用户名: 密码: 验证码:
氧化钛基光电子器件
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
氧化钛(TiO2)是一种间接带隙的宽禁带半导体材料。由于在物理、化学、光学等方面具有优良的特性,氧化钛在光催化、敏化太阳能电池以及传感器等许多领域都得到了广泛的研究。本论文是在总结了氧化钛薄膜和相关器件研究现状的基础上,开展了氧化钛相关的光电子器件的研究。取得的主要研究结果如下:
     1.用原子层沉积方法(ALD)在石英衬底上生长氧化钛薄膜,并在此薄膜上制备了金属-绝缘层-半导体-绝缘层-金属(MISIM)和金属-半导体-金属(MSM)结构的光电探测器。对两种不同结构的紫外探测器进行了光学和电学性能测试和研究。发现MISIM结构的紫外探测器的光响应与MSM结构的紫外探测器光响应相比得到了明显地改善。分析表明这是由于载流子在绝缘层中发生碰撞离化而导致载流子倍增的结果,以上结果为实现高性能的氧化钛基光电探测器打下了基础。
     2.用原子层沉积的方法(ALD)在n型硅衬底上生长了氧化钛薄膜,制备了n-Si/n-TiO2同型异质结,发现该结构中存在明显的光伏效应,其开路电压为123 mV,短路电流为20μA/cm2,光电转换效率为0.00051%。这种在氧化钛同型n-n结中发现光伏效应以往尚无报道,该工作为未来实现简单便宜的光伏器件提供了一种可能。
Titanium dioxide (TiO2) is an indirect bandgap semiconductor. Because of its unique properties in physics, chemistry, optics etc., TiO2 has been studied extensively for the applications in photocatalysis, solar cells and sensors, etc. In this thesis, by summarizing the study of titanium oxide film and related devices, titanium oxide-related optoelectronic devices were studied, and the main results are listed below:
     1. The TiO2 films were prepared on glass substrates in an atomic layer deposition (ALD) technique. Then a metal-insulator-semiconductor-insulator-metal (MISIM) structured ultraviolet photodetector was prepared on the films. Meanwhile, a metal-semiconductor-metal (MSM) structured photodetector was also fabricated under the same conditions for comparison. The responsivity of the MISIM structured photodetector is effectively improved compared with the MSM structured photodetector. It is shown that the improvement can be attributed to the carrier multiplication process occurred in the insulator layer under high electric field. The results may open a door for high performance titanium dioxide based photodetectors.
     2. An n-TiO2/n-Si isotype heterojunction has been fabricated by depositing TiO2 thin films onto n-Si substrates in an atomic layer deposition technique. Obvious photovoltaic behaviors have been observed in this isotype heterojunction. The open circuit voltage and short circuit current can reach 123 mV and 20μA/cm2, respectively, and the conversion efficiency is about 0.00051%. The photovoltaic behaviors found in the titanium-based isotype heterojunction have not reported before, and this work may provide a possible route to simple and cheap photovoltaic devices.
引文
[1]矫淑杰.ZnO基p-n结发光二极管的制备与表征.[博士学位论文].长春:长春光学精密机械与物理研究所,2007
    [2]邓敏.纳米TiO2的合成及其光电性能研究.[硕士学位论文].长沙:中南大学,2008
    [3]赵建果.TiO2及稀土掺杂TiO2基材料的结构和光学性质的研究.[博士学位论文].兰州:兰州大学,2009
    [4]李侠.TiO2薄膜的掺杂改性及其对光学性能的影响.[硕士学位论文].天津:天津大学,2008
    [5]Vainshtein B K, FridkinW M, Indenbom V L. Structure of crystal[M].Berlin:Macmillan India Ltd,1994
    [6]张媛.纳米二氧化钛薄膜的制备及其光电性能研究.[硕士学位论文].大连:大连海事大学,2009
    [7]侯朋.铁银共掺杂纳米TiO2光催化性能研究及交变电场对其性能影响.[硕士学位论文].长沙:中南大学,2009
    [8]Fujishima A, Honda K. Electrochemical Photocatalysis of water at a semiconductor electrode[J].Nature,1972,238:37-38
    [9]王懿蕾.磁控溅射法制备TiO2薄膜及其性质研究.[硕士学位论文].南京:南京理工大学,2009
    [10]M Atiqur Rahman, M Muneer. Photocatalysed degradation of two selected pesticide derivatives, dichlorvos and phosphamidon in aqueous suspensions of titanium dioxide[J]. Desalination,2005,181(1):161-172
    [11]刘恩科,朱秉升,罗晋升.半导体物理学[M].北京:国防工业出版社,2006.8~15
    [12]刘恩科,朱秉升,罗晋升.半导体物理学[M].北京:国防工业出版社,2006.256~259
    [13]江月松.光电技术与实验[M].北京:北京理工大学出版社,2000.35~141
    [14]孟庆巨,刘海波,孟庆辉.半导体器件物理[M].北京:科学出版社,2005.149~154
    [15]A Fujishima, K Honda. Electrochemical photo-catalysis of water at semiconductor electrode[J], Nature,1972,238:37
    [16]Chih Wei Hsu,Huei-Ru Liou, Wang fang Sun, et al.Effect of chemical strucnlre of interface modifier of TiO2 on photovoltaic properties of poly(3-hexylthiophene)/TiO2 layered solar cells[J].Journal of Colloid and Interface Science,2008,329(1):182-187
    [17]孟庆巨,刘海波,孟庆辉.半导体器件物理[M].北京:科学出版社,2005.213~239
    [18]W S Ho, C-H Lin, T-H Cheng, et al.Narrow-band metal-oxide-semiconductor photodetector[J].Appl. Phys.Lett.,2009,94:061114-1-061114-3
    [19]甘勇,刘彩霞,张爽等.TiO2薄膜紫外探测器的光电特性[J],半导体学报,2005,26(4):795~797
    [20]Dae-Kue Hwang, Min-Suk Oh, Jae-Hong Lim, et al. ZnO-based light-emitting metal-insulator-semiconductor diodes[J].Appl. Phys. Lett.,2007,91:121113-1-121113-3
    [21]D Y Jiang,C X Shan, J Y Zhang, et al. Schottky Barrier Photodetectors Based on Mgo.4oZn0.60O Thin Films[J].Crystal Growth & Design,2009,9:454-456
    [22]张利伟,杨仕娥,姚宁等.用于紫外光电导探测器的TiO2薄膜研究[J].功能材料与器件 学报,2005,11(2):238~240
    [23]D Y Jiang, J Y Zhang, Y M Lu. et al. Ultraviolet Schottky detector based on epitaxial ZnO thin film[J].Solid-State Electronics,2008,52:679-682
    [24]陈林峰,程春晓.直流磁控溅射制备纳米TiO2薄膜研究[J].洛阳理工学院学报(自然科学版),2009,19(1):5~7
    [25]A Vomiero, I Concina, M M Natile, et al. ZnO/TiO2 nanonetwork as efficient photoanode in excitonic solar cells[J].Appl. Phys. Lett.,2009,95:193104-1-193104-3
    [26]Y G Han, G Wu, M Wang, et al. Hybrid ultraviolet photodetectors with high photosensitivity based on TiO2 nanorods array and polyfluorene [J].Applied Surface Science,2009,256: 1530-1533
    [27]C X Shan, J Y Zhang, B Yao, et al. Ultraviolet photodetector fabricated from atomic-layer-deposited ZnO films[J].J. Vac. Sci. Technol. B,2009,27:1765-1768
    [28]X H Hou, C X Shan, Kwang-Leong Choy. Microstructures and tribological properties of PEEK-based nanocomposite coatings incorporating inorganic fullerene-like nanoparticles[J]. Surface & Coatings Technology,2008,202:2287-2291
    [29]张文杰,朱圣龙,李瑛等.磁控反应溅射制备钇掺杂TiO2薄膜的研究[J].电镀与精饰,2009,31(3):1~4
    [30]黄佳木,蔡小平,赵培等.磁控溅射制备非晶态TiO2薄膜的光催化性能研究[J].真空科学与技术学报,2009,29(2):209~212
    [31]王相虎.P型ZnO薄膜制备及其光电特性研究.[博士学位论文].长春:长春光学精密机械与物理研究所,2007
    [32]鞠振刚.立方ZnMgO材料及太阳盲紫外探测器研究.[博士学位论文].长春:长春光学精密机械与物理研究所,2009
    [33]魏志鹏.ZnO基材料p型掺杂及结型器件制备.[博士学位论文].长春:长春光学精密机械与物理研究所,2008
    [34]吴自勤,王兵.薄膜生长[M].北京:科学出版社,2001.320~418
    [35]C H Lin, Y T Chiang, C C Hsu, et al. Ge-on-glass detectors[J].Appl. Phys. Lett.,2007,91: 1105-1-041105-3
    [36]S J Young,L W Ji, S J Chang, et al. ZnO-based MIS photodetectors[J].Sensors and Actuators A,2007,135:529-533
    [37]J Y L Ho, K S Wong. High-speed and high-sensitivity silicon-on-insulator metal-semiconductormetal photodetector with trench structure[J].Appl.Phys. Lett.,1996,69: 16-8
    [38]A Goldenblum, A Oprea, V Bogatu. Time behavior of currents in ZnS:Mn metal-insulator-semiconductor-insulator-metal structures[J].J. Appl.hys.,1994,75: 5177-5185
    [39]S Zeyrek, S Altmdal,H Yu'zer. Current transport mechanism in Al/Si3N4/p-Si (MIS)Schottky barrier diodes at low temperatures [J].Applied Surface Science,2006,252: 2999-3010
    [40]P C Chang, C H Chen, S J Chang, et al. High UV/visible rejection contrast AlGaN/GaN MIS photodetectors[J]. Thin Solid Films,2006,498:133-136
    [41]B I Reznikov, G V Tsarenkov. Carrier accumulation and strong electrode sheath fields in illuminated high-resistivity MISIM structures[J].Semiconductors,1997,31:23-30
    [42]M Seto,C Rochefort,S de Jager,et al. Low-leakage-current metal-insulator-semiconductor-insulator-metal photodetector on silicon with a SiO2 barrier-enhancement layer[J].Appl. Phys. Lett.,1999,75:1976-1978
    [43]Z G Ju, C X Shan, D Y Jiang, et al. MgxZn1-xO-based photodetectors covering the whole solar-blind spectrum range[J].Appl.Phys. Lett.,2008,93:173505-1-173505-3
    [44]X Z Kong, C X Liu, D Wei, et al.Metal-semiconductor-metal TiO2 ultraviolet detectors with Ni electrodes [J].Appl. Phys.Lett.,2009,94:123502-1-123502-3
    [45]叶良修.半导体物理学[M].北京:高等教育出版社,2007,187~189
    [46]C X Shan, X H Hou, K L Choy, et al. Improvement in corrosion resistance of CrN coated stainless steel by conformal TiO2 deposition[J].Surface & Coatings Technology,2008,202: 2147-2151
    [47]E M J Johansson,P G Karlsson, et al. Photovoltaic and Interfacial Properties of Heterojunctions Containing Dye-Sensitized Dense TiO2 and Tri-arylamine Derivatives [J]. Chem. Mater.,2007,19:2071-2078
    [48]T C Zhang, Y Guo, X Mei, et al. Visible-blind ultraviolet photodetector based on double heterojunction of n-ZnO/insulator-MgO/p-Si[J]. Appl. Phys. Lett.,2009,94: 113508-1-113508-3
    [49]W Y Zhang, Q L Meng, B X Lin, et al. Influence of growth conditions on photovoltaic effect of ZnO/Si heterojunction[J].Solar Energy Materials & Solar Cells,2008,92:949-952
    [50]N N Bwana. Comparison of the performances of dye-sensitized solar cells based on different TiO2 electrode nanostructures [J].J Nanopart Res,2009,11:1917-1923
    [51]R C KUMAR. Current transport in isotype heterojunctions[J].International Journal of Electronics,1968,25:239-247
    [52]C Q Yu, H Wang, Y X Xia. Giant lateral photovoltaic effect observed in TiO2 dusted metal-semiconductor structure of Ti/TiO2/Si[J]. Appl. Phys. Lett.,2009,95: 14112-1-141112-3
    [53]Z X Fu, B X Lin, G H Liao. Photovoltaic Effect of ZnO/Si Heterostructure[J]. CHIN.PHYS.LETT.,1999,16:753-755
    [54]Z Guo, D X Zhao, Y C Liu, et al. Visible and ultraviolet light alternative photodetector based on ZnO nanowire/n-Si heterojunction[J].Appl.Phys. Lett.,2008,93:193501-1-193501-3
    [55]L Pintilie, M Alexe, I Pintilie, et al. Photovoltaic effect in PbS/PbTiO3/Si heterostructures[J]. Appl.Phys. Lett.,1996,69:1571-1573
    [56]T H Kim, M Saito, M Matsuoka, et al. Photocatalytic oxidation of ethanethiol on a photoelectrochemical circuit system consisting of a rod-type TiO2 electrode and a silicon solar cell[J].Res Chem Intermed.,2009,35:633-642
    [57]K Pan, Y Z Dong, C G Tian, et al.TiO2-B narrow nanobelt/TiO2 nanoparticle composite photoelectrode for dye-sensitized solar cells [J].Electrochimica Acta,2009,54:7350-7356
    [58]P H Wobkenberg, T Ishwara, J Nelson, et al. TiO2 thin-film transistors fabricated by spray pyrolysis [J].2010,96:082116-1-082116-3
    [59]B KANDILAROV,R ANDREYTCHIX. Photovoltaic Effect in CdS-CdSe Heterojunctions[J].plys. stat. sol.,1965,8:897-901
    [60]P Sudhagar, J H Jung, S Park, et al.Self-assembled CdS quantum dots-sensitized TiO2 nanospheroidal solar cells:Structural and charge transport analysis[J].Electrochimica Acta, 2009,55:113-117
    [61]S Sato, T Ishikawa, K Yagyu, et al. Emission enhancing characteristics in electrochemiluminescence devices by 9,10-diphenylanthracene dye-highly scattering TiO2 solid-nanoparticle mixture[J].Appl Phys B,2010,98:523-527

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700