蒙东褐煤热压脱水机理与经济性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国蒙东地区贮藏有丰富的褐煤资源,由于全水分高达30%以上,Qnet,ar不到3500kcal/kg,影响了长距离运输的经济性和电厂燃用的经济性。由于世界能源危机和国内煤炭紧缺,很多电厂纷纷采购褐煤,以掺烧的方式代替部分烟煤。因此采用经济有效的方法脱除褐煤的水分,扩大褐煤经济利用范围具有重大意义。
     褐煤热压脱水是在一定的温度和压力下对褐煤进行加热加压,以模拟成煤过程,从而改变褐煤内部结构,脱除煤中水分,增加发热量,使褐煤的物性趋向于烟煤。由于该脱水方法在一定的压力下进行,煤中水分以液态形式脱除,因此能耗较低。此外由于采用热压对褐煤进行改质,可以有效抑制褐煤脱水后的再回水作用,因此具有良好的应用前景。
     本文针对褐煤热压脱水技术,搭建脱水试验台,并通过热分析等试验方法确定脱水工况,对我国蒙东大雁褐煤在不同压力下热压脱水,得到脱水后褐煤。褐煤的水分有明显程度的下降,全水分仅为原褐煤的25%左右,收到基发热量增加35%-40%。热压后褐煤的回水有一定的抑制。通过电镜扫描和低温氮吸附研究热压脱水前后褐煤的外表面形态和孔隙结构,褐煤热压后表面光滑且孔体积变小。通过对理论经济性分析得到脱水后褐煤的运输经济性和电厂经济性有很大的提高。
Lignite resource which is plenty stored in the east of Inner-Mongolia cannot be economically used by long distance transportation and economically and safely used in power plants due to its high moisture as well as low heat value. But as the world energy crisis and domestic coal shortage, each of big power plant purchases lignite to instead of bituminous by the method of blending. So it is significantly to expand the economy utilization area by dewatering the moisture of the lignite by economy and effective method.
     Lignite thermal-pressure dewatering means to simulate the coal-forming process, in specific temperature and pressure, the internal structure of lignite changes and the moisture decreases, the characteristics of lignite approaches bituminous as its heat value increases. Due to the dewatering process is under high pressure, the moisture in lignite separates out in liquid, so that the energy consumption relatively lower. Furthermore, this dewatering method has good application prosperity because the dewatered lignite has restraint effective to water re-absorption.
     This thesis in connection with thermal-pressure dewatering technical, determined the work condition for dewatering by thermal analysis and et al. dewatered lignite can be getted by thermal-pressure the Dayan lignite form east of the Inner-Mongolia through experimental bench. The moisture in lignite decreases significantly under different pressure dewatering. The total moisture decreased by 75% and the heat value increased by 25%. The thermal-pressure dewatering has certain effective in restraint its water re-absorption. Used SEM to analysis thermal-pressure dewatered lignite, the surface of dewatered lignite got smooth and the gully structure disappeared. The low-temperature nitrogen absorption test shows the pore size distribution dewatered under higher pressure changed and the total pore volume decreased. The dewatered lignite shows its'economic in long transportation and power plants combustion.
引文
[1]江泽民.对中国能源问题的思考[J].中国石油和化工经济分析,2008,(6):4-16.
    [2]British Petroleum Company PLC B. BP Statistical Review of World Energy June 2010[J].2010.
    [3]中华人民共和国国土资源部.二○○六年全国矿产资源储量通报[R].2007.
    [4]浙江省统计局,浙江省经济和信息化委员会.2009年浙江省能源与利用状况(白皮书)[R].2010.
    [5]倪呈刚.印尼煤特性及其在电厂的应用研究[D].浙江大学,2006.
    [6]李仲模.褐煤有广泛用途[J].化工矿物与加工,1999,(1):32.
    [7]初茉,李华民.褐煤的加工与利用技术[J].煤炭工程,2005,(2):47-49.
    [8]UBC (Upgraded Brown Coal) Process Development [R].2003.
    [9]尹立群.我国褐煤资源及其利用前景[J].煤炭科学技术,2004,(8):12-14.
    [10]戴和武,谢可玉.褐煤利用技术[M].煤炭工业出版社,2008.
    [11]李宏.中国煤炭运输—能力、消耗和价格[M].中国市场出版社,2008.
    [12]山西汾渭能源开发咨询公司.中国煤矿煤炭及应用评价[M].山西科学技术出版社,2007.
    [13]Bergins C., Strauss K., Sigg J. Beneficial effects of the combination of mechanical/thermal dewatering and dry lignite fired power stations[J]. VGB Power Tech,2004,24(1-2):60-65.
    [14]Bergins C. Kinetics and mechanism during mechanical/thermal dewatering of lignite[J]. Fuel,2003,82(4):355-364.
    [15]张妮妮.煤的可磨性指数变化及破碎机理研究[D].浙江大学,2006.
    [16]Wheeler R. A., Hoadley A. F. A., Clayton S. A. Modelling the mechanical thermal expression behaviour of lignite[J]. Fuel,2009,88(9):1741-1751.
    [17]万永周,高俊荣,肖雷等.褐煤的脱水提质研究[J].煤炭工程,2010,(4):75-77.
    [18]刘少平,刘党卫.汽化潜热的估算[J].化工装备技术,1999,25(6):25-27.
    [19]Chen Z., Wu W., Agarwal P. K. Steam-drying of coal. Part 1. Modeling the behavior of a single particle[J]. Fuel,2000,79(8):961-974.
    [20]Chen Z., Agarwal P. K., Agnew J. B. Steam drying of coal. Part 2. Modeling the operation of a fluidized bed drying unit[J]. Fuel,2001,80(2):209-223.
    [21]Bongers G. D., Jackson W. R., Woskoboenko F. Pressurised steam drying of Australian low-rank coals:Part 2. Shrinkage and physical properties of steam dried coals, preparation of dried coals with very high porosity[J]. Fuel Processing Technology,2000,64(1-3):13-23.
    [22]Bongers G. D., Jackson W. R., Woskoboenko F. Pressurised steam drying of Australian low-rank coals:Part 1. Equilibrium moisture contents[J]. Fuel Processing Technology,1998,57(1):41-54.
    [23]BMA. Fluidized-Bed Steam Dryer For Pulp Drying[R].2005.
    [24]Rordprapat W., Nathakaranakule A., Tia W., et al. Comparative study of fluidized bed paddy drying using hot air and superheated steam[J]. Journal of Food Engineering,2005,71(1):28-36.
    [25]Ross D., Doguparthy S., Huynh D., et al. Pressurised flash drying of Yallourn lignite[J]. Fuel,2005,84(1):47-52.
    [26]云增杰,董洪峰,曹勇飞.高水分燃料褐煤脱水技术[J].露天采矿技术,2008,(4):69-71.
    [27]Rahse W. Drying With Superheated Steam In A Spray-Drying Tower[J]. Henkel-Referate,1999,35:21-24.
    [28]Davy R., Johnston B., Nicol S., et al. Residual moisture reduction of coarse coal using air purging.2. Pilot scale studies[J]. Minerals Engineering,2001, 14(6):671-680.
    [29]Westen SynCoal LLC. Advanced coal conversion process demonstration[R]. Project Fact Sheets 2003.
    [30]New Energy and Industrial Technology Development, Kobe Steel, Ltd, Nissho Iwai Corp, et al. Brown Coal Liquefaction Technology (BCL)[R].2003.
    [31]Umar D. F., Usui H., Daulay B. Change of combustion characteristics of Indonesian low rank coal due to upgraded brown coal process[J]. Fuel Processing Technology,2006,87(11):1007-1011.
    [32]Mahidin, Ogaki Y., Usui H., et al. The advantages of vacuum-treatment in the thermal upgrading of low-rank coals on the improvement of dewatering and devolatilization[J]. Fuel Processing Technology,2003,84(1-3):147-160.
    [33]Koca H., Koca S., Kockar O. M. Upgrading of Kutahya region lignites by mild pyrolysis and high intensity dry magnetic separation[J]. Minerals Engineering, 2000,13(6):657-661.
    [34]U.S. Department Of Energy, National Energy Technology Laboratory. The ENCOAL Mild Coal Gasification Project A DOE Assesment[R].2002.
    [35]祁超,王秀菊,杨道科等.2450MHz微波食管辐射器穿透性研究[J].中国生物医学工程学报,2003,(1):93-95.
    [36]Kamei O., Onoe K., Marushima W., et al. Brown coal conversion by microwave plasma reactions under successive supply of methane[J]. Fuel,1998, 77(13):1503-1506.
    [37]Xia D. K., Picklesi C. A. Microwave caustic leaching of electric arc furnace dust[J]. Minerals Engineering,2000,13(1):79-94.
    [38]Uslu T., Atalay. Microwave heating of coal for enhanced magnetic removal of pyrite[J]. Fuel Processing Technology,2004,85(1):21-29.
    [39]Pickles C. A. Microwaves in extractive metallurgy:Part 1-Review of fundamentals[J]. Minerals Engineering,2009,22(13):1102-1111.
    [40]Monsef-Mirzai P., Ravindran M., McWhinnie W. R., et al. Rapid microwave pyrolysis of coal:Methodology and examination of the residual and volatile phases[J]. Fuel,1995,74(1):20-27.
    [41]Lester E., Kingman S. The effect of microwave pre-heating on five different coals[J]. Fuel,2004,83(14-15):1941-1947.
    [42]Marland S., Han B., Merchant A., et al. The effect of microwave radiation on coal grindability[J]. Fuel,2000,79(11):1283-1288.
    [43]Turcniov L., Soong Y., Lovs M., et al. The effect of microwave radiation on the triboelectrostatic separation of coal[J]. Fuel,2004,83(14-15):2075-2079.
    [44]程荣,丘纪华,游君.煤粉粒径对微波脱硫过程的影响[J].华中科技大学学 报(自然科学版),2002,(1):93-95.
    [45]徐慧.微波加热的能量吸收与效率研究[J].天津职业院校联合学报,2008,(4):127-130.
    [46]陈津,刘浏,曾加庆等.微波加热在含碳球团中应用的研究[J].工业加热,2001,(6):8-10.
    [47]张润华.微波作用下的煤[J].2010:2.
    [48]崔平,王知彩,胡政平等.微波作用下的细粉煤脱水研究[J].燃料化学学报,2002,(2):178-181.
    [49]崔平,朱静,王知彩.微波作用下化学助剂在细粉煤脱水中的应用研究[J].矿物学报,2002,(4):375-378.
    [50]Seehra M. S., Kalra A., Manivannan A. Dewatering of fine coal slurries by selective heating with microwaves[J]. Fuel,86(5-6):829-834.
    [51]Butler C. J., Green A. M., Chaffee A. L. Assessment of the water quality produced from mechanical thermal expression processing of three Latrobe Valley lignites[J]. Fuel,2006,85(10-11):1364-1370.
    [52]Fei Y., Artanto Y., Giroux L., et al. Comparison of some physico-chemical properties of Victorian lignite dewatered under non-evaporative conditions [J]. Fuel,2006,85(14-15):1987-1991.
    [53]Artanto Y., Chaffee A. L. Dewatering Low Rank Coals by Mechanical Thermal Expression (MTE) and its Influence on Organic Carbon and Inorganic Removal[J]. Drying Technology,2005,25:251-267.
    [54]Racovalis L., Hobday M. D., Hodges S. Effect of processing conditions on organics in wastewater from hydrothermal dewatering of low-rank coal[J]. Fuel, 2002,81(10):1369-1378.
    [55]Nakagawa H., Namba A., Bhlmann M., et al. Hydrothermal dewatering of brown coal and catalytic hydrothermal gasification of the organic compounds dissolving in the water using a novel Ni/carbon catalyst[J]. Fuel,2004,83(6):719-725.
    [56]Favas G., Jackson W. R. Hydrothermal dewatering of lower rank coals.1. Effects of process conditions on the properties of dried product[J]. Fuel,2003, 82(1):53-57.
    [57]Favas G., Jackson W. R. Hydrothermal dewatering of lower rank coals.2. Effects of coal characteristics for a range of Australian and international coals[J]. Fuel, 2003,82(1):59-69.
    [58]Favas G., Jackson W. R., Marshall M. Hydrothermal dewatering of lower rank coals.3. High-concentration slurries from hydrothermally treated lower rank coals[J]. Fuel,2003,82(1):71-79.
    [59]Morimoto M., Nakagawa H., Miura K. Hydrothermal extraction and hydrothermal gasification process for brown coal conversion[J]. Fuel,2008, 87(4-5):546-551.
    [60]Sakaguchi M., Laursen K., Nakagawa H., et al. Hydrothermal upgrading of Loy Yang Brown coal-Effect of upgrading conditions on the characteristics of the products[J]. Fuel Processing Technology,2008,89(4):391-396.
    [61]Bergins C. Mechanical/thermal dewatering of lignite. Part 2:A rheological model for consolidation and creep process[J]. Fuel,2004,83(3):267-276.
    [62]Bergins C., Hulston J., Strauss K., et al. Mechanical/thermal dewatering of lignite. Part 3:Physical properties and pore structure of MTE product coals[J]. Fuel, 2007,86(1-2):3-16.
    [63]Butler C. J., Green A. M., Chaffee A. L. MTE water remediation using Loy Yang brown coal as a filter bed adsorbent[J]. Fuel,2008,87(6):894-904.
    [64]Hulston J., Favas G., Chaffee A. L. Physico-chemical properties of Loy Yang lignite dewatered by mechanical thermal expression[J]. Fuel,2005, 84(14-15):1940-1948.
    [65]Clayton S. A., Wheeler R. A., Hoadley A. F. A. Pore Destruction Resulting from Mechanical Thermal Expression Pore Destruction Resulting from Mechanical Thermal Expression[J]. Drying Technology,2007,25:533-546.
    [66]Butler C. J., Green A. M., Chaffee A. L. Remediation of mechanical thermal expression product waters using raw Latrobe Valley brown coals as adsorbents [J]. Fuel,2007,86(7-8):1130-1138.
    [67]Butler C. J. The Fate of Trace Elements During MTE and HTD Dewatering of Latrobe Valley Brown Coals[J]. Coal Preparation,2007,27:210-229.
    [68]Bulter C. J., Green A. M. The Influence of Water Quality on the Reuse of Lignite-derived Waters in the Latrobe Valley,Australia[J]. Coal Preparation,2005, 25:47-66.
    [69]Miura K., Mae K., Ashida R., et al. Dewatering of coal through solvent extraction[J]. Fuel,2002,81(11-12):1417-1422.
    [70]Kanda H., Makino H., Miyahara M. Energy-saving drying technology for porous media using liquefied DME gas[J]. Adsorption,2008,14:467-473.
    [71]Sato Y., Kushiyama S., Kondo Y., et al. Property of upgraded solid product from low rank coal by thermal reaction with solvent[J]. Fuel Processing Technology, 2007,88(4):333-341.
    [72]Sato Y., Kushiyama S., Tatsumoto K., et al. Upgrading of low rank coal with solvent[J]. Fuel Processing Technology,2004,85(14):1551-1564.
    [73]Singh B. P., Besra L., Reddy P. S. R., et al. Use of surfactants to aid the dewatering of fine clean coal[J]. Fuel,1998,77(12):1349-1356.
    [74]赵虹,郭飞,杨建国.印尼褐煤的吸附特性及脱水研究[J].煤炭学报,2008,(7):799-802.
    [75]赵振新,朱书全,马名杰等.中国褐煤的综合优化利用[J].洁净煤技术,2008,(1):28-31.
    [76]赵志根,唐修义.低温氮吸附法测试煤中微孔隙及其意义[J].煤田地质与勘探,2001,(5):28-30.
    [77]钟玲文,张慧,员争荣等.煤的比表面积孔体积及其对煤吸附能力的影响[J].煤田地质与勘探,2002,(3):26-29.
    [78]周小玲,肖宝清.煤的孔隙特性与煤中水分关系的研究[J].矿冶,1995,(1).
    [79]秦跃平,傅贵.煤孔隙分形特性及其吸水性能的研究[J].煤炭学报,2000,(1).
    [80]吕向前,刘炯天.浮选精煤中水的存在形式与脱除[J].煤炭技术,2005,(1):47-49.
    [81]谢克昌.煤的结构与反应性[M].科学出版社,2002.
    [82]司学芝,刘捷,展海军.无机化学[M].化学工业出版社,2009.
    [83]赵卫东,刘建忠,周俊虎等.褐煤等温脱水热重分析[J].中国电机工程学报,2009,(14):74-79.
    [84]Murray J. B., Evanst D. G. The brown-coal water system Part 3:Thermal dewatering of brown coal[J]. Fuel,1972,51:290-296.
    [85]Evans D. G. The brown-coal water system Part 4:Shrinkage on drying[J]. Fuel, 1973,52:186-190.
    [86]Allardice D. J., Evans D. G. The brown-coal water system Part 1:The effect of temperatureon the evolution of water from brown coal[J]. Fuel,1971, 50:201-220.
    [87]Allardice D. J., Evans D. G. The brown-coal water system Part 2:Water sorption isotherms on bed-moist Yallourn brown coal[J]. Fuel,1971,50:236-253.
    [88]Kaji R., Muranaka Y., Otsuka K., et al. Water absorption by coals:effects of pore structure and surface oxygen[J]. Fuel,1986,65(2):288-291.
    [89]Mitra S., Mukhopadhyay R., Chandrasekaran K. S. Water dynamics in lignite coal pores[J]. Physica B:Condensed Matter,2000,292(1-2):29-34.
    [90]王正烈,周亚平,李松林.物理化学下册第四版[M].高等教育出版社,2001.
    [91]杨建国.煤粉锅炉空气富氧直接点火技术的理论及应用研究[D].浙江大学,2010.
    [92]王琦.氧浓度及温度变化影响煤粉燃烧特性的恒温热分析研究[D].浙江大学,2008.
    [93]Mayoral M. C., Izquierdo M. T., Blesa M. J., et al. DSC study of curing in smokeless briquetting[J]. Thermochimica Acta,2001,371(1-2):41-44.
    [94]Warne S. S. J. Thermal analysis and coal assessment:an overview with new developments[J]. Thermochimica Acta,1996,272:1-9.
    [95]黄钰香,庞承焕,林木良.DSC检测过程影响因素的探讨研究[J].广州化工,2008,(5):1-6.
    [96]丁恩勇,梁学海.DSC曲线各特征点的物理意义以及相变热焓的广义Speil公式的推导[J].广州化学,1995,(1):1-7.
    [97]熊友辉,孙学信.用差热分析法确定煤发热量的研究[J].煤炭转化,1998,(1):77-79.
    [98]徐建国,魏兆龙.用热分析法研究煤的热解特性[J].燃烧科学与技术,1999,(2).
    [99]徐朝芬,孙学信,胡松.基于TGA-DSC-FTIR联用技术研究煤粉的燃烧特性[J].热能动力工程,2005,(3):288-290.
    [100]Wolfinger M. G., Rath J., Krammer G., et al. influence of the emissivity of the sample on differential scanning calorimetry measurements[J]. Thermochimoca Acta,2001,372:11-18.
    [101]Westmoreland P. R., Inguilizian T., Rotem K. Flammability kinetics from TGA/DSC/GCMS microcalorimetry and computational quantum chemistry [J]. Thermochimica Acta,2001,(367-368):401-405.
    [102]邓芙蓉,杨建国,赵虹.利用TG-DSC方法研究煤灰熔融特性[J].煤炭科学技术,2005,(2):46-49.
    [103]宋超.多孔陶瓷的制备及特性研究[D].长春理工大学,2007.
    [104]孙锐,廖坚,Kelebopile L等.等温热重分析法对煤焦反应动力学特性研究[J].煤炭转化,2010,33(2):57-63.
    [105]赵卫东,刘建忠,周俊虎等.褐煤等温脱水热重分析[J].中国电机工程学报,2009,(14):74-79.
    [106]魏跞宏,李润东,李爱民等.超细煤粉着火特性的热重分析[J].煤炭学报,2008,33(11):1292-1295.
    [107]马砺,王振平,邓军等.采用热重分析法研究煤自燃过程的特征温度[J].33,2007,5(73-76).
    [108]周志杰,范晓雷,张微等.非等温热重分析研究煤焦气化动力学[J].煤炭学报,2006,31(2):219-222.
    [109]刘靖昀.富氧环境下煤粉燃烧特性试验研究[D].浙江大学,2006.
    [110]熊方勋,吴少华,林伟刚.应用TG-FTIR-研究鹤岗烟煤的热解特性[J].电站系统工程,2006,(5):26-28.
    [111]Sergio M. A., Hamblen D. G. Kinetics of Volatile Product Evolution in Coal Pyrolysis:Experiment and Theory[J]. Energy Fuels,1987,1:138-152.
    [112]叶江明.电站锅炉原理[M].中国电力出版社,2004.
    [113]高俊荣,陶秀祥,万永周等.褐煤热压脱水成型试验[J].煤炭科学技术,2009,(6):126-128.
    [114]中华人民共和国国家质量监督检验建议总局,中国国家标准化管理委员会.GB/T 211-2007煤中全水分的测定[S],2007.
    [115]岑可法,姚强,骆仲泱等.高等燃烧学[M].浙江大学出版社,2002.
    [116]胡荣祖,史启祯.热分析动力学[M].科学出版社,2001.
    [117]陶文铨,杨世铭.传热学[M].高等教育出版社,2006.
    [118]中华人民共和国国家质量监督检验检疫总局.GB/T212-2001煤的工业分析方法[S],2001.
    [119]中华人民共和国国家质量监督检验检疫总局.GB/T406-2001煤的元素分析方法[S],2001.
    [120]中华人民共和国国家质量监督检验检疫总局.GB/T213-2003煤的发热量测定方法[S],2003.
    [121]丁立新,王金枝,程新华等.电站锅炉原理[M].中国电力出版社,2006.
    [122]张占存.煤的吸附特征及煤中孔隙的分布规律[J].煤矿安全,2006,(9).
    [123]张占涛,王黎,张睿等.煤的孔隙结构与反应性关系的研究进展[J].煤炭转化,2005,(4).
    [124]丘纪华.煤粉在热分解过程中比表面积和孔隙结构的变化[J].燃料化学学报,1994,(3).
    [125]陈萍,唐修义.低温氮吸附法与煤中微孔隙特征的研究[J].煤炭学报,2001,(5):552-556.
    [126]何余生,李忠,奚红霞等.气固吸附等温线的研究进展[J].离子交换与吸附,2004,(4):376-384.
    [127]刘辉,吴少华,姜秀民等.快速热解褐煤焦的低温氮吸附等温线形态分析[J].煤炭学报,2005,(4):507-510.
    [128]严继民,张培元.吸附与凝聚[M].科学出版社,1979.
    [129]Gurdal G., Yalcm M. N. Pore volume and surface area of the Carboniferous coals from the Zonguldak basin (NW Turkey) and their variations with rank and maceral composition[J].48,2001,1-2(133-144).
    [130]张慧.煤孔隙的成因类型及其研究[J].煤炭学报,2001,(1):40-44.
    [131]吕志发,张新民,钟铃文等.块煤的孔隙特征及其影响因素[J].中国矿业大学学报,1991,(3).
    [132]李文军,焦子阳,刘丽丽等.甲醇萃取对大雁褐煤孔隙结构的影响[J].煤炭转化,2009,(4):5-7.
    [133]于淑政,吴炳胜,解德才.褐煤压制成型理论分析[J].河北建筑科技学院学报,1997,(3):48-52.
    [134]中华人民共和国国家经济贸易委员会.DL/T5145-2002火力发电厂制粉系统设计计算技术规定[S],2002.
    [135]中华人民共和国铁道部.铁路货物运价规则[M].中国铁道出版社,2005.
    [136]阎维平,马凯,李春启等.褐煤干燥对电厂经济性的影响[J].中国电力,2010,(3):35-37.
    [137]曹红加,张清峰,李悦等.600MW高水分褐煤锅炉结渣特性[J].华北电力技术,2008,(3):30-34.
    [138]王文生,尚海军,祝志福.烟煤锅炉掺烧褐煤产生的问题及其改造[J].热力发电,2009,(9):60-62.
    [139]吕施展,米子德.高水分褐煤在MPS中速磨直吹式制粉系统应用中的探讨[J].华北电力技术,2009,(6):34-37.
    [140]赵晴川,樊培利,陈方高等.ZGM-113G型中速磨煤机运行特性试验研究[J].热力发电,2009,(12):55-57.
    [141]王培萍,赵世伟,岳希明等.ZGM113G型中速磨煤机运行问题分析[J].热力发电,2010,(1):56-57.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700