J]. Drying Technology.2002.20(7):1503-1513.
    [53]Yagcioglu A, Degirmencioglu A, Cagatay F. Drying characteristics of laurel leaves under different conditions. In:Bas Cetincelik A, editor.Proceedings of the seventh international congress on agricultural mechanization and energy[M]. Adana, Turkey:Faculty of Agriculture, Cukurova University;1999:565-916.
    [54]张璧光,刘志军,谢拥群。太阳能干燥技术[M]。北京:化学工业出版社.2007:51-69.
    [55]雷海燕.太阳能干燥污泥的研究[D].天津:天津大学.2003:8-20.
    [56]王宝和.干燥动力学研究综述[J].干燥技术与设备.2009.7(1):51-71.
    [57]M. Kashaninejad, A. Mortazavi, A. Safekordi, L.G. Tabil. Thin-layer drying characteristics and modeling of pistachio nuts [J]. Journal of Food Engineering. 2007.78:98-108.
    [58]Ozdemir M, Devres Y. O. The thin layer drying characteristicsof hazelnuts during roasting [J]. Journal of Food Engineering.1999.42:225-233.
    [59]Doymaz I. Convective air drying characteristics of thin layer carrots [J]. Journal of Food Engineering.2004.61:359-364.
    [60]Doymaz I, Pala M. The effects of dipping pretreatments onair-drying rates of seedless grape [J]. Journal of Food Engineering.2002.52(4):413-417.
    [61]White G.M., Ross I.J, Poneleit C.G. Fully exposed dryingof popcorn [J]. Transactions of the ASAE.1981.24(2):466-468.
    [62]Togrul I. T,& Pehlivan D. Mathematical modeling of sola drying of apricots in thin layers [J]. Journal of Food Engineering.2002.55(3):209-216.
    [63]Duffie JA, Beckman WA. Solar engineering of thermal process [M]. New York: Wiley.1991.
    [64]McAdams WH. Heat transmission. New York:McGraw-Hill.1954.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700