用户名: 密码: 验证码:
风筛式清选装置设计理论与方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在农作物生产中,农业物料的清选是一项重要内容。现代联合收割机中常用风筛式平面振动筛进行清选,而风筛式平面振动筛筛分过程是一个极为复杂的随机过程,随着物理实验技术的发展及计算机技术的进步,运用现代设计理论与方法对风筛式清选装置进行系统地分析与研究的成为一个研究热点,因此,本文以稻谷清选为研究对象,开展风筛式清选装置设计理论与方法的研究,主要内容如下。
     1、测量了4LZ-1.0型联合收割机排出物的组成,测量结果表明,该机型清选损失率小于1%,但排出物中,谷粒与瘪谷没能有效地分离。对排出物中谷粒、瘪谷及茎秆的三维尺寸、密度、刚度及剪切强度等物性参数进行了测量,同时对三者之间相互作用的物性参数,如恢复系数、摩擦系数等进行了测量。
     2、对风筛式清装置进行了总体设计,对其振动筛总成进行了三维设计,运用三维分析软件,对筛面进行了运动学分析,并对筛面上点的运动进行了曲线拟合,分析表明,筛面上的点作周期性运动,运动曲线可用正弦函数表达。同时,运用ADAMS,分析了清选装置主要参数变化对筛面加速度的影响,并对主要参数进行了优化,优化结果表明,曲柄转速及半径对筛面的加速度影响敏感,其中曲柄转速n=360r/min、曲柄半径r=2.5cm时,有利于筛面上谷物的筛分。
     3、基于气固两相流体力学理论,分析了谷粒在筛面气流场的受力情况;运用Pro/E软件建立了风筛式清选装置三维几何模型,将其划分为结构化四面体网格,在恒压力边界下,利用CFD软件中的标准k-ε流模型和壁面函数法对清选装置内气流场进行了数值模拟。分析结果表明:风扇的外端风速最大,在风道与风扇滚筒的交界处,气流做离心运动,气流沿风扇叶片的切线方向吹出,形成比较流畅的气流场,在鱼鳞筛网处气流的大小方向发生改变,鱼鳞开口处速度聚集,气流从筛孔吹出,向着宜于将杂物吹出的方向流出。由于鱼鳞开口的影响,在筛面上方,离筛面较近处气流速度较大,分析表明,在保证清选效率的情况下,可以缩短清选装置的竖向距离。数值模拟同时表明,气流速度在壁面发生一定的冲击现象,压强存在明显梯度。通过正交实验对筛面气流场进行了优化,优化结果表明,离心风机转速为700r/min,离心风机倾角为25°,鱼鳞筛夹角20°时,有利于降低含杂率及损失率。
     4、利用逆向工程理论,对稻谷谷粒、瘪谷、短茎秆进行了三维模型重构。运用三维离散元形状模型理论,采用粘接法,构造了稻谷谷粒、瘪谷及短茎秆的三维离散元模型。该模型与实际模型形状尺寸及密度值误差在5%以内,可成为稻谷收获清选动力学及运动学分析运动的力学基础。
     5、对稻谷的脱出混合物在平面振动筛上的清选行为进行了系统的三维离散元数值模拟研究。通过数值模拟,再现了颗粒流在筛面激励下的分层及透筛过程,并分析了颗粒流的运动规律。研究了各振动参数对谷粒及瘪谷在筛面运动的影响,并通过曲线拟合得到其回归方程,探索了颗粒流在筛面上的分层及透筛机理。
     6、运用三维离散元分析模拟理论,对平面振动筛的筛分效率进行了系统的研究。引入动态筛分效率的概念,分析了在筛分过程中,筛面的振动频率、振幅及筛面倾角对筛分效率的影响。在此基础上,进行了正交仿真实验,得到了最佳筛分效率时的振动参数,即振动频率5Hz、振幅25mm、倾角为4°。同时建立了筛分效率的多元非线性模型,该模型丰富了颗粒物料的振动筛分理论,为传统筛分机的优化设计和新型筛分装置的研制提供了理论依据。
     7、运用实验的方法,对数值模拟进行了验证。运用高速图像处理系统,在实验台上进行了筛分过程的运动示踪,将离散元仿真结果与实验结果进行对比,分析表明,两种情况下,颗粒运动趋势相近;通过对实验时筛下物的统计,得到了筛分效率沿筛面分布规律,筛分效率在筛面上呈正态分布,筛面中前部筛分效率最高,该规律与离散元模拟结果规律基本一致;运用风速仪,对不同风机转速及不同风机倾角下筛面中点及出风口速度进行了测量,并与CFD模拟结果进行对比分析,分析表明,模拟结果与实验结果变化趋势相似,运用CFD进行气流场分析完全可行。
During the crop planting, the cleaning of agricultural materials plays an important role. The air-and-screen flat cleaning vibrating screen has been commonly used in modern combine, however, the air-and-screen flat shaker screening process is a very complex random process. With the development of physical testing technology and computer technology, many specialists focus on using modern design theory and methods for system analysis and research of air-and-screen cleaning device, therefore, concerning to the selecting of rice, the air-and-screen cleaning device was systematically studied. The main contents included.
     1. The composition of4LZ1.0type combine effluent was measured. Analysis showed that the loss was smaller for using this type of machine, however, Grain and immature grain was not effectively isolated in the effluent. The three-dimensional size, density, stiffness and shear strength and other physical parameters of grain and immature grain were measured, at the same time, the interaction between the three physical parameters, such as the restitution coefficient, friction coefficient was measured, too.
     2. Air-and-screen cleaning device was designed, and the shaker assembly was carried by three-dimensional reconstruction and we used kinematics analysis tools for curve fitting for movement of points which were on the screen surface. Analysis showed that the points on the surface of screen did periodic motion; the motion curve can be expressed by the sine function. Meanwhile, the influence for changing cleaning device size to the surface acceleration was analyzed by ADMAS, and the sizes are optimized. Optimization results showed that crank speed and the radius had sensitive influence to the acceleration on the surface of the screen. The acceleration of the points on the surface of screen is the best when crank rotation speed n=360r/min and crank radius r=2.5cm.
     3. Based on the gas-solid phase fluid mechanics theory, the force of the grain in the screen surface was analyzed.3D models were established by the Gambit software and divided into structured tetrahedron grid. In the constant pressure boundary, the cleaning device was numerical simulation through the standard k-s turbulent model of the CFD software and wall function method. Analysis showed that the biggest wind speed was out of the fan, in the boundary of the duct and fan cylinder, the air did centrifugal motion, and air blow out along the tangent of the fan blades and formed a smooth flow whose size and direction was changed in the scale sieve net. In the scale sieve net openings, the speed gathered and air blow out from the screen which was good for blowing out debris flow. Due to the influence of the scales openings, in the screen surface above, the face of the recent screen surface was with bigger air velocity. The analysis showed that in the guarantee of cleaning and choosing efficiency, the vertical distance of the cleaning device could be shortened. Numerical simulation also indicated that the airflow velocity in the wall had certain impact phenomenon, there exists significant pressure gradient. Through the orthogonal experiments, the screen surface wind field was optimized, and the optimization results showed that, centrifugal fan speed for700RPM, centrifugal fan angle of25degrees and the scales screen angle20degrees were helpful to reduce the impurity rate and loss.
     4. Based on reverse engineering theory, the three-dimensional models of rice grain and flat valley were reconstructed. With the idea of three-dimensional discrete element shape model theory, the3D models of rice grain, immature rice and short stem were established using bonding method. The error between this model and actual one was less than5%in shape, size and density values. In other words, this model could be the dynamics, kinematics and mechanics basis of grain screening analyses.
     5. The3D discrete element numerical simulation research was conducted, focusing on screening behavior of rice emergence mixture on the vibrating screen. Through numerical simulation, the layering and screening progresses of particle flow were represented with the excitation of the screen plane. The movement principles of particle flow were analyzed as well as the influence from each parameter on the grain and immature rice movement on the screen. At the same time, the regression equation was formed by curving fitting so as to explore the layering and screening mechanism of particle flow on the screen plane.
     6. The study on screening efficiency of plane vibrating screen was conducted systematically based on the3D discrete element analysis simulation theory. The concept of dynamic screening efficiency was introduced in order to analyze the disciplines of vibration frequency, amplitude and screen inclination which influenced screening efficiency during the screening progress. On the basis, we conducted an orthogonal simulation experiment to obtain the parameters of the best screening efficiency, namely vibration frequency for5Hz, amplitude for25mm and dip angle for4degree. Meanwhile, multiple elemental nonlinear model of screening efficiency was established to enrich particle vibrating and screening theory. In addition, the model provided theoretical basis for optimization design of traditional screen machine and new cleaning device research.
     7. The simulation of numerical value was verified by series of experiments. Using high-speed image processing system, the movement tracer of the screening process was conducted on the test-bed, the analysis of the results obtained from Discrete Element simulation and experiment showed that the move tendency of the particle obtained from the two different measures were basically the same; Through the statistics of the tested things under the screen, the regularity of distribution of the screening efficiency along the screen surface was obtained, screening efficiency on the screen belongs to normal distribution, the screening efficiency of the front screen is the highest, which is in accordance with the law obtained from the discrete element simulation. The air speed of the sieve halfway point and the outlet were measured with anemometer under the condition of different fan speed and fan angle, then, the compared analysis of the result and the simulation result of CFD was formed, which showed the change of simulation results and experimental results were basically identical, so using CFD on the wind field analysis is feasible.
引文
[1]魏宏安.我国小麦收获机械的发展与研究现状[J].甘肃农业大学学报,2001,36(2):195-200.
    [2]陆为农.水稻生产机械化发展现状及展望[J].农机科技推广,2006:13-15.
    [3]王守忠,郝巧玲.我国油菜收获机械现状与展望[Z].200848-50.
    [4]马悦,张铁,杨懿,等.一种水稻联合收割机的应用研究[J].农机化研究,2007:88-91.
    [5]胡志超,彭宝良,王海鸥,等.5X-12型风筛式清选机的研制[J].江苏农业科学,2009:436-439.
    [6]郝海青.收获机械的现状与未来发展[J].农业机械,2009(1):54-56.
    [7]武锦涛,陈纪忠,阳永荣.模拟颗粒流动的离散元方法及其应用[J].现代化工,2003,23(4):56-58.
    [8]Freye T. Untersuchungen zur Trennung Von Korn-Spreu—Gemischen durch die Reinigungsanlage des Maehdreschers[J]. [Dissertation], Stuttgart,1980(Universitaet Hohenheim).
    [9]D K H, H G W. Einrichtung zur Kornabscheidung im Maehdrescher[J]. Grundl. Landtechnik, 1981,31(6):223-229.
    [10]Boettinger S. Die Abscheidefunktion Von Hordenschuettler und Reinigungsanlage in Maehdrescher[J]. [Dissertation], Stuttgart:Universitaet Hohenheim,1993.
    [11]Beck T. Messverfahren zur Beurteilung des stoffejgenschaftseinflusses auf die Leistung der Trennprozesse im Maehdrescher[J]. [Dissertation], Stuttgart:Universitaet Hohenheim,1991.
    [12]Beck F. Simulation der Trennprozesse im Maehdrescher[J]. [Dissertation], Stuttgart: Universitaet Hohenheim,1999.
    [13]A T, E P S P. Layer Breakup and Particle Movement on a Chaffer Sieve [J]. Transactions of ASAE,1995,37(5):1305-1313.
    [14]Li J, Webb C, Pandiella S S, et al. A Numerical Simulation of Separation of Crop Seeds by Screening—Effect of Particle Bed Depth[J].2002,80(2):109-117.
    [15]夏景成,蒋亦元.物料沿圆筒筛外表面运动的理论研究[J].农业机械学报,1990,21(4):53-58.
    [16]赵杰文,陆仲华.单风道鼠笼筛清选装置的研究及其应用[J].农业机械学报,1992,23(1):39-44.
    [17]王泽群,肖林桦,刘广海.双风道清选装置的研究[J].农业机械学报,1988,4(4):41-46.
    [18]李革,赵匀,等.倾斜气流清选装置中物料的动力学特性、轨迹和分离研究[J].农业工程学报,2001,17(6):22-25.
    [19]盖玲,赵匀.谷物扬场机分离过程物料的空间运动学和动力学分析[J].农业工程学报,1998,14(2):94-98.
    [20]李建平,赵匀.物料在振动筛面上抛起的计算机模拟和实验研究[J].农业工程学报,1997, 13(4):46-48.
    [21]李耀明,赵湛,陈进,等.风筛式清选装置上物料的非线性运动规律[J].农业工程学报,2007,23(11):142-147.
    [22]赵杰文,郭永宏,吴守一.水平气流中下落谷粒的分布函数及其参数的数学模型[J].农业机械学报,1985(3):62-70.
    [23]程万里,程革.筛分机理的研究[J].农业机械学报,1989,20(2):9-15.
    [24]赵京华,赵学笃.谷茎的空气动力特性研究[J].农业机械学报,1990,21(2):80-83.
    [25]申德超.双风道清选装置试验研究[J].农业机械学报,1991,22(4):38-45.
    [26]申德超,侯丽云.双风道清选装置在轴流脱粒机上的应用[J].佳木斯工学院学报,1994,12(3):181-183.
    [27]申德超,李秉仁.双风道清选装置在谷物联合收获机上的应用[J].农业机械学报,1995,26(4):151-155.
    [28]蔺公振,成芳.悬挂式联合收割机清选装置的试验[J].洛阳工学院学报,1994,15(4):21-26.
    [29]成芳,王俊.风筛式清选装置主要参数的试验研究[J].农业工程学报,1998,14(4):217-221.
    [30]林恒善,李耀明.风力因素对风筛式清选效果影响的试验研究[J].中国农机化,2005:62-64.
    [31]李耀明,唐忠,李洪昌,等.风筛式清选装置筛面气流场试验[J].农业机械学报,2009:80-83.
    [32]邹必昌,彭三河,汤小凝.谷物清选机构主要参数优化设计试验研究[J].湖北农学院学报,2003,23(2):108-112.
    [33]张文斌,李耀明,徐立章,等.应用高速摄像技术研究清选筛面上物料的运动[J].农机化研究,2008:21-24.
    [34]黄新平,龚勃.大型平面振动筛传动构件有效参量分析[J].塔里木农垦大学学报,1996(02):82-86.
    [35]貌建华,朱永宁.新型圆筒筛清选机构分离过程的试验研究[J].农业机械学报,1991,22(2):101-104.
    [36]申德超.离心风机双出风道清选装置及其应用[J].佳木斯大学学报:自然科学版,1999,17(1):20-22.
    [37]姬江涛,王雅丽.双风机圆筒筛清选机构参数试验与优化[J].农机化研究,2004:141-143.
    [38]姬江涛,王建中,等.双风机圆筒筛清选机构圆筒筛转速的试验研究[J].农机化研究,2002:130-132.
    [39]刘师多.双风机圆筒筛清选机构的试验与参数优化[J].洛阳工学院学报,1998,19(1):59-63.
    [40]刘师多,王显仁,师清翔,等.双风机圆筒筛清选机构内流场的试验研究[J].中国农机化,2005:67-69.
    [41]史习加,盛泽源.气流清粮装置的改进设计[J].北京农学院学报,1999,14(1):49-51.
    [42]王国欣,师清翔,倪长安.圆筒式短茎秆清理装置清选性能试验分析[J].洛阳工学院学报,2000,21(1):7-10.
    [43]张晓桂.新型分离清洗装置的试验研究[J].农业机械学报,2002,33(3):47-49.
    [44]尹文庆,Kutzbach H. D.,等.圆周振动清粮装置的试验研究[J].农业工程学报,2002,18(6):81-83.
    [45]李耀刚.5TYQ-100型负压气流清选玉米脱粒机的研制与试验[J].中国农机化,2005(03):78-79.
    [46]史建新,周向农.圆锥筛清选棉粕的原理与试验[J].粮食与饲料工业,2000(03):19-20.
    [47]陈铮,穆浩民.飞龙4L-0.75小型联合收割机清选装置的试验研究[J].农业机械学报,1996,27(3):58-62.
    [48]张认成,桑正中.轴流脱粒空间谷物动力学仿真[J].农机化研究,2000(4):36-40.
    [49]刘初升,赵跃民.新型弹性筛面筛分机动力学模型及参数设计研究[J].矿山机械,2001(10):41-42.
    [50]赵跃民,刘初升.弹性筛面动力学及难筛分物料的透筛机理[J].中国有色金属学报,1999(12):129-132.
    [51]马晓霞,李耀明,徐立章.联合收割机风筛式清选装置中气流场的仿真研究[J].农机化研究,2007:81-82.
    [52]杨晓彬,李耀明,徐立章,等.颗粒物料在三维振动筛中透筛信息仿真[J].农机化研究,2010:140-142.
    [53]陆林,李耀明.虚拟样机技术及其在农业机械设计中的应用[J].中国农机化,2004:59-61.
    [54]杨英杰,邓会勇,李侠.基于MATLAB/Simulink的粒度分离过程计算机仿真[J].中国有色金属学报,2006(02):346-350.
    [55]张倩,李骅,尹文庆,等.基于ADAMS的脱出物在气流场中的运动仿真[J].中国制造业信息化,2008(13).
    [56]李艳洁,徐泳.用离散元模拟颗粒堆积问题[J].农机化研究,2005:57-59.
    [57]徐泳,李红艳,等.耕作土壤动力学的三维离散元建模和仿真方案策划[J].农业工程学报,2003,19(2):34-38.
    [58]Mustoe et al. Proceedings of the 1st International Conference on Discrete Element Methods[Z]. Colorado:1989.
    [59]Williams J R A M. IESL Publications,1993.
    [60]Jensen B K C A. Santa Fe, New Mexico:ASCE Geotechnical Special Publication,2002.
    [61]Heinz Konetzky L A. Numerical modeling in micromechanics via particle methods[Z]. 2002.
    [62]Y. Shimizu R H P C. Numerical Modeling in Micromechanics via Particle Methods[Z]. Japan:2004.
    [63]S. P. Hunt A G M V. Modeling the Kaiser Effect and deformation rate analysis in sandstone using the discrete element method[J]. Computers and Geotechnics,2003(30): 611-621.
    [64]Potyondy. D O. Simulating stress corrosion with a bonded-particle model for rock[J]. International Journal of Rock Mechanics&Mining Sciences,2007(44):677-691.
    [65]D.O. Potyond P A C. Abonded-particle model for rock[J]. International Journal of Rock,2004(41):1329-1364.
    [66]王泳嘉.离散单元法—一种适用于节离岩石力学分析的数值方法[C].1986.
    [67]剑万禧.离散单元法的基本原理及其在岩体工程中的应用[C].1986.
    [68]王建华,徐中华.有限元法分析土壤切削问题的研究进展[J].农业机械学报,2005,36(1):134-137.
    [69]陈沙,岳中琦,谭国焕.基于真实细观结构的岩土工程材料三维数值分析方法[J].岩石力学与工程学报,2006,25(10):1951-1959.
    [70]刘凯欣,高凌天.离散元法研究的评述[J].力学进展,2003,33(4):483-490.
    [71]孟云伟,肖世洪,柴贺军,等.隧道开挖中破碎带支护的颗粒离散元模拟研究[J].地下空间与工程学报,2007,3(4):673-677.
    [72]蒋明镜,王富周,朱合华.考虑尾隙的盾构隧道土压力离散元数值分析[J].地下空间与工程学报,2010,6(1):28-32.
    [73]汪成兵,朱合华.隧道塌方影响因素离散元分析[J].地下空间与工程学报,2007:1490-1495.
    [74]李秀梅,蒋明镜.两种位移模式下挡墙主动土压力的离散元模拟[J].地下空间与工程学报,2010,6(1):60-64.
    [75]龚平,唐志平,沈兆武.冲击下材料质量混合的实验研究及离散元模拟[J].高压物理学报,2004,18(1):21-26.
    [76]杨全文,左树春,徐泳.颗粒离散元法的微机可视化程序设计[J].中国农业大学学报,2002,7(6):10-15.
    [77]李艳洁,徐泳.土壤试样单轴压缩试验与离散元法模拟对比研究[J].中国农业大学学报,2009(04).
    [78]贾慧敏,付宏,张磊,等.基于CAD模型的边界离散元法仿真算法研究[J].系统仿真学报,2007,19(20):4607-4611.
    [79]付宏,贾慧敏,张晓旭,等.基于超圆颗粒模型的二维离散元法计算方法[J].吉林大学学报:工学版,2008,38(6):1383-1388.
    [80]于建群,钱立彬,于文静,等.开沟器工作阻力的离散元法仿真分析[J].农业机械学报,2009:53-57.
    [81]于建群,申燕芳,牛序堂,等.组合内窝孔精密排种器清种过程的离散元法仿真分析[J].农业工程学报,2008,24(5):105-109.
    [82]商慧.三维离散元法计算仿真软件开发研究[D].长春:吉林大学,2006.
    [83]Moakher M, Shinbrot T, J. M F. ExPerimental validated computations of fiow.mixing and segregation of noncohesive grains in 3D tumbling blenders. [J]. Powder Technology, 2000,109(1-3):58-71.
    [84]Cleary, P W. DEM simulation of industrial particle flows case studies of dragline excavators, mixing in tumblers and centrifugal mills[J]. Powder Technology,2000, 109(1-3):83-104.
    [85]Cleary P W, Sawley M L. DEM modelling of industrial granular flows:3D case studies and the effect of particle shape on hopper discharge[J]. Applied Mathematical Modelling, 2002,26(2):89-111.
    [86]MeCarthy, J J, Khakhar, D V, Ottino, JM. Computational studies of granular mixing[J]. Powder Technology,2000,109(1-3):72-82.
    [87]Y M, T T, Tsujiy. Numerical simulation of partieulate flow with liquid bridge between particles (simulation of centrifugal tumbling granulator). [J]. Powder Technology, 2000,109(1-3):49-57.
    [88]Sakaguchi, E, M, Suzuki. Numerical simulation of the shaking separation of paddy and brown rice using the Discrete Element Method[J]. Agric. Engng Res,2001,79(3): 307-315.
    [89]Li J, Webb C, Pandiella S S, et al. A numerical simulation of separation of crop seeds by screening-effect of particle bed depth[J]. Food and Bioproducts Processing:Transactions in,2002,80(2):109-117.
    [90]Li J, Webb C, Pandiella S S, et al. Discrete particle motion on sieves—a numerical study using the DEM simulation[J]. Powder Technology,2003,133(1-3):190-202.
    [91]Chen Y H, Tong X. Application of the DEM to screening process:a 3D simulation[J]. Mining Science and Technology,2009,19(4):493-497.
    [92]焦红光,李靖如,赵继芬,等.关于离散元法计算参数的探讨[J].河南理工大学学报(自然科学版),2007(01):88-93.
    [93]焦红光,赵跃民.用颗粒离散元法模拟筛分过程[J].中国矿业大学学报,2007(02):232-236.
    [94]赵跃民,张曙光,焦红光,等.振动平面上粒群运动的离散元模拟[J].中国矿业大学学报,2006(05):586-590.
    [95]焦红光,赵跃民.筛面上颗粒运动的计算机仿真研究及试验验证[J].矿冶,2006(01):63-67.
    [96]赵啦啦,刘初升,闫俊霞,等.不同振动模式下颗粒分离行为的数值模拟[J].物理学报,2010(04):2582-2588.
    [97]赵啦啦,刘初升,闫俊霞,等.颗粒分层过程三维离散元法模拟研究[J].物理学报,2010(03):1870-1876.
    [98]赵啦啦,刘初升,闫俊霞,等.颗粒筛分过程的三维离散元法模拟[J].煤炭学报,2010(02):307-311.
    [99]赵啦啦,刘初升,闫俊霞,等.振动筛面颗粒流三维离散元法模拟[J].中国矿业大学学报,2010(03):414-419.
    [100]王志华.基于ADAMS的油菜收获机清选装置的虚拟设计与试验研究[D].镇江:江苏大学,2003.
    [101]周祖锷.农业物料学[M].北京:农业出版社,1990.
    [102]丁林峰,李耀明,徐立章.稻谷压缩试验的接触力学分析[J].农机化研究,2007:112-115.
    [103]徐立章,李耀明,丁林峰.水稻谷粒与脱粒元件碰撞过程的接触力学分析[J].农业工程学报,2008,24(6):146-149.
    [104]葛正浩ADAMS2007虚拟样机技术[M].北京:化学工业出版社,2010.
    [105]赵建平.谷物清选筛的运动仿真分析与优化[D].南京:南京农业大学,2007.
    [106]Udayabhaskar K, Ramamudthy Y, Raviraj M. CFD simulation and experilnental vaiidstion studies on hydrocyclone[J]. Minerals Engineering,2007,20(3):60-71.
    [107]唐伦,官春云,吴明亮,等.油菜清选装置筛面气流场的分布规律研究[J].湖南农业大学学报(自然科学版),2011(01):107-110.
    [108]马晓霞,李耀明,徐立章.联合收割机风筛式清选装置中气流场的仿真研究[J].农机化研究,2007(01):81-82.
    [109]李金亮,吕传毅,杨先海.风选通道分析及优化设计[J].机械设计与制造,2009(02):10-12.
    [110]李洪昌,李耀明,徐立章,等.风筛式清选装置气流场的数值模拟与分析[J].江苏大学学报(自然科学版),2010(04):378-382.
    [111]杨敏官,顾海飞,刘栋.离心泵叶轮内部湍流流动的数值计算及试验[J].机械工程学报,2006,42(12):180-185.
    [112]Gcorge B S M L. Nujrnerical and experimental study of two turbulent opposed plane jets[J]. Heat and Mass Transfer,2003,3(39):657-686.
    [113]Carmina P D 0 M. Three-demensional CFD simulation of two phase flow inside the abrasive water jet cuting head [J]. Intemational Joumal of Compotational Methods in Engineering science and Mechanics,2008,9(5):300-319.
    [114]Escudie J C F R. CFD modelling of a liquid-solid fiuidized bed[J]. Chemical Engineering Science,2007(62):6334-6348.
    [115]C · ford C F T. Modelling a pilote-scale pulp mixing chest using CFD[J]. Joumal of Pulp and Paper Science,2007,33(3):115-120.
    [116]M. Yataghene J · pruvost F. CFD analysis of the flow pattem and local shear rate in a scraped surface heat exchanger[J]. Chemical Engineering and Processing,2008(47): 1550-1561.
    [117]C · claudio G T L. Computational fluid damics(CFD) software tools for microfluidic applications-a case study[J]. Computers and Fluids,2008,37(3):218-235.
    [118]T. Barlzanas C · kittas A S. Analysis of airflow through experimental rural buildings:Sensitivity to turbulence models[J]. Biosystems Engineering,2007,97(2): 229-239.
    [119]S · gerald P. Ranganathan S · sivaraman. CFD modeling of gas · liquid-solid mechanically agitated contactor[J]. Chemical Engineering Research and Design,2006, 86(12):1331-1344.
    [120]Rahirn F B R. Simulations of gas distributors in the design of shallow bubble column reactors[J]. Chemical Engineering and Technology,2007,30(4):443-447.
    [121]曲延鹏,陈颂英,王小鹏.不同湍流模型对圆射流数值模拟的讨论[J].工程热物理学,2008,29(6):957-959.
    [122]Wang L Q Z W. Numerical simulation of cavitation around a hydrofoil and evaluationof a RNG K-ε model [J]. Transactions of the ASME,2008,130(1).
    [123]Lyoshihiro N Y. modeling of turbulent heat flux and its application to wall shear flows[J]. JSME International Journal,Series B,1998,41(3):657-665.
    [124]A. E. Sakya N Y Y M. Evaluation of an RNG-based algebraic turbulence model [J]. Computer & Fluids,1993,22(2):207-214.
    [125]S. Semion G B S L. Cross-term and expansion in RNG theory of turbulence [J]. Fluid Dynamics Research,2003,33(3):319-331.
    [126]Y. S. Zhang 0 A S. Two-equation RNG transport modeling of high reynolds number pipe flow[J]. Journal of Scientific Computing,1998,13(4):471-483.
    [127]袁月明,马旭,金汉学.气吸式水稻芽种排种器气室流场研究[J].农业机械学报,2005,36(6):42-45.
    [128]刘坤,蒋恩臣,王立军.联合收获机惯性分离室内气固两相流数值模拟[J].江苏大学学报,2006,27(3):193-196.
    [129]林建忠.流体力学[M].北京:清华大学出版社,2005.
    [130]赵湛.气吸振动式精密排种器理论及试验研究[D].镇江:江苏大学,2009.
    [131]南京农业大学.农业机械学[M].北京:中国农业出版社,1996.
    [132]陈霓,黄东明,陈德俊,等.风筛式清选装置非均布气流清选原理与试验[J].农业机械学报,2009:73-77.
    [133]徐立章,李耀明,张立功,等.轴流式脱粒-清选装置试验台的设计[J].农业机械学报,2007,38(12):85-88.
    [134]陈进,边疆,李耀明,等.基于高速摄像系统的精密排种器性能检测试验[J].农业工程学报,2009:90-95.
    [135]张倩.基于图像法的清粮室中颗粒运动规律的研究[D].南京:南京农业大学,2008.
    [136]刘石,何玉荣,赵云华,等.离散单元法模拟颗粒在斜板上运动及分离过程[J].哈尔滨工业大学学报,2010(09).
    [137]Lee H, Cho H, Kwon J. Using the discrete element method to analyze the breakage rate in a centrifugal/vibration mill[J].2010,198(3):364-372.
    [138]Oda M I K K T. Importance of particle rotation in the mechanics of granular materials[M]. Balkema:Rotterdam,1997.
    [139]Alberto D R F P D M. Comparison of contact-force models for the simulation of collisions in DEM-based granular flow codes [J]. Chemical Engineering Science,2004,59(3): 525-541.
    [140]Langston P A T U H D. Discrete element simulation of granular flow in 2D and 3D hoppers. Dependence of discharge rate and wall stress on particle interactions [J]. Chemical Engineering Science,1995,50(6):967-987.
    [141]Zhu H P Z Z Y Y. Discrete particle simulation of particulate systems: Theoretical developments[J]. Chemical Engineering Science,2007,62(13):3378-3396.
    [142]Zhou Y C W B D Y. Rolling friction in the dynamic simulation of sandpile formation[J]. Physica A,1999,269(2-4):536-553.
    [143]Tijskens E R H D B. Discrete element modelling for process simulation in agriculture[J]. Journal of Sound and Vibration,2003,266(3):493-514.
    [144]Asmar B N L P A M. Validation tests on a distinct element model of vibrating cohesive particle systems [J]. Computers and Chemical Engineering,2002,26(6): 785-802.
    [145]K. M B. A review of computer simulation of tumbling mills by the discrete element method[J]. International Journal of Mineral Processing,2003,71(1-4):73-79.
    [146]Iwai T H C W G. Fast particle pair detection algorithms for particle simulations [J]. International Journal of Modern Physics C,1999,10(5):823-837.
    [147]孙其诚,王光谦.颗粒物质力学导论[M].北京:科学出版社,2009.
    [148]Ning Z B R G M. Discrete element simulation of impact breakage of lactose agglomerates[J]. Advanced Powder Technology,1997,8(1):15-37.
    [149]张倩,李骅,尹文庆,等.基于ADAMS的脱出物在气流场中的运动仿真[J].中国制造业信息化:学术版,2008,37(7):69-72.
    [150]张渝,张甫仁,安治国.基于逆向工程的汽车加油口铰链冲压模具设计[J].机械设计与制造,2010(03):238-240.
    [151]王国瑾,成敏.NURBS曲面显式降多阶逼近[J].浙江大学学报,2007,41(6):945-947.
    [152]李慧,李洪文,何进,等.方草压捆机D型打结器驱动齿盘重建与优化[J].农业工程学报,2010(05):96-102.
    [153]Les P W T. The NURBS Book [M]. Berlin:Springer-Verlag,1997.
    [154]朱心雄.自由曲线曲面造型技术[M].北京:科学出版社,2000.
    [155]武大伟,张强,谷晓玉,等.基于逆向工程的电气盒产品设计[J].沈阳航空工业学院学报,2008(02):31-34.
    [156]Cundall P A. The measurement and Analysis of Acceleration on Rock Slopes[D]. Universtity of London, Imperial College of Science and Technology,1971.
    [157]Cundall P A. Discussion in Symposium on Rock Fracture[C]. France:1971.
    [158]Cundall P A. Discrete Numeriacal Model for Granular Assemblies[J]. Geotechnique, 1979,29(1):47-65.
    [159]Cundall P A. Distinct Element Models of Rock and Soil Structure [J]. Analytical And Computatinal Methods in Engineeting Rock Mechanics,1987 (Ch.4, E. T. Brown):129-163.
    [160]Cundall P A. Solution of Infinite Dynamic Problems by Finite Modeling in the Time Domain[C]. London:Pentech Press,1979.
    [161]Ting J M K M M L. An Ellipse-based Discrete Element Model for Granular Materials [J]. Journal for Numerical and Analytical Methods in Geomechanics,1993,17(9):603-623.
    [162]Ting J M M L R R. Effect of Partide Shape on the Strength and Deformation Mechanisms of Elhpse-Shaped Granular Assemblages [J]. Engineering Computations,1995,12(2):99-108.
    [163]Rothenburg L B R J. Numerical Simulaton of Idealized Granular Assemblies with Plane Elliptical Particles[J]. Comput Geotech,1991,11:315-329.
    [164]Lin X N T T. A Three Dimensional Discrete Element Method Model Using Arrays of ellipsoids. Geotechnique[J]. Geotechnique,1997,47(2):319-329.
    [165]Vuquoc L Z X W O.3D Discret-Element Method for Dry Granular Flows of Ellipsoidal Particles[J]. Computer Methods in Applied Mechanics and Engineering,2000,187(3): 483-528.
    [166]Issa J A N R N. Numerical Analysis of Micromechanical Behaviour of Granular Materials[J]. Engineering Computations,1992,9:211-223.
    [167]Matuttis H G L S H H. Discrete Element Simulatons of Dense Packings and Heaps Made of spherical and Non-spherical Particles[J]. Powder Technology,2000,109:278-293.
    [168]D Addetta G A K F R E. On the Application of a Discrete Model to the Fracture Process of Cohesive Granular Materials[J]. Granular Matter,2002,4:77-90.
    [169]Feng Y T 0 R J. A 2D Polygon/Polygon contact Model:Algorihmic Aspects[J]. Engineering Computations,2004,21:265-277.
    [170]Ghboussi J B R. Three-demensional Discrete Element Method for Granular Materials. [J]. International Journal for Numerical and Analytical Methods in Geomechanics,1990,14:451-472.
    [171]Jerierj F I D D F. A Geometric Algorithm Based on Tetrahedral Meshes to Generate a Dense Polydisperse Sphere Packing[J]. Granular Matter,2008, DOI:10-1007.
    [172]G M. A Generalized Formation of the Discrete Element Method[J]. Engineering Computations,1992,9:181-190.
    [173]C H. Shape Representation and Contact Detection for Discrete Element Simulations of Arbitrary Geometries[J]. Engineering Computations,1998,15:374-390.
    [174]Williams J R 0 C RM. A Linear Complexity Intersection Algorithm for Discrete Element Simulation of Arbitrary Geometries[J]. Int. J. Numer. Analyt. Meth. Geomech,1995, 12:185-201.
    [175]Miyata M M N G G. Design Considerations of Rubble Rock Foundations based on a Discrete Superquadric Particle Simulation Method, Finite Elements:Techniques and Developments[Z]. U. K,2000213-218.
    [176]Wang Y P M. The Esys_Particle:A New 3-D Discrete Element Modelwith Single Partide Rotation, In:Advances in Geocomputing, Computer & Mathematical Applications, Series[C]. Xing, Hulin:springer,2008.
    [177]Favier J F M H A M. Shape Representation of Axi- symmetrical, Non-spherical Particles in Discrete Element Simulation using Multi-element Model Particle[J]. Engineering Computations:International Journal for Computer-aided Engineering and software,1999, 16(4):467-480.
    [178]Jensen R P P J B M. DEM Simulaton of Granular Media Structure Interface:Effects of Surface Roughness and Particle Shape[J]. International Journal for Numerical and Analytical Methods in Geomecberics,1999,23:531-547.
    [179]Cheng Y P Y N M D. Discrete Element simulation of Crushable soil[J]. Geotechnique, 2003,53:633-641.
    [180]Cho N C D M D. A Clumped Particle Model for Rock[J]. International Journalof Rock Mechanics and Mining sciences,2007,44(7):997-1010.
    [181]LuM G R M. The Importance of Modelling Ballast Particle Shape in the Discrete Element Method[J]. Granular Matter,2007,9:69-80.
    [182]Ning Z R B M G. Distinct Element Simulation of Impact breakage of Lactose Agglomerates[J]. Advanced Powder Technology,1997,8:15-37.
    [183]Salot C P G P V. Influence of Relative Density on Granular Materials Behavior:DEM simulations of Triaxial Tests[J]. Granular Matter,2008,11(4):221-236.
    [184]H H. Discrete Element Modeling of Tool-Rock Interacton[D]. Minneapohs:hesis Dept. of Civil Engineering, Univ. of Minnesota,1999.
    [185]Potyondy D O C P A. A Bonded-Particle Model for Rock [J]. Int. J. Rock Mech.& Min. sci, 2004,41(8):1329-1364.
    [186]Shimizu Y R D H C. Numerical Modeling in Micromechanics Via Particle Methods[Z]. Kyoto,Japan:2004.
    [187]Fakhimi A V T. Application of Dimensional Analysis in Calibration of a Discrete Element Model for Rock Deformation and Fracture[J]. Rock Mech. Rock Eng,2007,40(2): 193-211.
    [188]赵建平,尹文庆,黄爱勇.联合收割机清粮筛的运动仿真与优化[J].计算机仿真,2007,24(11):185-189.
    [189]沈有柏,李耀明,赵湛,等.颗粒物料在三自由度振动筛面上的运动仿真[J].农机化研究,2010:21-23.
    [190]Mogensen F. A new method of screening granular materials[J]. The Quarry Mangers' Journal,1965,49(10):409-414.
    [191]赵啦啦.振动筛分过程的三维离散元法模拟研究[D].徐州:中国矿业大学,2010.
    [192]焦红光.振动筛分过程解析[M].北京:煤炭工业出版社,2008.
    [193]张义峰.纵轴流风筛式清选装置参数的试验研究[D].镇江:江苏大学,2009.
    [194]李耀明,王智华,徐立章,等.油菜脱出物振动筛分运动分析及试验研究[J].农业工程学报,2007,23(09):111-114.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700