用户名: 密码: 验证码:
脂肪组织白介素-18在代谢综合征发病中的作用及其信号转导机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
背景
     随着人类生活方式及饮食习惯的改变,代谢综合征(Metabolic syndrome,MS)已成为严重威胁人类健康的疾病。MS是一种介于正常代谢与2型糖尿病之间的状态,包括腹型肥胖、糖耐量异常、血脂异常、高血压以及胰岛素抵抗等一组心血管疾病危险因素的症候群。近半个世纪来,国内外学者对MS进行了大量研究,虽然取得了阶段性研究成果,但MS的发生机制仍未被完全阐明。
     MS的发病机制十分复杂,既与遗传易感基因有关,又涉及某些环境因素。目前大部分观点认为,MS的发生是复杂的遗传与环境因素相互作用的结果,而胰岛素抵抗是MS的病理生理基础与核心。但胰岛素抵抗又是如何发生的?它的始动因素是什么?至今尚无定论。最近有资料表明,胰岛素抵抗是一种慢性低水平的炎症状态,炎症在MS的发生过程中发挥了重要作用。而在炎症—胰岛素抵抗—MS这一病理生理过程中,脂肪组织的内分泌调节功能障碍扮演了重要角色。
     白介素-18(IL-18)是一种促炎症因子,在炎症反应链中起重要作用。临床研究发现,肥胖人群的IL-18水平升高,且随着体重的降低,IL-18、白介素6(IL-6)及C-反应蛋白(CRP)水平下降,脂联素水平上升;IL-18是2型糖尿病及非糖尿病患者胰岛素抵抗的标志。以上证据充分说明IL-18水平与MS危险性相关。最新的研究显示,人腹部及皮下脂肪细胞表达IL-18基因,肿瘤坏死因子α(TNF-α)能增强IL-18基因表达;脂肪细胞可以分泌IL-18,肥胖者较非肥胖者脂肪细胞分泌IL-18的能力强3倍;肥胖人群脂肪组织IL-18 mRNA水平升高且与胰岛素抵抗呈正相关。但以往有关IL-18与MS关系的研究仅限于临床,目前尚无系统的动物实验研究报道。
     MS已成为严重威胁人类健康的疾病,寻找能有效治疗和预防MS的药物显得尤为重要。炎症参与MS的发生,抑制慢性、亚临床性炎症已成为改善胰岛素抵抗、治疗MS的新靶点。目前已经被证实具有一定抗炎作用的药物包括原有的降糖药、调脂药、ACEI和ARB、大剂量阿斯匹林等,均可不同程度地改善胰岛素抵抗。相对上述药物,CCB类降压药在胰岛素抵抗和MS患者中的作用尚未受到应有的重视。多项大规模临床试验结果证实,CCB类降压药能有效降低伴糖尿病的高血压患者心血管事件死亡率,具有降压以外的心血管保护作用;CCB还能改善肥胖的2型糖尿病患者胰岛素抵抗,降低血TNF-α水平。但CCB能否通过抗炎作用抑制和延缓MS各代谢异常目前尚无定论。
     因此我们推测,IL-18可在脂肪组织表达,并通过脂肪组织在MS发病中发挥重要作用;非络地平可改善MS各代谢异常并下调IL-18在脂肪组织的表达,可能为CCB类降压药防治MS提供新的理论依据。
     目的
     1.探讨IL-18在果糖诱导的MS大鼠模型脂肪组织中的表达;
     2.探讨脂肪组织IL-18的表达和MS的关系;
     3.探讨非络地平对MS各代谢异常及IL-18在脂肪组织表达的影响。
     方法
     5周龄Wistar大鼠33只,随机分为两组:对照组(n=12只),果糖组(n=21只)。对照组以标准大鼠饲料喂养及普通饮水,果糖组大鼠以标准大鼠饲料喂养,并给予10%(w/v)高果糖饮水。果糖喂养32周后,将果糖组大鼠再随机分为两组:果糖组(n=9只),继续给予高果糖饮水并每天以生理盐水灌胃:非络地平组(n=9只),继续给予高果糖饮水的同时,每天以非络地平(5mg/kg.d)灌胃。继续喂养及药物干预共持续6周,处死动物,留取脂肪标本备用。实验过程中,进行以下检测:(1)各组大鼠每隔2周测量体重及尾动脉血压一次。(2)分别于喂养前、喂养32周及干预后6周抽血测定空腹血脂、血糖、胰岛素以及血清IL-18,并计算稳态模型胰岛素抵抗指数(HOMA-IR)。(3)脂肪组织病理学检测。(4)免疫组织化学染色法进行脂肪组织IL-18定位。(5)实时定量RT-PCR法检测IL-18 mRNA的表达。(6)Western-blot法检测IL-18蛋白含量的表达。
     结果
     1.实验动物基本情况:实验过程中共有3只大鼠死亡,均为果糖喂养组大鼠,在果糖喂养10~32周内死亡,而在干预期6周内无大鼠死亡。共30只大鼠完成实验,其中对照组12只,果糖组9只,非络地平组9只。
     2.果糖喂养32周两组大鼠代谢指标比较
     果糖喂养前,两组大鼠体重、尾动脉收缩压、血脂、血糖、空腹胰岛素及HOMA-IR均无差异(P>0.05)。高果糖喂养32周后,与对照组比较果糖组大鼠体重、尾动脉收缩压、血甘油三酯、血胰岛素及HOMA-IR升高,差异有显著性意义(P<0.01~0.0001);而两组大鼠血糖及血总胆固醇无显著差异。表明经32周果糖喂养,已成功建立了大鼠MS模型。
     3.非络地平干预后对大鼠各代谢指标的影响
     非络地平药物干预前,与对照组比较果糖喂养各组大鼠体重、尾动脉血压、甘油三酯、血胰岛素及HOMA-IR均明显升高,表明已经成功建立MS模型。
     非络地平干预后6周,与果糖组比较,非络地平组尾动脉血压(P<0.0001)、血胰岛素(P<0.0001)及HOMA-IR(P<0.05)显著降低;而体重、甘油三酯在非络地平组与果糖组间无显著差异。
     与干预前比较,非络地平组在干预后尾动脉血压(P<0.01)、血胰岛素(P<0.05)及HOMA-IR(P<0.05)降低,差异有显著性意义;而体重和甘油三酯在非络地平干预前后则无显著差异。
     4.非络地平干预前后各组大鼠血清IL-18水平比较
     非络地平干预前,果糖喂养各组大鼠血清IL-18水平较对照组明显升高;干预后果糖组与非络地平组大鼠血清IL-18水平仍明显高于对照组(P<0.0001)。与干预前比较,非络地平组在干预后血清IL-18水平显著降低(P<0.01);果糖组干预前后无明显变化。
     5.脂肪组织病理观察
     HE染色显示:对照组脂肪细胞体积较小,大小均一,饱满,排列较整齐;果糖组脂肪细胞体积变大,大小不均一,形态不规则,排列紊乱;细胞壁不完全清楚,细胞相交处可见融合,有合成大细胞的趋势。非络地平组脂肪细胞介于对照组与果糖组之间。
     6.脂肪组织IL-18免疫组织化学染色检测
     染色阳性信号为棕色,定位于细胞间质及细胞胞浆内。对照组细胞间质呈现浅棕色,胞浆内偶可见浅棕色颗粒;果糖组细胞间质呈现深棕色,胞浆内可见较浓密的深棕色颗粒;非络地平组细胞间质则介于两组之间,胞浆内偶见浅棕色的颗粒。
     7.实时定量RT-PCR检测脂肪组织中IL-18 mRNA表达
     与对照组相比,果糖组大鼠脂肪组织IL-18 mRNA表达明显升高(0.072±0.016vs0.019±0.006.P<0.01);与果糖组相比,非络地平组大鼠脂肪组织IL-18 mRNA表达水平显著下降(0.016±0.007 vs 0.072±0.016,P<0.01)。
     相关性分析显示,果糖组IL-18 mRNA表达与HOMA-IR呈明显的正相关(r=0.74,P<0.01)。
     8.Western-blot检测脂肪组织IL-18蛋白表达
     与对照组相比,果糖组大鼠脂肪组织IL-18蛋白表达水平显著升高(1.010±0.149vs0.531±0.085.P<0.01);与果糖组相比,非络地平组脂肪组织IL-18蛋白表达则显著下降(0.579±0.124vs1.010±0.149,P<0.01)。
     相关性分析显示,果糖组IL-18蛋白表达与HOMA-IR呈明显的正相关(r=0.82,P<0.01)。
     结论
     1.应用高果糖饮水并适当延长喂养时间,成功地建立了符合人类特征的大鼠MS模型,为MS发病机制的研究奠定了基础。
     2.从蛋白、基因水平均证实IL-18在脂肪组织中表达。
     3.果糖喂养大鼠血清和脂肪组织中IL-18表达升高,且与HOMA-IR呈明显正相关,提示脂源性炎症因子IL-18参与了大鼠MS的病变过程。
     4.非络地平可降低MS大鼠血压,改善胰岛素抵抗,降低血清和脂肪组织IL-18表达,提示非络地平可通过抗炎作用改善胰岛素抵抗,从而防治MS的发生。
     背景
     代谢综合征(MS)的发病机制十分复杂,既与遗传易感基因有关,又涉及某些环境因素,为多种因素综合作用的结果。目前大部分观点认为,MS的发生是复杂的遗传与环境因素相互作用的结果,而胰岛素抵抗(IR)是MS的病理生理基础与核心。随着分子生物学的发展,人们逐渐认识到胰岛素信号转导障碍可引起IR。发生IR的分子机制是靶细胞胰岛素受体(InsR)后信号传导通路的缺陷,其中IRS-1、PI-3K及PKB/Akt信号传递分子受损最为关键。
     越来越多的实验资料证实炎症和IR/MS之间存在相关和因果关系。研究发现,InsR后的信号通路与炎症因子的信号传导存在交叉作用,非特异性炎症所产生的炎症因子干扰胰岛素IRS/PI-3K信号转导通路,是炎症导致IR的主要分子机制。目前许多证据还表明脂肪组织是IR产生的始发部位,尤其是内脏脂肪组织在IR/MS的发生和发展过程中起着非常重要的作用。脂肪组织既是能量储存中心,又具有强大的内分泌功能。肥胖时,特别是腹部肥胖,脂肪组织表达的脂肪因子谱发生改变,细胞因子能够阻止InsR信号在脂肪和其他胰岛素敏感组织的转导,从而直接参与了IR的形成。
     本研究的第一部分结果显示,IL-18在脂肪组织的表达升高与IR相关,提示IL-18可能通过脂肪组织参与了IR/MS的病理生理过程。最新研究表明,IL-18能通过NF-κB依赖性途径参与炎症反应,增加多种细胞因子及炎症因子的表达。而InsR后的信号通路与炎症因子的信号传导存在交叉作用。因此,我们提出IL-18可能通过抑制脂肪组织IRS-1/PI-3K/Akt胰岛素信号通路促进IR,从而导致MS的发生。
     另一方面,由于Akt在胰岛素刺激的葡萄糖摄取中起重要作用,是目前胰岛素信号通路中最为人知的下游成分。TRB3是晚近在果蝇体内发现一种抑制有丝分裂的蛋白激酶,资料显示TRB3可通过直接与Akt结合,阻断该激酶的活化以中断胰岛素信号,在肝脏诱导IR。以上提示TRB3可能通过抑制Akt活化导致IRfMS的发生,此外,TRB3的基因水平可能被细胞内各种应激如炎症刺激上调。因此我们推断IL-18可诱导TRB3在脂肪组织的上调,进而抑制Akt活化,导致了IR/MS的发生。
     综上所述,我们提出如下假说:IL-18通过抑制脂肪组织IRS-1/PI-3K胰岛素信号转导,诱导脂肪组织TRB3表达上调,共同导致Akt活化抑制,促进IR/MS的发生。深入研究此信号通路的作用及其调控机制,可能为防治MS提供新的思路。目的
     1.明确脂肪组织IRS-1/PI-3K/Akt及TRB3/Akt信号转导障碍在MS大鼠IR发病中的作用:
     2.构建IL-18腺病毒载体并转染MS大鼠,探讨IL-18对果糖诱导的MS大鼠各代谢异常的影响;
     3.探讨脂肪组织IL-18在IR发病中的作用及其信号转导机制。
     方法
     5周龄Wistar大鼠48只,随机分为两组:对照组(n=12只),果糖组(n=36只)。对照组以标准大鼠饲料喂养,果糖组大鼠以标准大鼠饲料喂养,并给予10%(w/v)高果糖饮水。果糖喂养32周后,将果糖组大鼠再随机分为三组:果糖组(n=9只),继续给予果糖饮水;空载体组(n=9只),继续给予果糖饮水的同时,通过尾静脉注射1×10~(10)pfu含GFP的腺病毒载体;IL-18载体组(n=12只),继续给予果糖饮水的同时通过尾静脉注射1×10~(10)pfu含IL-18的腺病毒载体;对照组及果糖组同时经尾静脉注射等体积的生理盐水作对照。腺病毒载体转染后继续喂养6周。实验过程中,进行以下检测:(1)各组大鼠每隔2周测量体重及尾动脉血压一次。(2)分别于喂养前、喂养32周及转染后6周抽血测定空腹血脂、血糖、胰岛素,并计算稳态模型胰岛素抵抗指数(HOMA-IR)。(3)载体转染0,1,2,3,4,6周抽血测定血清IL-18浓度。(4)实时定量RT-PCR法检测IL-18及TRB3mRNA的表达。(5)Western-blot法检测IL-18及IL-18后的信号通路各关键分子蛋白含量的表达。
     结果
     1.实验动物基本情况:实验过程中共有6只大鼠死亡,均为果糖喂养组大鼠,在果糖喂养10~32周内死亡,而在腺病毒载体转染后6周内无大鼠死亡。共42只大鼠完成实验,其中对照组12只,其中对照组12只,果糖组9只,空载体组9只,IL-18载体组12只。
     2.IL-18腺病毒载体转染前两组大鼠体重、血压及生化指标比较
     果糖喂养前,两组大鼠体重、尾动脉收缩压、血脂、血糖、空腹胰岛素等指标均无差异(P>0.05)。高果糖喂养32周后,与对照组比较果糖组大鼠体重、尾动脉收缩压、血甘油三酯、血胰岛素及HOMA-IR升高,差异有显著性意(P<0.01~0.0001);而两组大鼠血糖及血总胆固醇无显著差异。表明经32周果糖喂养,已成功建立了大鼠MS模型。
     3.IL-18腺病毒载体转染后各组大鼠血清IL-18水平变化
     IL-18腺病毒载体转染0~6周,对照组、果糖组及空载体组血清IL-18水平均无明显改变,IL-18载体组则随时间呈现比较显著的变化趋势;转染后各个时间点,果糖喂养各组大鼠血清IL-18水平均较对照组明显升高(P<0.001)。IL-18腺病毒转染0周,IL-18载体组大鼠与空载体组比较,血清IL-18水平未见明显升高;转染后1周,载体组较之空载体组血清IL-18水平显著升高(P<0.0001):载体组于转染后2周血清IL-18水平达到最高,约为空载体组的4倍(P<0.0001);载体组血清IL-18水平于转染后3周开始降低,但仍明显高于空载体组(P<0.0001);4周、6周时载体组血清IL-18水平已与空载体组水平相当,差异无统计学意义。
     4.IL-18腺病毒载体转染后对大鼠各代谢指标的影响
     IL-18腺病毒载体转染前,与对照组比较果糖喂养各组大鼠体重、尾动脉血压、甘油三酯、血胰岛素及HOMA-IR均明显升高,表明MS模型已经成功建立。
     IL-18腺病毒载体转染6周后,与对照组比较果糖喂养各组大鼠体重、尾动脉血压、甘油三酯、血胰岛素及HOMA-IR均明显升高;与果糖及空载体组比较,载体组血胰岛素水平(P<0.001)及HOMA-IR(P<0.05)显著升高,而体重、血压、甘油三酯在载体组与空载体组间无显著差异。
     与转染前比较,IL-18载体组血胰岛素水平(P<0.001)及HOMA-IR(P<0.05)显著性升高,而体重、血压、甘油三酯在载体组与空载体组间无显著性差异。
     5.实时定量RT-PCR检测脂肪组织IL-18和TRB3 mRNA表达水平
     与对照组比较,果糖喂养各组大鼠脂肪组织IL-18 mRNA表达均明显上调(果糖组:P<0.01;空载体组:P<0.01;载体组:P<0.001);与果糖组、空载体组比较,IL-18载体组大鼠脂肪组织IL-18 mRNA表达明显增加(P<0.01);而果糖组与空载体组大鼠脂肪组织IL-18 mRNA表达无显著性差异。
     与对照组比较,果糖喂养各组大鼠脂肪组织TRB3 mRNA表达均明显上调(果糖组:P<0.01;空载体组:P<0.01;载体组:P<0.001);与果糖组、空载体组比较,IL-18载体组大鼠脂肪组织TRB3 mRNA表达明显增加(P<0.01):而果糖组与空载体组大鼠脂肪组织TRB3 mRNA表达无显著性差异。
     6.Western-blot检测脂肪组织IL-18及IL-18后的信号通路中各关键分子蛋白表达水平
     (1)各组大鼠脂肪组织IL-18蛋白表达水平比较:
     与对照组比较,果糖喂养大鼠脂肪组织IL-18蛋白表达显著升高(P<0.01);与果糖组、空载体组比较,载体组IL-18蛋白表达明显升高(P<0.01);而果糖组与空载体组IL-18蛋白表达则未见显著性差异。
     (2)各组大鼠脂肪组织IRS-1蛋白表达水平比较:
     与对照组比较,果糖喂养大鼠脂肪组织IRS-1蛋白表达明显降低(果糖组:P<0.05;空载体组:P<0.01;载体组:P<0.01);与果糖组、空载体组比较,IL-18载体组IRS-1蛋白表达显著降低(P<0.01);而果糖组与空载体组IRS-1蛋白表达则未见显著性差异。
     (3)各组大鼠脂肪组织p85/P-p85蛋白表达水平比较:
     四组大鼠脂肪组织p85总蛋白表达水平比较,均未见显著性差异。
     与对照组比较,果糖喂养大鼠脂肪组织P-p85蛋白表达显著降低(P<0.01);与果糖组、空载体组比较,IL-18载体组P-p85蛋白表达显著降低(P<0.01):而果糖组与空载体组P-p85蛋白表达则未见显著性差异。
     (4)各组大鼠脂肪组织Akt/P-Akt蛋白表达水平比较:
     四组大鼠脂肪组织Akt总蛋白表达水平比较,均未见显著性差异。
     与对照组比较,果糖喂养大鼠脂肪组织P-Akt(Ser473)蛋白表达明显降低(P<0.01);与果糖组、空载体组比较,IL-18载体组P-Akt(Ser473)蛋白表达显著降低(P<0.01);而果糖组与空载体组P-Akt(Ser473)蛋白表达则未见显著性差异。
     (5)各组大鼠脂肪组织TRB3蛋白表达水平比较:
     与对照组比较,果糖喂养大鼠脂肪组织TRB3蛋白表达明显上调(P<0.01);与果糖组、空载体组比较,IL-18载体组TRB3蛋白表达上调更加显著(P<0.01);而果糖组与空载体组TRB3蛋白表达则未见显著性差异。
     结论
     1.果糖诱导的MS大鼠脂肪组织IRS-1/PI-3K信号抑制,TRB3表达上调,共同导致Akt活化抑制,提示脂肪组织IRS-1/PI-3K/Akt,TRB3/Akt信号转导障碍可导致IR;
     2.构建IL-18腺病毒载体并转染MS大鼠,血液中和脂肪组织中IL-18水平显著增加,同时血胰岛素及HOMA-IR进一步增加,提示IL-18可促进果糖诱导的MS大鼠IR的进展;
     3.IL-18载体组脂肪组织胰岛素信号转导进一步抑制,TRB3进一步上调,Akt活化抑制更加明显。提示IL-18通过抑制脂肪组织IRS-1/PI-3K胰岛素信号通路和诱导TRB3表达上调,共同导致Akt活化抑制,促进IR,从而导致MS的发生。
Background
     Metabolic syndrome(MS) has become one of the major public health challenges worldwide accompanied with changes in human lifestyle and dietary habits.MS consists of the combined presentation of multiple cardiovascular risk factors that include abdominal obesity,glucose intolerance,dyslipidemia,hypertension and insulin resistance.In recent half a century,a great of studies on MS have been conducted,but development mechanisms of MS remains largely unclear.
     Recently,MS has been considered to be usually due to the interaction between genetic and environmental factors,and insulin resistance has been discussed as major pathophysiological mechanism for the development of MS.However,the molecular mechanisms triggering insulin resistance are not fully understood.A growing number of studies indicate that low-grade chronic inflammation is involved in the pathogenesis of MS.Adipose tissue is now viewed as an active endocrine organ that plays a crucial role in the pathophysiological process of inflammation-insulin resistance-metabolic syndrome.
     MS often accompanies the elevated inflammatory factors such as TNF-a,Interleukin (IL)-6,Interleukin(IL)-18 and so on.IL-18,a particularly important cytokines is recently thought as a risk predictor for MS.Circulating levels of IL-18 are elevated in obesity and reduced by weight loss.Increased plasma IL-18 is a marker of insulin resistance in type 2 diabetic and non-diabetic humans.Elevated IL-18 levels are associated with the MS independent of obesity and insulin resistance.New data show that IL-18 is expressed in human adipose tissue and strongly upregulated by TNFa in human adipocytes,and IL-18 release from adipocytes from obese donors was about 3-fold higher compared to adipocytes from non-obese donors.Adittionally,Adipose tissue(AT) IL-18 mRNA content was higher in the obese group than in the non-obese group and positively correlated with IR.Previous studies on the relationship between MS and IL-18 were limited in clinical trials,and animal experiments were never reported.
     There is a great significance to search effective drugs of preventing and treating MS due to its risk of cardiovascular disease.A growing number of studies indicate that low-grade chronic inflammation is involved in the pathogenesis of MS,and suppression of inflammation has already become a novel strategy to improve MS. There is some evidence that these drugs have anti-inflammatory actions,including hypoglycemic agent,lipid regulating agent,large dose aspirin,angiotensin-converting enzyme inhibitor(ACEI) and angiotensin receptor antagonist(ARB).Compared with these drugs,the effects of CCB on subjects with insulin resistance and MS were not thought highly.Several large-scale clinical tests showed that calcium-channel blocker (CCB) were safe and effective in reducing most types of cardiovascular morbidity and mortality in diabetic hypertensive patients,and thus have cardiovascular protection besides reducing blood pressure(BP).Besides reducing BP,amlodipine seemed to improve insulin resistance and decrease tumor necrosis factor-alpha(TNF-a) levels in obese hypertensive type 2 diabetic patients.Whether CCB can inhibit and delay MS by anti-inflammatory actions is not still conclusive.
     Objective
     1.To investigate the expression of IL-18 at both the mRNA and protein levels in adipose tissue of Rats with Fructose-Induced MS.
     2.To evaluate the correlation between the adipose tissue expression of IL-18 and MS in Fructose-fed rats.
     3.To investigate the effects of Filodipine on a cluster of metabolic abnormalities and adipose tissue expression of IL-18 in fructose-fed rats.
     Methods
     Thirty three male Wistar rats were divided randomly into two groups:a control group (n=12) in which the rats were fed the normal Rodent Diet and water,and a fructose-fed group(n=21) in which the rats were fed the normal Rodent Diet plus fructose in the drinking water as a 10%(w/v) solution.At the end of the 32th weeks, the fructose-fed rats were subdivided randomly into two groups:fructose group(n= 9) was continued with a fructose diet,and filodipine(5mg/kg/d) was administered by gavage daily for 6 weeks to filodipine group(n=9) with a fructose diet.All animals were sacrificed by cervical decapitation and the epididymal fat pads were stored at -80℃for analysis.
     The follwing parameters were measured during the study:(1) All the rats have their body weight and tail blood pressure measured once per 2 week.(2) Blood was collected from jugular vein at 0 week,the end of 32 weeks,and 6 weeks after treatment respectively.Plasm lipid,glucose,insulin and IL-18 were determined using routine method,and the HOMA-IR expressed as an index of insulin resistance was calculated.(3) Pathological study of adipose tissue.(4) Immunohistochemistry for the location of IL-18 in adipose tissue.(5) The mRNA expression of IL-18 was measured by quantification real-time RT-PCR.(6) The protein expression of IL-18 was analyzed by western blot.
     Results
     1.The experimental animals
     Three rats of fructose group died in the entire experiment,none of control group died. A total of 30 rats finished the study,12 rats in control group,9 rats in fructose group and 9 rats infelodipine group.
     2.Comparison of metabolic variables between control and fructose group after fructose treatment
     There is no significant difference in terms of body weight,tail blood pressure,glucose, lipids and insulin before fructose treatment.Chronic administration of fructose during 32 weeks induced a cluster of metabolic abnormalities.Fructose-fed rats had higher body weight,systolic BP,fasting levels of plasma triglycerides,plasma insulin,and HOMA-R than the Con rats.There were significant differences in total cholesterol and glucose,both of which were although slightly increased.
     3.Effect of felodipine on metabolic variables in rats
     After treatment with felodipine for 6 weeks,systolic BP,insulin and HOMA were significantly decreased in felodipine group compared with fructose group,other parameters showed no significant difference.
     Systolic BP,insulin and HOMA were significantly decreased in felodipine group after 6 weeks treatment compared with those before treatment;other parameters showed no significant difference.
     4.Comparison of Serum IL-18 levels between pro-treatment and post-treatment with felodipine
     Serum IL-18 levels were significantly higher in fructose and filodipine group than those in control group.6 weeks treatment with filodipine significantly decreased serum IL-18 levels compared with those before treatment.
     5.Pathological findings
     HE staining slides under optical microscopy showed that in control group,cell size of adipocytes was smaller,uniform,and array was regular;In fructose group,adipocytes size was greater,not uniform,cell form was irregular,and cell arrange was disorder; Cell wall was not clear and cell fusion was observed at intersection of cell. Adipocytes infelodipine group lied between control and fructose group.
     6.Location of IL-18 by immunohistochemistry
     The positive reaction of IL-18 protein was stained brown,and localized in intercellular substance and adipocyte cytoplasm.Intercellular substance was stained weak brown and weak brown granules were seldom distributed in cytoplasm in control group,whereas intercellular substance was stained deep brown and deep brown granules were thickly distributed in cytoplasm in fructose group.Staining in felodipine group lied between control and fructose group.
     7.IL-18 mRNA expression by RT-PCR
     In the fructose-fed groups,the mRNA expression levels of IL-18 in adipose tissue were significantly increased compared with those in the control group.IL-18 mRNA levels in felodipine group were markedly lower than in fructose group.In addition, IL-18 mRNA levels showed a significant positive correlation with HOMA-IR in the fructose group(r=0.74,P<0.01).
     8.IL-18 protein expression by westein blot
     Compared to control group,the groups fed on a fructose diet showed a significant rise in IL-18 protein content in adipose tissue.IL-18 protein content in the felodipine group was significantly lower than in fructose group.Moreover,IL-18 protein content showed a significant positive correlation with HOMA-IR in the fructose group (r=0.82,P<0.01).
     Conclusions
     1.Rats model mimicked human MS can be achieved by kepting rats on a high-fructose diet for up to 32 week.This lays the foundation for further studying the mechanism of MS.
     2.IL-18 is confirmed to be expressed in asipose tissue at both the mRNA and protein levels.
     3.IL-18 expression is increased in serum and adipose tissue and showed a significant positive correlation with HOMA-IR in fructose group,which suggests that IL-18 is involved in the pathogenesis of MS via adipose tissue.
     4.Filodipine down regulates serum and adipose tissue expression of IL-18,with blood pressure reduced,and insulin resistance improved,showing that Filodipine may improve insulin resistance,prevent and delay MS by anti-inflammatory effect.
     Background
     The mechanisms of metabolic syndrome(MS) are very complex,usually due to the interaction between genetic and environmental factors.Insulin resistance has been discussed as major pathophysiological mechanism for the development of MS.Insulin resistance,the inability of target tissues to adequately increase glucose transport in response to a physiological level of insulin,results from defects of insulin signaling behind insulin receptor.Of the total,It is crucial for impaired IRS-1,PI-3K and PKB/Akt.
     A growing number of studies indicate that low-grade chronic inflammation is involved in the pathogenesis of MS.There exist intersections between signaling pathway behind insulin receptor and signaling transduction of inflammatory cytokines. Inflammatory cytokines are involved in the molecular mechanism that inflammation leads to insulin resistance by interfering with IRS-1/PI-3K insulin signaling pathway. Studies demonstrate that adipose tissue is considered as dominant sites affecting systemic insulin resistance and especially visceral adipose tissue plays an important role in metabolic syndrome.Adipose tissue is not only an energy storage organ,but an active endocrine organ.Abdominal obesity results in changes of adipocytokines which are involved in the development of insulin resistance by blocking insulin receptor signaling transduction in adipose tissue and other insulin-sensitive tissues. In part 1 of our study,results showed adipose tissue expression of IL-18 was higher in fructose-induced MS group than in the control group and positively correlated with IR, which suggests that IL-18 is involved in the pathogenesis of MS via adipose tissue. Recent studies indicate that IL-18 regutes inflammatory reaction through NF-κB -dependent signal transduction.Additionally,there exist intersections between signaling pathway behind insulin receptor and signaling transduction of inflammatory cytokines.Thereby we suggested that IL-18 promoted IR via defects of IRS-1/PI-3K/Akt insulin signaling pathway,and inducing the development of MS. On the other hand,Akt stands as the furthest known downstream component of the insulin-signaling pathway that leads to metabolic regulation for the pivotal role of this kinase in the linkage between the insulin signal and the control of glucose uptake.At present,much interest has recently been focused on Ttibble3(TRB3) because it is involved in insulin resistance.The current studies suggest that TRB3 disrupts insulin signaling by binding directly to Akt and blocking activation of the kinase,thereby inducing insulin resistance in liver.Furthermore,the expression of TRB3 mRNA level can be upregulated by various cellular stresses such as inflammatory stimulation.For the above reasons,we suggested that IL-18 promotes insulin resistance through TRB3 upregulation and TRB3-mediated inhibition of Akt in adipose tissue.
     Taken together,the hypothesis is proposed that IL-18 promotes insulin resistance through suppression of Akt activation via IRS/PI-3K and TRB3 signaling pathway in adipose tissue,thus leading to the development of MS.
     Objective
     1.To investigate the protein expression of key signaling molecule in IRS/PI-3K/Akt and TRB3/Akt pathway in adipose tissue of Rats with Fructose-Induced MS.
     2.To investigate the effects of IL-18 on a cluster of metabolic abnormalities in fructose-fed rats used IL-18 adenovirus administered.
     3.To investigate the role of IL-18 on development of IR:involvement of signalling pathway in adipose tissue.
     Methods
     Forty-eight male Wistar ratswere divided randomly into two groups:the control group (Con,n=12),which received a standard rodent chow and water,and the fructose-fed group(Fru,n=36) which received the standard rodent chow plus fructose in the drinking water as a 10%(w/v) solution.At the end of the 32th weeks,the fructose-fed rats were subdivided randomly into three groups:the fructose-fed group(Fru,n=9), the adenovirus-GFP control group(Ad-Con,n=9),and the adenovirus-IL-18 group (Ad-IL-18,n=12).The three groups were treated with PBS,Ad-GFP(1×1010pfu in 0.4ml PBS) and Ad-IL-18(1×1010pfu in 0.4ml PBS) via tail vein injection, respectively,and continued on a fructose diet for 6 weeks.All animals were sacrificed by cervical decapitation and the epididymal fat pads were stored at -80℃for analysis. The follwing parameters were measured during the study:(1) All the rats have their body weight and tail blood pressure measured once per 2 week.(2) Blood was collected fi'om jugular vein at 0 week,the end of 32 weeks,and 6 weeks after adenovirus transfection respectively.Plasm lipid,glucose,insulin were determined using routine method,and the HOMA-IR expressed as an index of insulin resistance was calculated.(3) Serum IL-18 levels of four groups were determined by ELISA at the end of 1st,2nd,3rd,4th,and 6th weeks after adenovirus injection.(4) The mRNA expression of IL-18 and TRB3 were measured by quantification real-time RT-PCR.(6) The protein expression of IL-18 and IL-18-induced signaling pathway in adipose tissue were analyzed by western blot.
     Results
     1.The experimental animals
     Three rats of fructose group died in the entire experiment,none of control group died. A total of 42 rats finished the study,12 rats in Con group,9 rats in Fru group,9 rats in Ad-Con group and 12 rats in Ad-IL-18 group.
     2.Comparison of metabolic variables between Con and fructose-fed group before adenovirus transfection
     Chronic administration of fructose as a 10%drinking solution during 32 weeks induced a cluster of metabolic abnormalities.Fructose-fed rats had higher body weight and systolic BP than the Con rats.Compared with the Con group,three other variables including fasting levels of plasma triglycerides,plasma insulin,and HOMA-R were significantly increased in fructose-fed group,without significant differences in total cholesterol and glucose,both of which were although slightly increased.
     3.Changes of serum IL-18 after adenoviral transfection
     Ad-IL-18 group showed a significant change with time,and the other three groups had no changes in serum IL-18 levels after adenovirus transfection.Fructose-fed rats had higher serum IL-18 levels than Con rats.
     Serum IL-18 levels were higher in Ad-IL-18 group than in Ad-Con group at 1st week, without significant difference at 0 week after transfection.Serum IL-18 levels,which reached to peak value at 2nd week,were about 4-fold higher in the Ad-IL-18 group than in the Ad-Con group.At 3rd week,Ad-IL-18 group showed a significant decline tendency,but a significant increase in serum IL-18 levels compared with the Ad-Con group.There was no significant difference in IL-18 levels between the two groups at 4th and 6th week.
     4.Effect of IL-18 on metabolic parameters in rats
     After IL-18 transfection for 6 weeks,insulin and HOMA were significantly increased in IL-18 vector group compared to vehicle group;other parameters showed no significant difference.
     Insulin and HOMA-IR were significantly increased in Ad-IL-18 group after transfection for 6 weeks compared to the levels of insulin and HOMA-IR before transfection;other parameters showed no significant difference.
     5.IL-18 and TRB3 mRNA expression by RT-PCR
     In the fructose-fed groups,the mRNA expression levels of IL-18 and TRB3 in adipose tissue were significantly increased compared with those in the Con group.IL-18 and TRB3 mRNA levels in Ad-IL-18 group were markedly higher than in both Fru group and Ad-Con group,without significant differences between the Fru and Ad-Con groups
     6.Protein expression of IL-18 and IL-18 induced signaling pathway by westein blot
     (1) Comparison of IL-18 protein expression in adipose tissue of rats Compared to Con group,the three fructose-fed groups showed a significant rise in IL-18 protein content in adipose tissue.IL-18 protein content in the Ad-IL-18 group was significantly higher than in both the Fru group and the Ad-Con group.IL-18 protein content in the Fru group was similar to that in the Ad-Con group.
     (2) Comparison of IRS-1 protein expression in adipose tissue of rats
     Western blot analysis showed that IRS-1 protein expression was significantly decreased in adipose tissue of fructose-fed rats compared with the Con rats.The rats treated with Ad-IL-18 had significantly lower IRS-1 protein content in comparison with Fru and Ad-Con rats.But IRS-1 protein had no significant difference between the Fru group and the Ad-Con group.
     (3) Comparison of p85/P-p85 protein expression in adipose tissue of rats
     In adipose tissue,there was no significant difference among the 4 groups in the p85 regulatory subunit of PI3K(T-p85) protein expression.
     Phospho-p85(P-p85) protein expression was markedly reduced in adipose tissue of fructose-fed rats compared with that of Con rats.The P-p85 protein expression of the Ad-IL-18 group was significantly reduced compared with that of the Fru and the Ad-Con groups,without significant difference between Fru group and Ad-Con group.
     (4) Comparison of Akt/P-Akt protein expression in adipose tissue of rats
     In adipose tissue,total-Akt(T-Akt) protein expression was similar among the 4 groups.
     In adipose tissue,phospho-Akt(Ser473) protein expression was markedly lower in fructose-fed groups than Con group.Rats treated with Ad-IL-18 had markedly lower P-Akt protein expression than both the Fru and Ad-Con rats.P-Akt protein expression in the Fru group was similar to that in the Ad-Con group.
     (5) Comparison of TRB3 protein expression in adipose tissue of rats In the fructose-fed groups,the mRNA expression levels of TRB3 in adipose tissue were significantly increased compared with those in the Con group.TRB3 mRNA levels in the Ad-IL-18 group were markedly higher than in both Fru group and Ad-Con group.However,there were no significant differences in mRNA levels of TRB3 between the Fru and the Ad-Con group.
     Conclusion
     1.Inhibition of IRS-1/PI-3K signal and upregulation of TRB3 expression induce suppression of Akt activation in adipose tissue of fructose-fed rats,suggesting defects in IRS-1/PI-3K/Akt and TRB3/Akt pathway in adipose tissue are involved in the development of insulin resistance.
     2.After IL-18-adenovirus was administered,serum and adipose tissue expression of IL-18 were high,and serum insulin and HOMA-IR were further increased,which suggests that IL-18 promotes insulin resistance in fructose-induced MS rats.
     3.Ad-IL-18 group showed marked inhibition of IRS-1/PI-3K signal and upregulation of TRB3 expression and more significant suppression of Akt activation in adipose tissue,which suggests that IL-18 promotes insulin resistance through suppression of Akt activation via suppression of PI-3K signaling pathway and upregulation of TRB3 in adipose tissue.
引文
1 Eckel RH, Grundy SM, Zimmet PZ. The metabolic syndrome. Lancet 2005; 365:1415-28.
    2 Zimmet P, Magliano D, Matsuzawa Y, et al. The metabolic syndrome: a global public health problem and a new definition. J Atheroscler Thromb 2005; 12: 295-300.
    3 Tamsma JT, Jazet IM, Beishuizen ED, et al. The metabolic syndrome: a vascular perspective. Eur J Inter Med 2005; 16:314-20.
    4 Roche HM, Phillips C, Gibney MJ. The metabolic syndrome: the crossroads of diet and genetics. Proc Nutr Soc 2005; 64: 371-7.
    5 Arenillas JF, Moro MA, Davalos A. The metabolic syndrome and stroke: potential treatment approaches. Stroke 2007; 38: 2196-203.
    6 Matsuzawa Y. The metabolic syndrome and adipocytokines. FEBS Lett 2006; 580:2917-21.
    7 Florez H, Castillo-Florez S, Mendez A, et al. C-reactive protein is elevated in obese patients with the metabolic syndrome. Diabe Res Clin Pract 2006;71: 92-100.
    8 Panagiotakos DB, Pitsavos C, Yannakoulia M, et al. The implication of obesity and central fat on markers of chronic inflammation: The ATTICA study. Atherosclerosis 2005; 183: 308-15
    9 Esposito K, Pontillo A, Ciotola M, et al. Weight loss reduces interlerukin-18 levels in obese women. J Clin Endocrinol Metab 2002; 87: 3864-6
    10 DeFronzo RA, Bonadonna RC, Ferrannini E. Pathogenesis of NIDDM. A balanced overview. Diabetes Care 1992; 15: 318
    11 Hotamisligil GS. Molecular mechanisms of insulin resistance and the role of the adipocyte. Int J Obes Relat Metab Disord 2000; 24: S23
    12 Steppan CM, Lazar MA. Resistin and obesity-associated insulin resistance. Trends Endocrinol Metab 2002; 13: 18-23.
    13 Trayhurn P, Beattie JH. Physiological role of adipose tissue: white adipose tissue as an endocrine and secretory organ. Proc Nutr Soc 2001; 60: 329-339.
    14 Trayhurn P, Wood IS. Adipokines: inflammation and the pleiotropic role of white adipose tissue. Br. J. Nutr 2004; 92: 347-55.
    15 Skurk T, Kolb H, Miiller-Scholze S, et al. The proatherogenic cytokine interleukin-18 is secreted by human adipocytes. Eur J Endocrinol 2005; 152: 863-8.
    16 Ruan H, Lodish HF. Regulation of insulin sensitivity by adipose tissue-derived hormones and inflammatory cytokines. Curr Opin Lipidol 2004; 15: 297-302.
    17 Gimeno RE, Klaman LD. Adipose tissue as an active endocrine organ: recent advances. Curr Opin Pharmacol 2005; 5: 122-8.
    18 Esposito K, Pontillo A, Ciotola M, et al. Weight loss reduces interlerukin-18 levels in obese women. J Clin Endocrinol Metab 2002; 87: 3864-6.
    19 Esposito K, Pontillo A, Di Palo C, et al. Effect of weight loss and life-style changes on vascular inflammatory markers in obese women: a randomized trial. JAMA 2003; 289:1799-804.
    20 Fischer CP, Perstrup LB, Berntsen A, et al. Elevated plasma interleukin-18 is a marker of insulin-resistance in type 2 diabetic and non-diabetic humans. Clin Immunol 2005; 117: 152-60
    21 Wood SI, Wang B, Jenkins JR, et al. The pro-inflammatory cytokine IL-18 is expressed in human adipose tissue and strongly upregulated by TNF-a in human adipocytes. Biochem Biophy Res Comm 2005; 337:422-9
    22 Skurk T, Kolb H, Muller-Scholze S, et al. The proatherogenic cytokine interleukin-18 is secreted by human adipocytes. Eur J Endocrinol 2005; 152: 863-8.
    23 Yang YS, Song HD, Li RY, et al. The gene expression profiling of human visceral adipose tissue and its secretory functions. Biochem Biophy Res Commun 2003; 300: 839-46.
    24 Mancia G,Brown M,Castaigne A,et al.Outcomes with Niffdipine GITS or co-amilozide in hypertensive diabetics and nindiabeties in intervention as a goal in hypertension(INSIGHT).Hypertension 2003;41:431-6.
    25 Nissen SE,Tuzcu EM,Libby P,et al.CAMELOT Investigators.Effect of antihypertensive agents on cardiovascular events in patients with coronary disease and normal blood pressure:the CAMELOT study:a randomized controlled trail.JAMA 2004;292:2217-25
    26 Ersoy C,Imamo(?)lu S,Budak F,et al.Effect of amlodipine on insulin resistance & tumor necrosis factor-alpha levels in hypertensive obese type 2 diabetic patients.Indian J Med Res 2004;120:481-8.
    27 Zhao C,Wang P,Xiao X,et al.Gene therapy with human tissue kallikrein reduces hypertension and hyperinsulinemia in fructose-induced hypertensive rats.Hypertension 2003;42:1026-33.
    28 Miatello R,Vázquez M,Renna N,et al.Chronic administration of resveratrol prevents biochemical cardiovascular changes in fructose-fed rats.Am J Hypertens 2005;18:864-70.
    29 Dai S,McNeill JH.Fructose-induced hypertension in rats is concentration-and duration-dependent.J Pharmacol Toxicol Methods 1995;33:101-7.
    30 Kannappan S,Jayaraman T,Rajasekar P,et al.Cinnamon bark extract improves glucose metabolism and lipid profile in the fructose-fed rat.Singapore Med J 2006;47:858-63.
    31 Iwase M,Kikuchi M,Nunoi K,et al.A new model of type 2(non-insulin-dependent) diabetes mellitus in spontaneously hypertensive rats:diabetes induced by neonatal streptozotocin treatment.Diabetologia 1986;29:808-11.
    32 Velliquette RA,Koletsky RJ,Emsberger P.Plasma glucagon and free fatty acid responses to a glucose load in the obese spontaneous hypertensive rat(SHROB)model of metabolic syndrome X.Exp Boil Med 2002;227:164-70.
    33 Kawano K,Hirashima T,Mori S,et al.Spontaneous long-term hyperglycemic rat with diabetic complications.Ostuka Long-Evans Tokushima Fatty(OLETF)strain.Diabetes 1992;41:1422-8.
    34 陈丽萌,李学旺,黄利伟,等.2型糖尿病小鼠(KKAY)动物模型的鉴定和早期肾脏病理改变.中国医学科学院学报 2002:24:71-5.
    35 Van den Brandt J,Kovacs P,Kloting I.Features of the metabolic syndrome in the spontaneously hypertriglyceridemic Wistar Ottawa Karlsburg W(RT1[u]Haplotype) rat.Metabolism 2000;49:1140-4.
    36 Penicaud L,Ferre P,Terretaz J,et al.Development of obesity in Zucker rats:Early insulin resistance in muscles but normal sensitivity in white adipose tissue.Diabetes 1987;36:626-31.
    37 Zhang Y,Proenca R,Maffei M,et al.Positional cloning of the mouse obese gene and its human homologue.Nature 1994;372:425-32.
    38 Kitamural T,Kahn CR,Accili D.Insulin Receptor Knockout Mice.Annu Rev physiol 2003;65:313-32.
    39 Naka Y,Bucciarelli LG,Wendt T,et al.RAGE Axis:Animal Models and Novel Insights into the Vascular Complications of Diabetes.Arterioscler Thromb Vase Biol 2004;24:1342-9.
    40 Ishibashi S,Herz J,Maeda N,et al.The two-receptor model of lipoprotein clearance:tests of the hypothesis in "knockout" mice lacking the low densing lipoprotein receptor,apolipoprotein E,or both proteins.Proc Natl Acad Sci USA 1994;91:4431-5.
    41 Huan JN,Li J,Han Y,et al.Adipocyte-selective Reduction of the Leptin Receptors Induced by Antisense RNA Leads to Increased Adiposity,Dyslipidemis,and Insulin Resistance.J.Biol Chem 2003;278:45638-50.
    42 Russell JC,Proctor SD.Small animal models of cardiovascular disease:tools for the study of the roles of metabolic syndrome,dyslipidemia,and atherosclerosis.Cardiovasc Pathol 2006;15:318-30.
    43 Hwang IS,Ho H,Hoffman BB,et al.Fructose-induced insulin resistance and hypertension in rats.Hypertension 1987;10:512-6.
    44 Yoshino G, Iwai M, Kazumi T, et al. Effect of dietary fructose on triglyceride turnover in streptozotocin-diabetic rats. Atherosclerosis 1989; 79:41-6.
    45 Dai S, Todd ME, Lee S, et al. Fructose loading induces cardiovascular and metabolic changes in nondiabetic and diabetic rats. Can J Physiol Pharmacol 1994; 72: 771-81.
    46 Polizio AH, Gonzales S, Munoz MC, et al. Behaviour of the anti-oxidant defence system and heme oxygenase-1 protein expression in fructose-hypertensive rats. Clin Exp Pharmacol Physiol 2006; 33: 734-9.
    47 Miatello R, Risler N, Gonzalez S, et al. Effects of enalapril on the vascular wall in an experimental model of syndrome X. Am J Hypertens 2002; 15: 872-8.
    48 Licata G, Argano C, Di Chiara T, et al. Obesity: a main factor of metabolic syndrome? Panminerva Med 2006; 48: 77-85.
    49 Ribeiro Filho FF, Mariosa LS, Ferreira SR, et al. Visceral fat and metabolic syndrome: more than a simple association. Arq Bras Endocrinol Metabol 2006; 50: 230-8.
    50 Huang BW, Chiang MT, Yao HT, et al. The effect of high-fat and high-fructose diets on glucose tolerance and plasma lipid and leptin levels in rats. Diabetes Obes Metab 2004; 6:120-6.
    51 Takagawa Y, Berger ME, Hori MT, et al. Long-term fructose feeding impairs vascular relaxation in rat mesenteric arteries. Am J Hypertens 2001; 14: 811-7.
    52 Richey JM, Si X, Halter JB, et al. Fructose perrusion in rat mesenteric arteries impairs endothelium-dependent vasodilation. Life Sci 1998; 62:PL55-PL62.
    53 Catena C, Giacchetti G, Novello M, et al. Cellular mechanisms of insulin resistancein rats with fructose-induced hypertension. Am J Hypertens 2003; 16: 973-8.
    54 Ackerman Z, Oron-Herman M, Grozovski M, et al. Fructose-induced fatty liver disease: hepatic effects of blood pressure and plasma triglyceride reduction. Hypertension 2005; 45: 1012-8.
    55 Luo J, Rizkalla SW, Lerer-Metzger M, et al. A fructose-rich diet decreases insulin-stimulated glucose incorporation into lipids but not glucose transport in adipocytes of normal and diabetic rats. J Nutr 1995; 125: 164-71.
    56 Elliott SS, Keim NL, Stern JS, et al. Fructose, weight gain, and the insulin resistance syndrome. Am J Clin Nutr 2002; 76: 911-22.
    57 Girard A, Madani S, Boukortt F, et al. Fructose-enriched diet modifies antioxidant status and lipid metabolism in spontaneously hypertensive rats. Nutrition 2006; 22: 758-66.
    58 DeFronzo RA, Tobin JD, Andres R. Glucose clamp technique: a method for quantifying insulin secretion and resistance. Am J Physiol 1979; 237: E214-E23.
    59 Matthews DR, Hosker JP, Rudenski AS, et al. Homeostasis model assessment: insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia 1985; 28: 412-9.
    60 Haffher SM, Miettinen H, Stern MP. The homeostasis model in the San Antonio Heart Study.Diabetes Care 1997; 20: 1087-92.
    61 Emoto M, Nishizawa Y, Maekawa K, et al. Homeostasis model assessment as a clinical index of insulin resistance in type 2 diabetic patients treated with sulfonylureas. Diabetes Care 1999; 22: 818-22.
    62 Rattarasarn C, Leelawattana R, Soonthornpun S, et al. Regional abdominal fat distribution in lean and obese Thai type 2 diabetic women: relationships with insulin sensitivity and cardiovascular risk factors. Metabolism 2003; 52: 1444-7.
    63 Ross R, Aru J, Freeman J, et al. Abdominal adiposity and insulin resistance in obese men. Am J Physiol Endocrinol Metab 2002; 282: E657-63.
    64 Brochu M, Starling RD, TchemofA, et al. Visceral adipose tissue is an independent correlate of glucose disposal in older obese postmenopausal women. J Clin Endocrinol Metab 2000; 85: 2378-84.
    65 Cnop M, Landchild MJ, Vidal J, et al. The concurrent accumulation of intra-abdominal and subcutaneous fat explains the association between insulin resistance and plasma leptin concentrations: distinct metabolic effects of two fat compartments. Diabetes 2002; 51: 1005-15.
    66 Gabriely I,Ma XH,Yang XM,et al.Removal of visceral fat prevents insulin resistance and glucose intolerance of aging:an adipokine-mediated process?Diabetes 2002;51:2951-8.
    67 Biomtor P.Metabolic difference betwen visceral fat and subcutaneous abdominal fat.Diabetes Metab 2000;26:10-12.
    68 Van Harmelen V,R(o|¨)hrig K,Hauner H.Comparison of proliferation and differentiation capacity of human adipocyte precursor cells from the omental and subcutaneous adipose tissue depot of obese subjects.Metabolism 2004;53:632-7.
    69 Sztalryd C,Kraemer FB.Differences in hormone-sensitive lipase expression in white adipose tissue from various anatomic locations of the rat.Metabolism 1994;43:241-7.
    70 Panarotto D,Poisson J,Devroede G,et al.Lipoprotein lipase steady-state mRNA levels are lower in human omental versus subcutaneous abdominal adipose tissue.Metabolism 2000;49:1224-7.
    71 Laplante M,Sell H,MacNaul KL,et al.PPAR-gamma activation mediates adipose depot-specific effects on gene expression and lipoprotein lipase activity:mechanisms for modulation of postprandial lipomia and differential adipose accretion.Diabetes 2003;52:291-9.
    72 Saleh J,Christou N,Cianflone K.Regional specificity of ASP binding in human adipose tissue.Am J Physiol 1999;276:E815-21.
    73 Flier JS,Cook KS,Usher P,et al.Severely impaired adipsin expression in genetic and acquired obesity.Science 1987;237:405-8.
    74 Zhang Y,Proenca R,Maffei M,et al.Positional cloning of the mouse obese gene and its human homologue.Nature 1994;372:425-32.
    75 汪启迪,陈明道,胡仁明等.糖皮质激素、胰岛素对血清瘦素及其昼夜节律的影响.中华内科杂志 2002;41:104-8.
    76 陈明道.对瘦素临床意义的重新认识.中华内科杂志 2002;41:219-20.
    77 陈家伦.胰岛素信号转导及临床意义(下).内国外医学内分泌学分册 2002;22:65-8.
    78 Muller G, Ertl J, Gerl M, et al. Leptin impairs metabolic actions of insulin in isolated rat adipocytes. J Biol Chem 1997; 272: 10585-93.
    79 Yamauchi T, Kamon J, Ito Y, et al. cloning of adiponectin receptors that mediate antidiabetic metabolic effects. Nature 2003; 423: 762-9.
    80 Hotta K, Funahashi T, Bodkin NL, et al. Circulating concentrations of the adipocyte protein adiponectin are decreased in parallel with reduced insulin sensitivity during the progression to type 2 diabetes in rhesus monkeys. Diabetes 2001; 50: 1126-33.
    81 Statnick MA, Beavers LS, Conner LJ, et al. Decreased expression of apM1 in omental and subcutaneous adipose tissue of humans with type 2 diabetes. Int J Exp Diabetes Res 2000; 1:81-8.
    82 Kondo H, Shimomura I, Matsukawa Y, et al. Association of adiponectin mutation with type 2 diabetes: a candidate gene for the insulin resistance syndrome. Diabetes 2002; 51: 2325-8.
    83 Yamauchi T, Kamon J, Waki H, et al. Globular adiponectin protected ob/ob mice from diabetes and ApoE-deficient mice from atherosclerosis. J Biol Chem 2003; 278: 2461-8.
    84 Yamauchi T, Kamon J, Waki H, et al. The fat-derived hormone adiponectin reverses insulin resistance associated with both lipoatrophy and obesity. Nat Med 2001; 7: 941-6.
    85 Maeda N, Takahmhi M, Funahashi T, et al. PPARgmama ligands increase expression and plasma conceit rations of adiponectin, an adipose-derived protein. Diabetes 2001; 50: 2094-9.
    86 Steppan CM, Bailey ST, Bhat S, et al. The hormone resistin links obesity to diabetes. Nature 2001; 409: 307-12.
    87 Steppan CM, Yamazawa T, Brown EJ, et al. Antagonism of insulin action by resistin. Dibaeets 2001 50: 70.
    88 Moon B, Kwan JJ, Duddy N, et al. Resistin inhibits glucose uptake in L6 cells independently of changes in insulin signaling and GLUT4 translocation. Am J Physiol Endocrinol Metab 2003; 285: E106-15.
    89 Way JM,G(o|¨)rgün CZ,Tong Q,et al.Adipose tissue resistin expression is severely suppressed in obesity and stimulated by peroxisome proliferatoractivated receptor gamma agonists.J Biol Chem 2001;276:25651-3.
    90 Janke J,Engeli S,Gorzelniak K,et al.Resistin gene expression in human adipocytes is not related to insulin resistance.Obes Res 2002;10:1-5.
    91 Kern PA,Saghizadeh M,Ong JM,et al.The expression of tumor necrosis factor in human adipose tissue.Regulation by obesity,weight loss,and relationship to lipoprotein lipase.J Clin Invest 1995;95:2111-9.
    92 Hotamisligil GS,Shargill NS,Spiegelman BM.Adipose expression of tumor necrosis factor-alpha:direct roal in obesity-linked insulin resistance.Science 1993;259:87-91.
    93 蒋丽珍.肿瘤坏死因子-α诱发胰岛素抵抗的机理.国外医学免疫学分册1997;20:30-31.
    94 Stephens JM,Lee J,Pilch PF.Tumor necrosis factor-alpha-induced insulin resistance in 3T3-L1 adipocytes is accompanied by a loss of insulin receptor substrate-1 and GLUT4 expression without a loss of insulin receptor-mediated signal transduction.J Biol Chem 1997;272:971-6.
    95 周红文.脂肪组织的内分泌功能.国外医学内分泌学分册 2002;22:34-36.
    96 夏邦顺.TNF-α在伴有血管病变的NIDDM患者胰岛素抵抗的意义.中国免疫学杂志1998;14:46.
    97 Poitou C,Lacorte JM,Coupaye M,et al.Relationship between single nucleotide polymorphisms in leptin,IL6 and adiponectin genes and their circulating product in morbidly obese subjects before and after gastric banding surgery.Obes Surg 2005;15:11-23.
    98 Southern C,Sehulster D,Green IC.Inhibition of insulin secretion from rat islets of Langerhans by intedeukin26.Bio chem.J 1990;272:243-5.
    99 Fernandez-Real JM,Vayreda M,Richart C,et al.Circulating interleukin 6 levels,blood pressure and insulin sensitivity in apparently healthy men and women.J Clin Endocrinol Metab 2001;86:1154-9.
    100 Lagathu C, Bastard JP, Auclair M, et al. Chronic interleukin-6(IL-6) treatment increased IL-6 secretion and induced insulin resistance in adipocyte: prevention by rosiglitazone. Biochem Biophys Res Commun 2003; 311: 372-9.
    101 Haffner SM. The metabolic syndrome: inflammation, diabetes mellitus, and cardiovascular disease. Am J Cardiol 2006; 97: 3A-11 A.
    102 Koh KK, Han SH, Quon MJ. Inflammatory markers and the metabolic syndrome: insights from therapeutic interventions. J Am Coll Cardiol 2005; 46: 1978-85.
    103 Festa A, D'Agostino R Jr, Howard G, et al. Chronic subclinical inflammation as part of the insulin resistance syndrome: the Insulin Resistance Atherosclerosis Study (IRAS). Circulation 2000; 102: 42-7.
    104 Pradhan AD, Cook NR, Buring JE, et al. C-reactive protein is independently associated with fasting insulin in nondiabetic women. Arterioscler Thromb Vasc Biol 2003; 23: 650-5.
    105 Ishikawa S, Kayaba K, Gotoh T, Nakamura Y, Kajii E.Metabolic syndrome and C-reactive protein in the general population: JMS Cohort Study. Circ J. 2007 Jan; 71(1):26-31.
    106 Lao XQ, Thomas GN, Jiang CQ, et al. C-reactive protein and the metabolic syndrome in older Chinese: Guangzhou Biobank Cohort Study. Atherosclerosis 2007; 194:483-9.
    107 Olszanecka-Glinianowicz M, Zahorska-Markiewicz B, Janowska J, Zurakowski A.Serum concentrations of nitric oxide, tumor necrosis factor (TNF)-alpha and TNF soluble receptors in women with overweight and obesity. Metabolism 2004; 53:1268-73.
    108 Hung J, McQuillan BM, Chapman CM, et al. Elevated interleukin-18 levels are associated with the metabolic syndrome independent of obesity and insulin resistance. Arterioscler Thromb Vasc Biol.2005 Jun; 25(6): 1268-73.
    109 Xu ZG, Lanting L, Vaziri ND, et al. Upregulation of angiotensin II type 1 receptor, inflammatory mediators, and enzymes of arachidonate metabolism in obese Zucker rat kidney: reversal by angiotensin II type 1 receptor blockade. Circulation 2005; 111: 1962-9.
    110 Yamaguchi Y,Yoshikawa N,Kagota S,et al.Elevated circulating levels of markers of oxidative-nitrative stress and inflammation in a genetic rat model of metabolic syndrome.Nitric Oxide 2006;15:380-6.
    111 Okamura H,Tsutsi H,Komatsu T,et al.Cloning of a new cytokine that induces IFN-gamma production by T cells.Nature 1995;378:88-91.
    112 Ushio S,Namba M,Okura T,et al.Cloning of the cDNA for human IFN-gamma-inducing factor,expression in Escherichia coli,and studies on the biologic activities of the protein.J Immunol 1996;156:4274-9.
    113 Gracie JA,Robertson SE,McInnes IB.Interleukin-18.J Leukoc Biol 2003;73:213-24.
    114 Sims JE.IL-1 and IL-18 receptors,and their extended family.Curr Opin Immunol 2002;14:117-22.
    115 彭彦,王勇,王亚平等.白介素18与临床疾病相关性研究进展.国外医学临床生物化学与检验学分册 2004;25:246-8.
    116 Thorand B,Kolb H,Baumert J,et al.Elevated levels of interleukin-18 predict the development of type 2 diabetes:results from the MONICA/KORA Augsburg Study,1984-2002.Diabetes 2005;54:2932-8.
    117 Oikawa Y,Shimada A,Kasuga A,et al.Systemic administration of IL-18promotes diabetes development in young nonobese diabetic mice.J Immunol 2003;171:5865-75.
    118 Leick L,Lindegaard B,Stensvold D,et al.Adipose tissue interleukin-18 mRNA and plasma interleukin-18:effect of obesity and exercise.Obesity(Silver Spring)2007;15:356-63.
    119 Ersoy C,Imamoglu S,Budak B,et al.Effect of amlodipine on insulin resistance & tumor necrosis factor-alpha levels in hypertensive obese type 2 diabetic patients.Indian J Med Res 2004;120:481-8.
    120 Zemel MB.Nutritional and endocrine modulation of intracellular calcium:implications in obesity,insulin resistance and hypertension.Mol Cell Biochenl 1998;188:129-36.
    121 Jang YJ,Ryu HJ,Choi YO,et al.Improvement of insulin sensitivity by chelation of intracellular Ca~(2+) in high fat-fed rats.Metabolism 2002;51:912-8.
    122 Brown M J,Palmer CR,Castaigne A,et al.Morbidity and mortality in patients randomised to double-blind treatment with a long-acting calcium-channel blocker or diuretic in the international Nifedipine GITS study Intervention as a Goal in Hypertension Treatment(INSIGHT).Lancet 2000;356:366-72.
    123 The ALLHAT Officers and Coordinators for the ALLHAT Collaborative Research Group.Major outcomes in high-risk hypertensive patients randomized to angiotensin-converting enzyme inhibitor or calcium channel blocker vs diuretic:the Antihypertensive and Lipid-Lowering Treatment to Prevent Heart Attack Trial(ALLHAT).JAMA 2002;288:2981-97.
    124 Poole-Wilson PA,Lubsen J,Kirwan BA,et al.Effect of long acting nifedipine on mortality and cardiovascular morbidity in patients with untable angiom requirment(ACTION trail):randomized controlled trail.Lancet 2004;364:849-57.
    125 Nishikawa N,Masuyama T,Yamamoto K,et al.Long-term administration of amlodipine prevents decompensation to diastolic heart failure in hypertensive rats.J Am Coll Cardiol 2001;38:1539-45.
    126 Lindmark B,Ahnoff M,Persson BA.Enantioselective determination of felodipine in human plasma by chiral normal-phase liquid chromatography and electrospray ionisation mass spectrometry.J Pharm Biomed Anal 2002;27:489-95.
    127 Liu L,Zhang Y,Liu G,et al.The Felodipine Event Reduction(FEVER) Study:a randomized long-term placebo-controlled trial in Chinese hypertensive patients.J Hypertens 2005;23:2157-72.
    128 Wong M,Germanson T,Taylor WR,et al.Felodipine improves left ventricular emptying in patients with chronic heart failure:V-HeFT Ⅲ echocardiographic substudy of multicenter reproducibility and detecting functional change.J Card Fail 2000;6:19-28.
    129 万国华,王秉辰,崔炜等.非洛地平缓释片对原发性高血压的降压疗效和安全性.国外医学心血管疾病分册 2002:29:358-60.
    130 王方方,易绍东,向定成等.高血压病人的临床用药.中国医院药学杂志2001:21:40-1.
    131 Luis Ruiope.HOT-Plendil高血压理想治疗的国际性研究.中国医学论坛报1998;9:24-6.
    132 王乾洲,龚善初.钙拮抗剂的进展.中国医院药学杂志 1999;19:110-1.
    133 汪坚勇.非洛地平缓释片对原发性高血压患者肾脏的保护作用.临床心血管病杂志 2002;18:365-6.
    134 Swislocki A.Insulin resistance and hypertension.Am J Med Sci 1990;300:104-15.
    135 Lithell HO.Hyperinsulinemia,insulin resistance,and the treatment of hypertension.Am J Hypertens 1996;9:150S-4S.
    136 Touyz RM,Schiffrin EL.Treatment of non-insulin-dependent diabetic hypertensive patients with Ca2+ channel blockers is associated with increased platelet sensitivity to insulin.Am J Hypertens 1995;8:1214-21.
    137 Lann D,LeRoith D.Insulin resistance as the underlying cause for the metabolic syndrome.Med Clin North Am 2007;91:1063-77.
    138 Roth M,Keul R,Emmons LR,et al.Manidipine regulates the transcription of cytoldne genes.Proc Natl Acad Sci USA 1992;89:4071-5.
    139 Kataoka C,Egashira K,Ishibashi M,et al.Novel anti-inflammatory actions of amlodipine in a rat model of arteriosclerosis induced by long-term inhibition of nitric oxide synthesis.Am J Physiol Heart Circ Physiol 2004;286:H768-74.
    140 Matsumori A,Nunokawa Y,Sasayama S.Nifedipine inhibits activation of transcription factor NF-kappaB.Life Sci 2000;67:2655-61.
    141 Iwasaki Y,Asai M,Yoshida M,et al.Nilvadipine inhibits nuclear factor-kappaB-dependent transcription in hepatic cells.Clin Chim Acta 2004;350:151-7.
    142 Matsubara M,Hasegawa K.Effects of benidipine,a dihydropyridine-Ca~(2+)channel blocker,on expression of cytokine-induced adhesion molecules and chemoattractants in human aortic endothelial cells.Eur J Pharmacol 2004;498:303-14.
    1 Roche HM, Phillips C, Gibney MJ. The metabolic syndrome: the crossroads of diet and genetics. Proc Nutr Soc 2005; 64: 371-7.
    2 Arenillas JF, Moro MA, Davalos A. The metabolic syndrome and stroke: potential treatment approaches. Stroke 2007; 38: 2196-203.
    3 Matsuzawa Y. The metabolic syndrome and adipocytokines. FEBS Lett 2006; 580:2917-21.
    4 Wang CC, Goalstone ML, Draznin B. Molecular mechanisms of insulin resistance that impact cardiovascular biology. Diabetes 2004; 53: 2735-40.
    5 Cusi K, Maezono K, Osman A, et al. Insulin resistance differentially affects the PI3-kinase- and MAP kinase-mediated signaling in human muscle. J Clin Invest 2000; 105: 311-20.
    6 Pickup JC. Inflammation and activated immunity in the pathogenesis of type 2 diabetes. Diabetes Care 2004; 27: 813-23.
    7 Benito M, Valverde AM, Lorenzo M. IGF-I: a mitogen also involved in differentiation processes in mammalian cells. Int J Biochem Cell Biol 1996; 28: 499-510.
    8 Carvalho E, Jansson PA, Axelsen M, et al. Low cellular IRS1 gene and protein expression predict insulin resistance and NIDDM. FASEB J 1999; 13: 2173-8.
    9 Jansson PA, Pellme F, Hammarstedt A, et al. A novel cellular marker of insulin resistance and early atherosclerosis in humans is related to impaired fat cell differentiation and low adiponectin. FASEB J 2003; 17: 1434-40.
    10 Kadowaki T. Insights into insulin resistance and type 2 diabetes from knockout mouse models. J Clin Invest 2000; 106: 459-65.
    11 Czech MP, Corvera S. Signaling mechanisms that regulate glucose transport. J Biol Chem 1999; 274: 1865-8.
    12 Anai M, Funaki M, Ogihara T, et al. Enhanced insulin-stimulated activation of phosphatidylinositol 3-kinase in the liver of high-fat-fed rats. Diabetes 1999; 48: 158-69.
    13 Smith U,Carvalho E,Mosialou E,et al.PKB Inhibition prevents the stimulatory effect of insulin on glucose transport and protein translocation but not the antiliplytic effect in rat adipocytes.Biochem Biophys Res Commun 2000;268:315-20.
    14 Shoelson SE,Lee J,Goldfine AB.Inflammation and insulin resistance.J Clin Invest 2006;116:1793-801.
    15 Hotamisligil GS.Inflammation and metabolic disorders.Nature 2006;444:860-7.
    16 李焱.炎症、胰岛素抵抗是2型糖尿病和动脉粥样硬化的共同基础.国外医学内分泌分册2006:25:150-2.
    17 Gao Z,Hwang D,Bataille F,et al.Serine phosphorylation of insulin receptor substrate 1 by inhibitor kappa B kinase complex.J Biol Chem 2002;277:48115-21.
    18 Hotamisligil GS.Inflammatory pathways and insulin action.Int J Obes 2003;27:53-5.
    19 Wisse BE.The Inflammatory Syndrome:The Role of Adipose Tissue Cytokines in Metabolic Disorders Linked to Obesity.J Am Soe Nephrol 2004;15:2792-800.
    20 DeFronzo RA,Bonadonna RC,Ferrannini E.Pathogenesis of NIDDM.A balanced overview.Diabetes Care 1992;15:318-68.
    21 Hotamisligil GS.Molecular mechanisms of insulin resistance and the role of the adipocyte,Int J Obes Relat Metab Disord 2000;24:S23-7.
    22 Steppan CM,Lazar MA.Resistin and obesity-associated insulin resistance.Trends Endocrinol Metab 2002;13:18-23.
    23 Trayhurn P,Beattie JH.Physiological role of adipose tissue:white adipose tissue as an endocrine and secretory organ.Proc Nutr Soc 2001;60:329-339.
    24 Ailhaud G.Adipose tissue as a secretory organ:from adipogenesis to the metabolic syndrome.C R Biol 2006;329:570-7.
    25 Yang YS, Song HD, Li RY, et al. The gene expression profiling of human visceral adipose tissue and its secretory functions. Biochem Biophys Res Commun 2003; 300: 839-46.
    26 Marette A. Mediators of cytokine-induced IR in obesity and other inflammation settings. Nutr Metab Care 2002; 5: 377-8.
    27 Morel JC, Park CC, Woods JM, et al. A novel role for interleukin-18 in adhesion molecule induction through NF-kB and phosphatidylinositol (PI) 3-kinase-dependentsignal transduction pathways. J Biochem 2001; 276: 37069-75.
    28 Whiteman EL, Cho H, Birnbaum MJ. Role of Akt/protein kinase B in metabolism. Trends Endocrinol Metab 2002; 13: 444-51.
    29 Saltiel AR, Kahn CR: Insulin signalling and the regulation of glucose and lipid metabolism. Nature 2001; 414: 799-806.
    30 Du K, Herzig S, Kulkarni RN, et al. TRB3: a tribbles homolog that inhibits Akt/PKB activation by insulin in liver. Science 2003; 300: 1574-7.
    31 Koo SH, Satoh H, Herzig S, et al. PGC-1 promotes insulin resistance in liver through PPAR-dependent induction of TRB-3. Nat Med 2004; 10: 530-4.
    32 Xu J, Lv S, Qin Y, et al. TRB3 interacts with CtIP and is overexpressed in certain cancers. Biochim Biophys Acta 2007; 1770: 273-8.
    33 Zhao C, Wang P, Xiao X, et al. Gene therapy with human tissue kallikrein reduces hypertension and hyperinsulinemia in fructose-induced hypertensive rats. Hypertension 2003; 42: 1026-33.
    34 Miatello R, Vazquez M, Renna N, et al. Chronic administration of resveratrol prevents biochemical cardiovascular changes in fructose-fed rats. Am J Hypertens 2005; 18: 864-70.
    35 Dai S, McNeill JH. Fructose-induced hypertension in rats is concentration-and duration-dependent. J Pharmacol Toxicol Methods 1995; 33: 101-7.
    36 amounier-Zepter V, Ehrhart-Bornstein M, Bornstein SR. Insulin resistance in hyPertension and cardiovascular disease. Best Pract Res Clin Endocrinol Metab 2006; 20: 355-67.
    37 Eckel RH,Grundy SM,Zimmet PZ.The metabolic syndrome.Lancet 2005;365:1415-28.
    38 Zimmet P,Magliano D,Matsuzawa Y,et al.The metabolic syndrome:a global public health problem and a new definition.J Atheroscler Thromb 2005;12:295-300.
    39 陈蕾,贾伟平,陆俊茜,等.上海市成人代谢综合征症流行调查.中华心血管杂志 2003;31:909-12.
    40 Haffner SM,D′Agostino R Jr,Mykk(a|¨)nen L,et al.Insulin sensitivity in subjects with type 2 diabetes,Relationship to cardiovascular risk factors:the Insulin Resistance Atherosclerosis Study.Diabetes Care 1999;22:562-8.
    41 Lillioja S,Mott DM,Howard BV,et al.Impaired glucose tolerance as a disorder of insulin action:longitudinal and cross-sectional studies in Pima Indians.N Engl J Med 1988;318:1217-25.
    42 Haffner SM,D'Agostino R,Saad MF,et al.Increased insulin resistance and insulin secretion in nondiabetic African-Americans and Hispanics compared with non-Hispanic whites.The Insulin Resistance Atherosclerosis Study.Diabetes 1996;45:742-8.
    43 Reaven GM.Role of insulin resistance in human disease(syndrome Ⅹ):an expanded definition.Ann Rev Med 1993;44:121-31.
    44 Haffner SM,Valdez RA,Hazuda HP,et al.Propective analysis of the insulin resistance syndrome(syndrome Ⅹ).Diabetes 1992;41:715-22.
    45 Laakso M.Dislipidaemia,Insulin resistance and atherosclerosis.Ann Med 1992;24:505-509.
    46 Laakso M,Sarlund H,Mykkanen L.Insulin resistance is associated with lipid and lipoprotein abnormalities in subjects with varying degrees of glucose tolerance.Atherosclerosis 1990;10:223-31.
    47 Mykkanen L,Kuusisto J,Haffner SM,et al.Hyperinsulinemia predicts multiple atherogenie changes in lipoproteins in elderly subjeets.Arterioseler Thromb 1994;14:518-26.
    48 Nagasaki K,Hara H,Ogawa J,et al.Relation between Hyperinsulinemia and risk factors of atherosclerosis.Jap J Med 1986;25:270-7.
    49 Karhapaa P,Voutilainen E,Kovanen PT,et al.Insulin resistance in familial and nonfamilial hypercholesterolemia.Arterioscler Thromb 1993;13:41-7.
    50 Notsu Y,Nabika T,Shibata H,et al.HOMA-IR and related clinical parameters.Rinsho Byori 2007;55:737-42.
    51 Ascaso JF,Romero P,Real JT,et al.Abdominal obesity,insulin resistance,and metabolic syndrome in a soutyem European population.Eur J Intern Med 2003Mar;14:101-6.
    52 Reinehr T,de Sousa G,Toschke AM,et al.Long-term follow-up of cardiovascular disease risk factors in children after an obesity intervention.Am J Clin Nutr 2006;84:490-6.
    53 Dumortier M,Brandou F,Perez-Martin A,et al.Low intensity endurance exercise targeted for lipid oxidation improves body composition and insulin sensitivity in patients with the metabolic syndrome.Diabetes Metab 2003;29:509-18.
    54 陈丽萌,李学旺,黄利伟,等.2型糖尿病小鼠(KKAY)动物模型的鉴定和早期肾脏病理改变.中国医学科学院学报 2002;24:71-5.
    55 Naka Y,Bucciarelli LG,Wendt T,et al.RAGE Axis:Animal Models and Novel Insights into the Vascular Complications of Diabetes.Arterioscler Thromb Vasc Biol 2004;24:1342-9.
    56 Modan M,Halkin H,Almog S,et al.Hyperinsulinemia.A link between hypertension obesity and glucose intolerance.J Clin Invest 1985;75:809-17.
    57 Ferrannini E,Buzzigoli G,Bonadonna R,et al.Insulin resistance in essential hypertension.N Engl J Med 1987;317:350-7.
    58 Pollare T,Lithell H,Berne C.Insulin resistance is a characteristic feature of primary hypertension of obesity.Metabolism 1990;39:167-74.
    59 Reaven GM,Ho H,Hoffman BB.Attenuation of fructose-induced hypertension in rats by exercise training.Hypertension 1988;12:129-32.
    60 Rowe JW,Young JB,Minaker KL,et al.Effect of insulin and glucose infusion on sympathetic system activity in normal man.Diabetes 1981;30:219-25.
    61 Cardillo C,Nambi SS,Kilcoyne CM,et al.Insulin stimulates both endothelin and nitric oxide activity in the human forearm.Circulation 1999;100:820-25.
    62 Pessin JE,Saltiel AR.Signaling pathways in insulin action:molecular targets of insulin resistance.J Clin Invest 2000;106:165-9.
    63 Watson RT,Pessin JE.Subcellular compartmentalization and trafficking of the insulin-responsive glucose transport GLUT4.Exp Cell Res 2001;271:75-83.
    64 Kupriyanova TA,Konstantin V.Akt-2 bind to GLUT4-con-taining vesicles and phosphorylates their component proteins in response to insulin.J Biol Chem 1999;274:1458-64.
    65 Smith U,Carvalho E,Mosialou E,et al.PKB inhibition prevents the stimulatory,effect of insulin on glucose transport and protein translocation but not the antilipolytic effect in rat adipocytes.Biochem Biophys Res Commun 2000;268:315-20.
    66 Tamemoto H,Kadowoki T,Tobe K,et al.Insulin resistance and growth retardation in mice lacking insulin receptor substrate-1.Nature 1994;372:182-6.
    67 Withers DJ,Gutierrez JS,Towery,H,et al.Disruption of IRS-2 causes type 2diabetes in mice.Nature 1998;391:900-4.
    68 Bjomholm M,Kawano Y,Cehtihet M,et al.Insulin receptor substrate-1phosphorylation and phosphatidylinositol 3-kinase activity in skeletal muscle from NIDDM subjects after in vivo insulin stimulation.Diabetes 1997;46:524-7.
    69 Yoshimura R,Araki E,Ura S,et al.Impact of natural IRS-1 mutations on insulin signals:mutations of IRS-1 in the PTB domain and near SH_2 protein binding sites result in impaired function at different steps of IRS-1 signaling.Diabetes 1997;46:929-36.
    70 Rondinone CM,Wang LM,Lonnroth P,et al.Insulin receptor substrate(IRS) 1is reduced and IRS-2 is the main docking protein for phosphatidylinositol 3-kinase in adipocytes from subjects with non-insulin-dependent diabetes mellitus.Proc Natl Acad Sci USA 1997;94:4171-5.
    71 Kido Y, Burks DJ, Withers D, et al. Tissue-specific insulin resistance in mice with mutations in the insulin receptor、 IRS-1 and IRS-2. J Clin Invest 2000; 105: 199-205.
    72 Withers DJ, Gutierrez JS, Towery H, et al. Disruption of IRS-2 cause type 2 diabetes in mice. Nature 1998; 391: 900-4.
    73 Tamemoto H, Kadowaki T, Towery H, et al. Insulin resistance and growth retardation in mice lacking insulin receptor substrate-1. Nature 1994; 372: 182-6.
    74 Rondinone CM, Wang LM, Lonnroth P, et al. Insulin receptor substrate (IRS) 1 is reduced and IRS-2 is the main docking protein for phosphatidylinositol 3-kinase in adipocytes from subjects with non-insulin-dependent diabetes mellitus. Proc Natl Acac Sci USA 1997; 94: 4171-5.
    75 Laville M, Auboeuf D, Khalfallah Y, et al. Acute regulation by insulin of phosphatidylinositol-3-kinase, Rad, Glut 4, and lipoprotein lipase mRNA levels in human muscle. J Clin Invest 1996; 98: 43-9.
    76 Terauchi Y, Tsuji Y, Satoh S, et al. Increased insulin sensitivity and hypoglycaemia in mice lacking the p85 alpha subunit of phosphoinositide 3-kinase. Nat Genet. 1999; 21: 230-5.
    77 Kerouz NJ, Horsch D, Pons S, et al. Differential regulation of insulin receptor substrates-1 and -2 (IRS-1 and IRS-2) and phosphatidylinositol 3-kinase isoforms in liver and muscle of the obese diabetic (ob/ob) mouse. J Clin Invest 1997; 100: 3164-72.
    78 Anai M, Funaki M, Ogihara T, et al. Altered expression levels and impaired steps in the pathway to phosphatidylinositol 3-kinase activation via insulin receptor substrates 1 and 2 in Zucker fatty rats. Diabetes 1998; 47: 13-23.
    79 Andreelli F, Lsville M, Ducluzeau PH, et al. Defective regulation of phosphatidylinositol-3-kinase gene expression in skeletal muscle and adipose tissue of non-insulin-dependent diabetes mellitus patients. Diabetologia 1999; 42: 358-64.
    80 Buren J, Liu HX, Jensel J, et al. Dexamethasone impairs insulin signaling and glucose transport by depletion of insulin receptor substrate-1. phosphatidylinositol 3-kinase and protein kinase B in primary cultured rat adipocytes. Eur J Endocrine 2002; 146:419-29.
    81 Kim YB, Peroni OD, Franke TF, et al. Divergent regulation of Aktl and Akt2 is forms in insulin target of obese Zucker rats. Diabetes 2000; 49: 847-56.
    82 Garofalo RS, Orena SJ, Rafidi K, et al. Severe diabetes, age-dependent loss of adipose tissue, and mild growth deficiency in mice lacking Akt2/PKB β. J Clinical Investation 2003; 112: 197-208.
    83 Tremblav F, Lavigne C, Jacques H, et al. Dietry cod protein restores insulin-induced activation of phosphatidylionsitol 3-kinase/Akt and Glut4 translocation to Ttubules in skeletal muscle of high fat-fed obese rats. Diabetes 2003; 52: 29-37.
    84 Kausch C, Krutzfeldt J, Witke A, et al. Effects of troglitazone on celluar differentiation, insulin signaling and glucose metabolism in cultured human skeletal muscle cells. Bioche Biophys Res Comm 2001; 280: 264-7.
    85 Carvalho E, Rondinone C,Smith U, et al. Insulin resistance in fat cells from obese Zucker rats-evidence for an impaired activation and translocation of protein kinase B and glucose transporter 4. Mol Cell Biochem 2000; 206: 7-16.
    86 Rondinone CM, Carvalho E, Wesslau C, et al. Impaired glucose transport and protein kinase B activation by insulin, but not okadaic acid, in adipocytes from subjects with Type II diabetes mellitus. Diabetologia 1999; 42: 819-25.
    87 Storguard H, Song XM, Jensen CB, et al. Insulin signal transduction in skeletal muscle from glucose-intolerant relatives with type 2 diabetes. Diabetes 2001; 50: 2770-2778.
    88 Shao J, Yamashita H, Qiao L, et al. Decreased Akt kinase activity and insulin resistance in C57BL/KsJ-Lepr (db/db) mice. J Endocrinol 2000; 167:107-15.
    89 Smith U. Impaired ('diabetic') insulin signaling and action occur in fat cells long before glucose intolerance—is insulin resistance initiated in the adipose tissue? Int J Obes Relat Metab Disord 2002; 26: 897-904.
    90 Juge-Aubry CE, Henrichot E, Meier CA. Adipose tissue: a regulator of inflammation. Best Pract Res Clin Endocrinol Metab 2005; 19: 547-66.
    91 Plomgaard P, Bouzakri K, Krogh-Madsen R, et al. Tumor necrosis factor-alpha induces skeletal muscle insulin resistance in healthy human subjects via inhibition of Akt substrate 160 phosphorylation. Diabetes 2005; 54: 2939-45.
    92 Li G, Barrett EJ, Barrett MO, et al. Tumor necrosis factor-alpha induces insulin resistance in endothelial cells via a p38 mitogen-activated protein kinase-dependent pathway. Endocrinology 2007; 148: 3356-63.
    93 Li H, Lin X. Positive and negative signaling components involved in TNFalpha-induced NF-kappaB activation. Cytokine 2008; 41:1-8.
    94 Tamura Y, Ogihara T, Uchida T, et al. Amelioration of glucose tolerance by hepatic inhibition of nuclear factor kappaB in db/db mice. Diabetologia 2007; 50: 131-41.
    95 Yuan M, Konstantopoulos N, Lee J, et al. Reversal of obesity-and diet-induced insulin resistance with salicylates or targeted disruption of Ikkbeta. Science 2001; 293: 1673-7.
    96 Rico-Bautista E, Flores-Morales A, Fernandez-Perez L. Suppressor of cytokine signaling (SOCS) 2, a protein with multiple functions. Cytokine Growth Factor Rev 2006; 17:431-9.
    97 Ueki K, Kondo T, Tseng YH, et al. Central role of suppressors of cytokine signaling proteins in hepatic steatosis, insulin resistance, and the metabolic syndrome in the mouse. Proc Natl Acad Sci USA 2004; 101:10422-7.
    98 Rui L, Yuan M, Frantz D, et al. SOCS-1 and SOCS-3 block insulin signaling by ubiquitin-mediated degradation of IRS1 and IRS2. J Biol Chem 2002; 277: 42394-8.
    99 Lagathu C, Bastard JP, Auclair M, et al. Chronic interleukin-6 (IL-6) treatment increased IL-6 secretion and induced insulin resistance in adipocyte: prevention by rosiglitazone. Biochem Biophys Res Commun 2003; 311: 372-9.
    100 Netea MG, Kullberg BJ, Verschueren I, et al. Interleukin-18 induces production of proinflammatory cytokines in mice: no intermediate role for the cytokines of the tumor necrosis factor family and interleukin-lbeta. Eur J Immunol 2000; 30: 3057-60.
    101 Chandrasekar B, Colston JT, de la Rosa SD, et al. TNF-alpha and H2O2 induce IL-18 and IL-18R beta expression in cardiomyocytes via NF-kappa B activation. Biochem Biophys Res Commun 2003; 303: 1152-8.
    102 Pittoni V, Bombardieri M, Spinelli FR, et al. Anti-tumour necrosis factor (TNF) alpha treatment of rheumatoid arthritis (infliximab) selectively down regulates the production of interleukin (IL) 18 but not of IL12 and IL13. Ann Rheum Dis 2002; 61: 723-5.
    103 Bums K, Martinon F, Esslinger C, et al. MyD88, an adapter protein involved in interleukin-1 signaling. J Biol Chem 1998; 273: 12203-9.
    104 Adachi O, Kawai T, Takeda K, et al. Targeted disruption of the MyD88 gene results in loss of IL-1- and IL-18-mediated function. Immunity 1998; 9:143-50.
    105 Van der Wouden EA, Sandovici M, Henning RH, et al. Approaches and methods in gene therapy for kidney disease. J Pharmacol Toxicol Methods 2004; 50: 13-24.
    106 Apparailly F, Verwaerde C, Jacquet C, et al. Adenovirus-mediated transfer of viral IL-10 gene inhibits murine collagen-induced arthritis. J Immunol 1998; 160: 5213-20.
    107 Dobrzynski E, Montanari D, Agata J, et al. Adrenomedullin improves cardiac function and prevents renal damage in streptozotocin-induced diabetic rats. Am J Physiol Endocrinol Metab 2002; 283: E1291-8.
    108 Satoh H, Nguyen MT, Miles PD, et al. Adenovirus-mediated chronic "hyper-resistinemia" leads to in vivo insulin resistance in normal rats. J Clin Invest 2004; 114:224-31.
    109 Wang C, Dobrzynski E, Chao J, et al. Adrenomedullin gene delivery attenuates renal damage and cardiac hypertrophy in Goldblatt hypertensive rats. Am J Physiol Renal Physiol 2001; 280: F964-71.
    110 Tao N, Gao GP, Parr M, et al. Sequestration of adenoviral vector by Kupffer cells leads to a nonlinear dose response of transduction in liver. Mol Ther 2001; 3: 28-35.
    111 Morral N, O'Neal WK, Rice K, et al. Lethal toxicity, severe endothelial injury, and a threshold effect with high doses of an adenoviral vector in baboons. Hum Gene Ther 2002; 13: 143-54.
    112 Satoh H, Nguyen MT, Trujillo M, et al. Adenovirus-mediated adiponectin expression augments skeletal muscle insulin sensitivity in male Wistar rats. Diabetes 2005; 54: 1304-13.
    113 Iso-ON, Noto H, Hara M, et al. Adenovirus-mediated gene transfer and lipoprotein-mediated protein delivery of plasma PAF-AH ameliorates proteinuria in rat model of glomerulosclerosis. Mol Ther 2006; 13: 118-26.
    114 Cao H, Koehler DR, Hu J. Adenoviral vectors for gene replacement therapy. Viral Immunol 2004; 17: 327-33.
    115 Connelly S, Andrews JL, Gallo AM, et al. Sustained phenotypic correction of murine hemophilia A by in vivo gene therapy. Blood 1998; 91:3273-81.
    116 Dong H, Altomonte J, Morral N, et al. Basal insulin gene expression significantly improves conventional insulin therapy in type 1 diabetic rats. Diabetes 2002; 51: 130-8.
    117 Al Haj Zen A, Caligiuri G, Sainz J, et al. Decorin overexpression reduces atherosclerosis development in apolipoprotein E-deficient mice. Atherosclerosis 2006; 187: 31-9.
    118 Mackness B, Quarck R, Verreth W, et al. Human paraoxonase-1 overexpression inhibits atherosclerosis in a mouse model of metabolic syndrome. Arterioscler Thromb Vasc Biol 2006; 26: 1545-50.
    119 Coyne CB, Bergelson JM. CAR: a virus receptor within the tight junction. Adv Drug Deliv Rev 2005; 57: 869-82.
    120 Tomko RP, Johansson CB, Totrov M, et al. Expression of the adenovirus receptor and its interaction with the fiber knob. Exp Cell Res 2000; 255: 47-55.
    121 Lann D, LeRoith D. Insulin resistance as the underlying cause for the metabolic syndrome. Med Clin North Am 2007; 91: 1063-77.
    122 Grosshans J, Wieschaus E. A genetic link between morphogenesis and cell division during formation of the ventral furrow in Drosophila. Cell 2000; 101: 523-31.
    123 Seher TC, Leptin M. Tribbles, a cell-cycle brake that coordinates proliferation and morphogenesis during Drosophila gastrulation. Curr Biol 2000; 10:623-9.
    124 Mata J, Curado S, Ephrussi A, et al. Tribbles coordinates mitosis and morphogenesis in drosophila by regulating string/CDC25 proteolysis. Cell 2000; 101:511-22.
    125 Kiss-Toth E, Bagstaff SM, Sung HY, et al. Human tribbles, a protein family controlling mitogen-activated protein kinase cascades. J Biol Chem 2004; 279: 42703-8.
    126 Hegedus Z, Czibula A, Kiss-Toth E. Tribbles: novel regulators of cell function; evolutionary aspects. Cell Mol Life Sci 2006; 63: 1632-41.
    127 Min Wu, Liang-Guo Xu, Zhonghe Zhai, et al. SINK Is a p65-interacting Negative Regulator of NF-κB-dependent Transcription. J Biol Chem 2003; 278: 27072-9.
    128 Bowers AJ, Scully S, Boylan JF. SKIP3, a novel Drosophila tribbles ortholog, is overexpressed in human tumors and is regulated by hypoxia. Oncogene 2003; 22: 2823-35.
    129 Mayumi-Matsuda K, Kojima S, Suzuki H, et al. Identification of a novel kinase-like gene induced during neuronal cell death. Biochem Biophys Res Commun 1999; 258: 260-4.
    130 Garrington TP, Johnson GL. Organization and regulation of mitogen-activated protein kinase signaling pathways. Curr Opin Cell Biol 1999; 11:211-8.
    131 Prudente S, Hribal ML, Flex E, et al. The functional Q84R polymorphism of mammalian Tribbles homolog TRB3 is associated with insulin resistance and related cardiovascular risk in Caucasians from Italy. Diabetes 2005; 54: 2807-11.
    132 Wu M, Xu LG, Su T, et al. AMID is a p53-inducible gene downregulated in tumors. Oncogene 2004; 23: 6815-9.
    133 Qi L, Heredia JE, Altarejos JY, et al. TRB3 links the E3 ubiquitin ligase COP1 to lipid metabolism. Science 2006; 312: 1763-6.
    134 Koo SH, Satoh H, Herzig S, et al. PGC-1 promotes insulin resistance in liver through PPAR-dependent induction of TRB-3. Nat Med 2004; 10: 530-4.
    135 ka N, Yoshii S, Hattori T, et al. TRB3, a novel ER stress-inducible gene, is induced via ATF4-CHOP pathway and is involved in cell death. EMBO J 2005; 24: 1243-55.
    136 Coran CA, Luo X, He Q, et al. Genotoxic and endoplasmic reticulum stresses differentially regulate TRB3 expression. Cancer Biol Ther 2005; 4: 1063-7.
    137 Ord D, Ord T. Mouse NIPK interacts with ATF4 and affects its transcriptional activity. Exp Cell Res 2003; 286: 308-20.
    138 Park S, Hwang I, Shong M, et al. Identification of genes in thyrocytes regulated by unfolded protein response by using disulfide bond reducing agent of dithiothreitol. J Endocrinol Invest 2003; 2(2): 132-7.
    139 Schwarzer R, Dames S, Tondera D, et al. TRB3 is a PI3-kinase dependent indicator for nutrient starvation. Cell Signal 2006; 18: 899-909.
    140 Yacoub Wasef SZ, Robinson KA, Berkaw MN, et al. Glucose, dexamethasone, and the unfolded protein response regulate TRB3 mRNA expression in 3T3-L1 adipocytes and L6 myotubes. Am J Physiol Endocrinol Metab 2006; 291: E1274-80.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700