用户名: 密码: 验证码:
葡萄酒酵母遗传操作构建高级醇低产菌株的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高级醇是葡萄酒酿造过程中酵母酒精发酵的主要次生代谢物,如果葡萄酒中高级醇含量过高,则会使消费者饮用后“上头”、头疼,给人以辛辣腐臭感、刺激性和不愉快的苦涩味,其不仅严重破坏了酒的口感和风味,而且降低了葡萄酒的营养价值和保健效果。目前该问题在新生葡萄酒和家庭自酿葡萄酒中尤为多见。因此寻找有效降低葡萄酒中高级醇含量的方法,对提高葡萄酒质量,促进葡萄酒产业的发展具有重要的现实意义。论文基于对葡萄酒酵母高级醇代谢机制的综合分析,筛选出了高级醇生成量较低的葡萄酒酵母菌种,然后利用酵母遗传操作方法(基因组重排和同源重组技术)对其高级醇代谢途径进行了调控,并探讨了发酵工艺条件(温度、pH值和二氧化硫添加量)对改造菌株高级醇生成的影响,主要获得了以下研究结果:
     1.本试验综合比较了葡萄酒酿造业常用的6株葡萄酒酵母(EC1118、RC212、CY3079、D254、QA23、DV10)的凝聚性、耐二氧化硫性能、高级醇产生量及香气感官特征,结果表明菌株EC1118发酵性能优良,具有较低的高级醇生成量。通过描述性感官评定,菌株EC1118所酿酒的果香、花香浓郁,刺激性较小。以此菌株作为本试验的出发菌株。
     2.采用EMS对二倍体酵母菌株EC1118进行诱变,获得了具有充分遗传多样性菌株群,并通过有性重组来实现基因组重排的方法,构建了具有低产高级醇特性的葡萄酒酵母菌株CP1118。测定结果表明,菌株CP1118总高级醇生成量为237.43mg/L,较菌株EC1118总高级醇生成量(276.39mg/L)降低了近14%,其中以正丙醇和异戊醇降低幅度最为明显,较EC1118分别降低了34%和7%。异丁醇降低幅度不大。正己醇和β-苯乙醇生成量略有升高,较EC1118分别增加了近5%和12%。
     3.试验进一步利用同源重组技术成功敲除了二倍体菌株CP1118酯酶分解酶基因IAH1,并获得了低产高级醇菌株QC1118。测定结果表明IAH1基因敲除菌株QC1118总高级醇生成量较出发菌株CP1118降低了近10%。其中异戊醇和β-苯乙醇降低幅度较大,分别降低了22%和23%。异丁醇和正己醇降低幅度较小,分别降低了近18%和5%。正丙醇生成量增加了近25%。菌株QC1118总高级醇生成量与原始菌株EC1118相比降低了近23%。菌株QC1118和CP1118感官品评试验表明,两株酵母在相同的感官特性上所表达的每种特性的强度不同。菌株QC1118发酵的酒样花香和果香比较明显,具有较低的刺激性,整体评价较高。
     4.试验从发酵工艺角度研究了温度、发酵醪pH值和葡萄破碎时二氧化硫添加量对酵母QC1118高级醇生成的影响。测定结果表明17℃发酵时酵母高级醇生成量最大,为377.30mg/L。26℃发酵条件下高级醇生成量最低,为159.32mg/L。在17℃~26℃发酵温区内酵母高级醇生成量随着发酵温度的升高而降低。发酵醪pH值对酵母高级醇生成影响不大,在pH值3.4时酵母高级醇生成量为269.19mg/L,其它pH值条件下酵母高级醇生成量均在244mg/L左右。二氧化硫添加量在30mg/L时高级醇生成量最大,为326.88mg/L。在110mg/L的二氧化硫添加量时酵母高级醇生成量最低,为264.91mg/L,较高的二氧化硫添加量有利于降低葡萄酒中高级醇含量。
Higher alcohols are the main secondary metabolites of yeast alcohol fermentation in thewinemaking process. If the wine has a high content of higher alcohols, it will give theconsumers a headache, a spicy sense of rancid, irritating and unpleasant bitter taste, which notonly seriously damages the taste and flavor of the wine, but also reduces the nutritional valueand health effects. The problem is particularly prevalent in the fresh and home-brewing wines.So finding an effective method to reduce the content of higher alcohols has an importantpractical significance to improve the wine quality and promote the development of brewingindustry. Based on the comprehensive analysis of the wine yeast alcohol metabolism, thestrains which produced less higher alcohols have been screened. Regulations to yeast higheralcohol metabolic pathways have been carried out by the means of genetic manipulation(genome shuffling and homologous recombination technology). In addition, the paper hasdiscussed the influence of fermentation conditions (temperature, pH and amount of sulfurdioxide) on the yeast higher alcohol production in the objective strain and obtained thefollowing results:
     1. The flocculation, resistance to sulfur dioxide, production of higher alcohols andsensory characteristic of six wine yeasts commonly used in winemaking (EC1118, RC212,CY3079, D254, QA23, DV10) were comprehensively compared in this paper. The resultsshowed that EC1118had an excellent performance of fermentation with low higher alcoholsproduction. Moreover, the wine made by EC1118had a strong fruity, flowery odour and lowpungency so that EC1118strain was selected as the original strain.
     2. The group strains with full genetic diversity were obtained by using EMS mutagenesisof the diploid yeast strain EC1118. And CP1118with low-yield higher alcohols wasconstructed by means of genome shuffling. The test showed that the total higher alcoholsproduction of CP1118was237.43mg/L, reduced by nearly14%compared with EC1118(276.39mg/l).1-propanol and isoamyl alcohol were significantly decreased by34%and7% while1-hexanol and2-phenethyl alcohol were slightly increased by5%and12%.
     3. Low-yield higher alcohols strains QC1118was obtained through the esterase-encodinggene IAH1of CP1118disruption. The results showed that the higher alcohols production ofQC1118was reduced by nearly10%compared with CP1118. Isoamyl alcohol and2-phenethyl alcohol were significantly reduced by22%and23%. Isobutyl alcohol and1-hexanol were decreased by18%and5%while1-propanol increased by25%. Theconcentration of total higher alcohols produced by QC1118was reduced by nearly23%compared with the original strain EC1118. The sensory analysis of QC1118and CP1118showed that the strength of each characteristic in the same organoleptic properties had somedifferences between the two strains. With a strong fruity, flowery odour and low pungency,the wine fermented with QC1118had a higher general evaluation.
     4. The impact of fermentation condition (temperature, pH, sulfur dioxide addition) on theQC1118higher alcohols production had been studied. The results showed that theconcentration of higher alcohols was the highest under17℃fermentation condition(377.30mg/L) while the lowest was26℃(159.32mg/L). The formation of higher alcoholsdecreased when the fermentation temperature increased from17℃to26℃. The pH offermented must had little influence on the production of higher alcohols and the highestconcentration was269.19mg/L when the pH value was3.4while others were approximately244mg/L. When the sulfur dioxide addition was30mg/L, the higher alcohols concentrationreached the highest (326.88mg/L). The lowest concentration of264.91mg/L appeared whenthe sulfur dioxide addition was110mg/L. Higher addition of sulfur dioxide was able to reducethe productions of higher alcohols.
引文
坂井文彦.头痛治疗与预防[M].济南:山东科学技术出版社,2001
    崔涛.浅谈白酒中的高级醇.酿酒科技,1994,91(6):28-29
    陈习刚.五代辽宋西夏金时期的葡萄和葡萄酒.南通师范学院学报,2004,6:84-89
    陈思妊,萧熙佩.酵母生物化学[M].济南:山东科学技术出版社,1990
    陈思耘.酒精发酵中高级醇的形成途径及影响因素.食品与发酵工业,1981, l:76-81
    陈涛,陈洵,王靖宇. DNA及基因组改组在代谢工程中的应用.化工学报,2004,51(11):1753-1758
    陈涛,王靖宇,周世奇.基因组改组及代谢通量分析在产核黄素Bacillus subtilis性能改进中的应用.化工学报,2004,55(11):1842-1848
    陈海昌,刘中山,刘静,高建梅.酵母酒精发酵中杂醇油形成影响因素的研究.食品与发酵工业,1985,5:18-24
    程军,秦伟帅,赵新节.葡萄酒酿造中高级醇的形成机制与调节.中国酿造,2011,12:9-11
    柴政强.中低档白酒中异戊醇添加量的思考.酿酒科技,1997,6:41-42
    丁文涛.多倍体构建及基因组重排对提高酿酒酵母乙醇产量的研究[D].天津:天津大学,2009
    傅金泉.中国古代酿酒遗址及出土古酒文化.酿酒科技,2004,6:90-92
    方维明.啤酒发酵代谢产物双乙酰和高级醇的控制与调节[D].南京:南京农业大学,2005
    顾国贤.论啤酒“上头”及其防治.酿酒,1991,4:17-22
    顾国贤.酿造酒工艺学(第二版)[M].北京:中国轻工业出版社,1996
    管敦仪.啤酒工业手册[M].北京:中国轻工业出版社,1982
    管敦仪.啤酒工业手册[M].北京:中国轻工业出版社,1998
    戈瑚瑚,倪莉.黄酒饮后产生上头上火的原因探究.食品与发酵工业,2010,36(8):136-139
    郭晓贤.酿酒酵母乙醇脱氢酶Ⅱ基因的敲除[D].福州:福建师范大学,2007
    郭忠鹏.代谢工程改善工业酒精酵母发酵性能[D].无锡:江南大学,2011
    GB2757-81.国家蒸馏酒及配制酒卫生标准
    GB2760食品添加剂使用卫生标准(含1997-2006年增补品种)[S].2006
    GB/T15038-2006.葡萄酒、果酒通用分析方法
    韩涛.啤酒酿造中高温发酵低产杂醇油酵母菌种的选育[D].天津:天津科技大学,2004
    何祖荣.啤酒酿造过程中高级醇形成的控制.酿酒科技,2001,98(1):64-65
    黄宏慧,周锡生.野生山葡萄酒杂醇油含量偏高的原因及对策.中外葡萄与葡萄酒,2002,2:55-56
    李湘洪.简述中国白酒的发展与趋势.酿酒,2004, l:9-11
    李华.葡萄酒品尝学[M].北京:科学出版社,2006
    李华,王华,袁春龙,王树生.葡萄酒化学[M].北京:科学出版社,2005
    李华.葡萄酒工艺学[M].北京:科学出版社,2007
    李家飚,肖冬光,韩涛.高温发酵低高级醇酵母菌种的选育思路.中国啤酒,2002,11:32-35
    蔺善喜.低高级醇啤酒酵母的选育及应用[D].哈尔滨:黑龙江大学,2010
    柳琪,滕葳,王磊,王淑艳.二氧化硫与绿色食品葡萄酒贮藏稳定性关系的探讨.食品研究与开发,2004,25(1):146-150
    毛青钟.浅谈机械化黄酒中高级醇含量的控制.酿酒,2000,27(1):51-52
    宋焕禄.葡萄酒与健康.食品与发酵工业,1997,23(4):67-71
    孙雪梅.葡萄酒的品尝与欣赏.酿酒科技,1999,4:94-99
    王恭堂.葡萄酒是洋酒还是国酒.中外葡萄与葡萄酒,2003,2:4-5
    王鹏银,郝欣,郭学武,肖冬光.离子注入诱变选育低产高级醇酿酒酵母菌株.酿酒科技,2008,2:17-26
    吴思方,孙灿.产酯酵母产酯条件的研究.武汉工业学院学报,1996, l:62-64
    杨国棋.浅谈啤酒酿造过程中的高级醇的形成与控制.酿酒,2003,30(4):49-50
    翟衡,杜金华,管雪强,乔旭光,潘志勇.酿酒葡萄栽培及加工技术[M].北京:中国农业出版社,2001
    赵辉,蔺善喜,王葳,凌宏志,平文祥.低高级醇啤酒酵母的选育及中试发酵.食品工业科技,2011,10:242-245
    赵传仕.通过遗传修饰MET10基因提高啤酒风味稳定性研究[D].乌鲁木齐:新疆农业大学,2007
    郑玲艳,杨建刚,郭学武,肖冬光.低产异戊醇清酒酵母菌株的选育.酿酒科技,2008,10:17-19
    郑辉杰.用基因组重排和进化工程进行菊糖芽孢乳杆菌菌种改进[D].天津:天津大学,2009
    朱莉娜,程殿林,尹明浩,王亚楠,李静欣.微波诱变选育低产高级醇啤酒酵母菌株.青岛大学学报,2011,26(2):79-84
    周建光,洪鑫.重组工程及其应用.遗传学报,2003,30(10):983-988
    周山.头痛[M].北京:中国中医药出版社,2000
    周德庆.微生物学教程(第2版)[M].北京:高等教育出版社,2002
    周德庆,张双灵,辛胜昌.亚硫酸盐在食品加工中的作用及其应用.食品科学,2004,25(12):198-201
    张强.同源重组技术构建蛋白酶A低表达且能产β-葡聚糖酶的酿酒酵母菌株及其性能研究[D].杭州:浙江大学,2008
    甄会英.葡萄酒中高级醇的测定方法与调控技术研究[D].保定:河北农业大学,2005
    Abe, F., Minegishi, H. Global screening of genes essential for growth in high-pressure andcold environments: searching for basic adaptive strategies using a yeast deletion library.Genetics,2008,178:851-872
    Acquaviva, R., Russo, A., Campisi, A., Sorrenti, V., Giacomo, C. D., Barcellona, M. L.,Avitabile, M., Vanella, A. Antioxidant activity and protective effect on DNA cleavage ofresveratrol. Journal of Food Science,2002,67(1):137-141
    Ahmad, M., Bussey, H. Yeast arginine permease: nucleotide sequence of the CAN1gene.Current Genetics,1986,10:587-592
    Akada, R. Genetically modified industrial yeast ready for application. Journal of bioscienceand bioengineering,2002,94:536-544
    Amitrano, A. A., Saenz, D. A., Ramos, E. H. GAP1activity is dependent on cAMP inSaccharomyces cerevisiae. FEMS Microbiology Letters,1997,151:131-133
    Anderson, R., Kirsop, B. The control of volatile ester synthesis during the fermentation ofwort of high specific gravity. Journal of the Institute of Brewing,1974,80:48-55
    Andre, B. An overview of membrane transport proteins in Saccharomyces cerevisiae. Yeast,1995,11:1575-1611
    Ano, A., Suehiro, D., Cha-aim, K., Aritomi, K., Phonimdaeng, P., Nontaso, N., Hoshida, H.,Mizunuma, M., Miyakawa, T., Akada, R. Combinatorial gene overexpression andrecessive mutant gene introduction in sake yeast. Bioscience, Biotechnology, andBiochemistry,2009,73:633-640
    Aoki, T., Uchida, K. Amino acids-uptake deficient mutants of Zygosaccharomydes rouxii withaltered production of higher alcohols. Journal of Agriculture and Biological Chemistry,1991,55(11):2893-2894
    Ariga, T. The antioxidative function, preventive action on disease and utilization ofproanthocyanidins. Biofactors,2004,21(1-4):197-201
    Butler, P. R., Brown, M., Oliver, S. G. Improvement of antibiotic titers from Streptornycesbacteria by interactive continuous selection. Biotechnology and Bioengineering,1996,49:185-196
    Bhatia, P. K., Wang, Z. DNA repair and transcription. Current Opinion in Genetics&Development,1996,6:146-150
    Barre, P., Vezinhet, F., Dequin, S., Blondin, B. Genetic improvement of wine yeasts. Winemicrobiology and biotechnology. Newark: Harwood Academic,1993,265-287
    Barbe, J. C., Revel, G. d., Joyeux, A., Lonvaud-Funel, A., Bertrand, A. Role of carbonylcompounds in SO2binding phenomena in musts and wines from botrytized grapes.Journal of Agricultural and Food Chemistry,2000,48(8):3413-3419
    Barnett, J. A. A history of research on yeasts13. Active transport and the uptake of variousmetabolites. Yeast,2008,25:689-731
    Cakar, Z. P., Seker, U. O. S., Tamerler, C., Sonderegger, M., Sauer, U. Evolutionaryengineering of multiple-stress resistant Saccharomyces cerevisiae. FEMS Yeast Research,2005,5(6-7):569-578
    Calderbank, J., Hammond, J. Influence of higher alcohol availability on ester formation byyeast. Journal of the American Society of Brewing Chemists,1994,52:84-90
    Chen, E. The relative contribution of ehrlich and biosynthetic pathways to the formation offusel alcohols. Journal of the American Society of Brewing Chemists,1978,36:39-43
    Colón, M., Hernández, F., López, K., Quezada, H., González, J., López, G., Aranda, C.,González, A. Saccharomyces cerevisiae Bat1and Bat2aminotransferases havefunctionally diverged from the ancestral-like Kluyveromyces lactis orthologous enzyme.PLOS ONE,2011,6(1):1-13
    Dai, M. H., Copley, S. D. Genome shuffling improves degradation of the anthropogenicpesticide pentachlorophenol by Sphingobium chlorophenolicum ATCC39723. Appliedand Environmental Microbiology,2004,70(4):2391-2397
    Dickinson, J. R., Harrison, S. J., Hewlins, M. J. E. An investigation of the metabolism ofvaline to isobutyl alcohol in Saccharomyces cerevisiae. Journal of Biological Chemistry,1998,273:25751-25756
    Dickinson, J. R., Lanterman, M. M., Danner, D. J., Pearson, B. M., Sanz, P., Harrison, S. J.,Hewlins, M. J. E. A13C nuclear magnetic resonance investigation of the metabolism ofleucine to isoamyl alcohol in Saccharomyces cerevisiae. Journal of BiologicalChemistry,1997,272:26871-26878
    Dickinson, J. R., Salgado, L. E. J., Hewlins, M. J. E. The catabolism of amino acids to longchain and complex alcohols in Saccharomyces cerevisiae. Journal of BiologicalChemistry,2003,278:8028-8034
    Didion, T., Grauslund, M., Kielland-Brandt, M. C., Andersen, H. A. Amino acids induceexpression of BAP2, a branched-chain amino acid permease gene in Saccharomycescerevisiae. Journal of Bacteriology,1996,178:2025-2029
    Eden, A., Simchen, G., Benvenisty, N. Two yeast homologs of ECA39, a target for c-Mycregulation, code for cytosolic and mitochondrial branched-chain amino acidaminotransferases. Journal of Biological Chemistry,1996,271:20242-20245
    Eden, A., Nedervelde, L. V., Drukker, M., Benvenisty, N., Debourg, A. Involvement ofbranched-chain amino acid aminotransferases in the production of fusel alcohols duringfermentation in yeast. Applied Microbiology and Biotechnology,2001,55:296-300
    Ehrlich, F. über die Bedingungen der Fusel lbildung und über ihren Zusammenhang mit demEiweissaufbau der Hefe. Berichte der deutschen chemischen Gesellschaft,1907,40:1027-1047
    Engan, S. Wort composition and beer flavour I: the influence of some amino acids on theformation of higher aliphatic alcohols and esters. Journal of the Institute of Brewing,1970,76:254-261
    Engan, S. Wort composition and beer flavour2. Influence of different carbohydrates onformation of some flavour components during fermentation. Journal of the Institute ofBrewing,1972,78:169-173
    Etschmann, M., Bluemke, W., Sell, D., Schrader, J. Biotechnological production of2-phenylethanol. Applied Microbiology and Biotechnology,2002,59:1-8
    European Council. Council Regulation (EEC) No1576/89laying down general rules on thedefinition, description and presentation of spirit drinks. Official Journal of EuropeanCommunity,1989, L160:1-17
    Fernández-Pachón, M. S., Villaňo, D., García-Parrilla, M. C., Troncoso, A. M. Antioxidantactivity of wines and relation with their polyphenolic composition. Analytica ChimicaActa,2004,513(1):113-118
    Fukuda, K., Kuwahata, O., Kiyokawa, Y., Yanagiuchi, T., Wakai, Y., Kitamoto, K., Inoue, Y.,Kimura, A. Molecular cloning and nucleotide sequence of the isoamylacetatehydrolyzing esterase gene (EST2) from Saccharomyces cerevisiae. Journal ofFermentation and Bioengineering,1996,82(1):8-15
    Fukuda, K., Yamamoto, N., Kiyokawa, Y., Yanagiuchi, T., Wakai, Y., Kitamoto, K., Inoue, Y.,Kimura, A. Brewing properties of sake yeast whose EST2gene encoding isoamylacetate-hydrolyzing esterase was disrupted. Journal of Fermentation andBioengineering,1998,85(1):101-106
    Fukuda, K., Kiyokawa, Y., Yanagiuchi, T., Wakai, Y., Kitamoto, K., Inoue, Y., Kimura, A.Purification and characterization of isoamyl acetate-hydrolyzing esterase encoded by theIAH1gene of Saccharomyces cerevisiae from a recombinant Escherichia coli. AppliedMicrobiology and Biotechnology,2000,53(5):596-600
    Fujii, T., Nagasawa, N., Iwamatu, A., Bogaki, T., Tamai, Y., Hamachi, M. Molecular cloning,sequence analysis and expression of the yeast alcohol acetyltransferase gene. Appliedand Environmental Microbiology,1994,60:2786-2792
    Fujii, T., Yoshimoto, H., Nagasawa, N., Bogaki, T., Tamai, Y., Hamachi, M. Nucleotidesequence of alcohol acetyltransferase genes from lager brewing yeast, Saccharomycescarlsbergensis. Yeast,1996a,12:593-598
    Fujii, T., Yoshimoto, H., Tamai, Y. Acetate ester production by Saccharomyces cerevisiaelacking the ATF1gene encoding the alcohol acetyltransferase. Journal of Fermentationand Bioengineering,1996b,81:538-542
    Fujii, T., Kobayashi, O., Yoshimoto, H., Furukawa, S., Tamai, Y. Effect of aeration andunsaturated fatty acids on expression of the Saccharomyces cerevisiae alcoholacetyltransferase gene. Applied and Environmental Microbiology,1997,63:910-915
    Fujiwara, D., Kobayashi, O., Yoshimoto, H., Harashima, S., Tamai, Y. Molecular mechanismof the multiple regulation of the Saccharomyces cerevisiae ATF1gene encoding alcoholacetyltransferase. Yeast,1999,15:1183-1197
    Garde-Cerdán, T., Jarauta, I., Salinas, M. R., Ancín-Azpilicueta, C. Comparative study of thevolatile composition in wines obtained from traditional vinification and from theGanimede method. Journal of the Science of Food and Agriculture,2008,88:1777-1785
    Garrett, J. Amino acid transport through the Saccharomy-cescerevisiae Gap1permease iscontrolled by the Ras/cAMP pathway. International Journal of Biochemistry&CellBiology,2008,40:496-502
    Grauslund, M., Didion, T., Kielland-Brandt, M. C., Andersen, H. A. BAP2, a gene encoding apermease for branched-chain amino acids in Saccharomyces cerevisiae. Biochimica etBiophysica Acta (BBA)-Molecular Cell Research,1995,1269:275-280
    German, J. B., Walzem, R. L. The health benefits of wine. Annual Review Of Nutrition,2000,20:561-593
    Gibson, B. R., Boulton, C. A., Box, W. G., Graham, N. S., Lawrence, S. J., Linforth, R. S. T.,Smart, K. A. Amino acid uptake and yeast gene transcription during industrial breweryfermentation. Journal of the American Society of Brewing Chemists,2009,67:157-165
    Gibbs, M. D., Nevalainen, K. M. H., Bergquist, P. L. Degenerate oligonucleotide geneshuffling(DOGS): a method for enhancing the frequency of recombination with familyshuffling. Gene,2001,271(1):13-20
    Gilbert, A., Sangurdekar, D. P., Srienc, F. Rapid strain improvement through optimizedevolution in the cytostat. Biotechnology and Bioengineering,2009,103(3):500-512
    Giugliano, D. Dietary antioxidants for cardiovascular prevention. Nutrition Metabolism andCardiovascular Diseases,2000,10(1):38-44
    Gonzalen-vinas, M. A., Perez-coello, M. S., Cabezubo, M. D. Sensory analysis of aromaattributes of young Airen white wines during storage in the bottle. Journal of FoodQuality,1998,4:285-297
    Guthrie, C., Fink, G. R. Guide to yeast genetics and molecular and cell biology. Methods inenzymology. Part A. Elesevier academic press NK,2004,194:277-278
    Hammond, J. Brewer’s yeast. In: Rose HA, Harrison JS (eds), The yeasts,1st edn. AcademicPress, London,1993
    Hansen, J., Kielland-Brandt, M. C. Genetic control of sulphite production in brewer’s yeast.EBC Congress,1995,319-328
    Hazelwood, L. A., Daran, J. M., van Maris, A. J. A., Pronk, J. T., Dickinson, J. R. The Ehrlichpathway for fusel alcohol production: a century of research on Saccharomycescerevisiae metabolism. Applied and Environmental Microbiology,2008,74:2259-2266
    Heard, G. M. Drinking alcohol linked with lower rates of ill-health. Chemist&Druggist,2001,8:8
    Henschke, P., Jiranek, V. Yeasts-Metabolism of nitrogen compounds. In: Fleet GH (ed) Winemicrobiology and biotechnoloy,2nd edn. Harwood Academic Publishers, Chur, USA,1993
    Herman, P. K., Rine, J. Yeast spore germination: a requirement for Ras protein activity duringre-entry into the cell cycle. The EMBO Journal,1997.16:6171-6181
    Hewes, J. D. Whole genome shuffling: Rapid improvement of industrial micro-organisms byMaxygen, Inc. Abstracts of Papers of the American Chemical Society,1999,217:U885-U885
    Hida, H., Yamada, T., Yamada, Y. Genome shuffling of Streptomyces sp U121for improvedproduction of hydroxycitric acid. Applied Microbiology and Biotechnology,2007,73(6):1387-1393
    Horák, J. Yeast nutrient transporters. BBA Rev Biomembranes,1997,1331:41-79
    Hou, L. H. Novel methods of genome shuffling in Saccharomyces cerevisiae. BiotechnologyLetters,2009,31(5):671-677
    Jauniaux, J., Grenson, M. GAP1, the general amino acid permease gene of Saccharomycescerevisiae. Nucleotide sequence, protein similarity with the other baker’s yeast aminoacid permeases, and nitrogen catabolite repression. European Journal of Biochemistry,1990,190:39-44
    Jefries, T. W., Jin, Y. S. Metabolic engineering for improved fermentation of pentoses byyeasts. Applied Microbiology and Biotechnology,2004,63:495-509
    Jepsen, O. M. The sensory and analytical evaluation of apple juice volatiles. InternationalFederation of Fruit Juice Producers. Scientific Technical Commission,1978,15:349-361
    Jones, M., Pierce, J. Absorption of amino acids from wort by yeasts. Journal of Institute ofBrewing,1964,70:307-315
    Kazuo, Y., Naoki, H. Ester formation by alcohol acetyltransferase from brewers’yeast.Agricultural and Biological Chemistry,1981,45(10):2183-2190
    Kispal, G., Steiner, H., Court, D. A., Rolinski, B., Lill, R. Mitochondrial and cytosolicbranched-chain amino acid transaminases from yeast, homologs of the myconcogene-regulated Eca39protein. Journal of Biological Chemistry,1996,271:24458-24464
    Kobayashi, M., Shimizub, H., Shioya, S. Beer volatile compounds and their application tolow-malt beer fermentation. Journal of Bioscience and Bioengineering,2008,106:317-323
    Kodama, Y., Omura, F., Miyajima, K., Ashikari, T. Control of higher alcohol production bymanipulation of the BAP2gene in brewing yeast. Journal of the American Society ofBrewing Chemists,2001,59:157-162
    Koga, Y., Haruki, M., Morikawa, M., Kanaya, S. Stabilities of chimeras of hyperthermophilicand mesophilic glycerol kinases constructed by DNA shuffling. Journal of Bioscienceand Bioengineering,2001,91(6):551-556
    Laposata, M. Fatty acid ethyl esters: ethanol metabolites which mediate ethanol-inducedorgan damage and serve as markers of ethanol intake. Progress in Lipid Research,1998,37:307-316
    Lodovici, M., Guglielmi, F., Casalini, C., Meoni, M., Cheynier, V., Dolara, P. Antioxidant andradical scavenging properties in vitro of polyphenolic extracts from red wine. EuropeanJournal of Nutrition,2001,40(2):74-77
    Lilly, M., Bauer, F. F., Styger, G., Lambrechts, M. G., Pretorius, I. S. The effect of increasedbranched-chain amino acid transaminase activity in yeast on the production of higheralcohols and on the flavour profiles of wine and distillates. FEMS Yeast Research,2006,6:726-743
    Lipinski, C. A., Lombardo, F., Dominy, B. W., Feeney, P. J. Experimental and computationalapproaches to estimate solubility and permeability in drug discovery and developmentsettings. Advanced Drug Delivery Reviews,2001,46:3-26
    Malcorps, P., Dufour, J. P. Short-chain and medium chain aliphatic ester synthesis inSaccharomyces cerevisiae. European Journal of Biochemistry,1992,210:1015-1022
    Mason, A. B., Dufour, J. P. Alcohol acetyltransferases and the significance of ester synthesisin yeast. Yeast,2000,16:1287-1298
    Makris, D. P., Kallithraka, S., Kefalas, P. Flavonols in grapes, grape products and wines:burden, profile and influential parameters. Journal of Food Composition and Analysis,2006,19(5):396-404
    Marullo, P., Bely, M., Masneuf-Pomarede, I., Aigle, M., Dubourdieu, D. Inheritable nature ofoenological traits is demonstrated by meiotic segregation of industrial wine yeast strains.FEMS Yeast Research,2004,4:711-719
    Marshall, S. H. DNA shuffling: induced molecular breeding to produce new generationlong-lasting vaccines. Biotechnology Advances,2002,20(3-4):229-238
    Main, G. L. Juice fining treatments to reduce browning and use of sulfur dioxide in whitewine production[D]. United States-Arkansas: Ph.D.Thesis. University of Arkansas.1992
    Meilgaard, M. Effects on flavour of innovations in brewery equipment and processing: areview. Journal of the Institute of Brewing,2001,107:271-286
    Meilgaard, M. Flavor chemistry of beer: Part I: flavor inter-action between principal volatiles.MBAA Tech Quarterly,1975,12:107-117
    Molina, A. M., Swiegers, J. H., Varela, C., Pretorius, I. S., Agosin, E. Influence of winefermentation temperature on the synthesis of yeast-derived volatile aroma compounds.Applied Microbiology and Biotechnology,2007,77:675-687
    Molina, A. M., Guadalupe, V., Varela, C., Swiegers, J. H., Pretorius, I. S., Agosin, E.Differential synthesis of fermentative aroma compounds of two related commercial wineyeast strains. Food Chemistry,2009,117:189-195
    Nagasawa, N., Bogaki, T., Iwamatsu, A., Hamachi, M., Kumagai, C. Cloning and nucleotidesequence of the alcohol acetyltransferase II gene (ATF2) from Saccharomyces cerevisiaekyokai no.7. Bioscience, Biotechnology, and Biochemistry,1998,62:1852-1857
    Narawane, N. M., Bhatia, S., Abraham, P., Sanghani, S., Sawant, S. S. Consumption of‘country liquor’ and its relation to alcoholic liver disease in Mumbai. Journal of theAssociation of Physicians of India,1998,46:510-513
    Naumov, G. I., Kondrat’eva, V. I., Naumova, E. S. Methods for hybridization of homothallicyeast. Biotekhnologia,1986,6:33-36
    Ness, J. E., Welch, M., Giver, L., Bueno, M., Cherry, J. R., Borchert, T. V., Stemmer, W. P. C.,Minshull, J. DNA shuffling of subgenomic sequences of Subtilisin. NatureBiotechnology,1999,17:893-896
    Nordstr m, K. Formation of ethyl acetate in fermentation with brewer’s yeast IV: metabolismof acetyl coenzyme A. Journal of the Institute of Brewing,1963,69:142-153
    Nordstr m, K. Formation of esters from alcohols by brewer’s yeast. Journal of the Institute ofBrewing,1964,70:328-336
    Norstedt, C., Bergtsson, A., Bennet, L., Lindstrom, I., Ayrapaa, T. Technical measures tocontrol the formation of esters during beer fermentation. In: Proceedings of the15thEuropean brewery convention congress, Nice Elsevier Scientific Publishing Company,Amsterdam,1975
    Nykanen, L., Nykanen, I. Production of esters by different yeast strains in sugarfermentations. Journal of the Institute of Brewing,1977,83:30-31
    Palmer, A., Rennie, H. Ester control in high gravity brewing. Journal of the Institute ofBrewing,1974,80:447-454
    Paolo, G., Lisa, S., Andrea, M. P., Stefano, C. Strategies and perspectives for geneticimprovement of wine yeasts. Applied Microbiology and Biotechnology,2005,66:622-628
    Patthy, L. Genome evolution and the evolution of exon-shuffling-a review. Gene,1999,238(1):103-114
    Patnaik, R., Louie, S., Gavrilovic, V., Perry, K., Stemmer, W. P. C., Ryan, C. M., Cardayré, S.d. Genome shuffling of Lactobacillus for improved acid tolerance. NatureBiotechnology,2002,20(7):707-712
    Peddie, H. Ester formation in brewery fermentations. Journal of the Institute of Brewing,1990,96:327-331
    Pfisterer, E., Stewart, G. Some aspects on the fermentation of high gravity worts. In:Proceedings of the15th European brewery convention congress, nice. Elsevier ScientificPublishing Company, Amsterdam,1975
    Poole, K., Walker, M. E., Warren, T., Gardner, J., McBryde, C., Lopes, M., B., Jiranek, V.Proline transport and stress tolerance of ammonia-insensitive mutants of thePUT4-encoded proline-specific permease in yeast. Journal of General and AppliedMicrobiology,2009,55:427-439
    Pretorius, I. S. Tailoring wine yeast for the new millennium: novel approaches to the ancientart of winemaking. Yeast,2000,16:675-629
    Procopio, S., Qian, F., Becker, T. Function and regulation of yeast genes involved in higheralcohol and ester metabolism during beverage fermentation. European Food Researchand Technology,2011,233:721-729
    Quain, D., Duffield, M. A metabolic function for higher alcohol production by yeast. Journalof the Institute of Brewing,1985,91:123-125
    Rapp, A., Volatile flavour of wine: correlation between instrumental analysis and sensoryperception. Nahrung,1998,42:351-363
    Rapp, A., Mandery, H. New progress in wine and wine research. Experientia,1987,42:873-884
    Rautio, J. J., Huuskonen, A., Vuokko, H., Vidgren, V., Londesborough, J. Monitoring yeastphysiology during very high gravity wort fermentations by frequent analysis of geneexpression. Yeast,2007,24:741-760
    Regenberg, B., Düring-Olsen, L., Kielland-Brandt, M. C., Holmberg, S. Substrate specificityand gene expression of the amino-acid permeases in Saccharomyces cerevisiae. CurrentGenetics,1999,36:317-328
    Renger, R. S., Van, H., Luyben, K. C. A. The formation of esters and higher alcohols duringbrewery fermentation: the effect of carbon dioxide pressure. Journal of the Institute ofBrewing,1992,98:509-513
    Romano, P., Soli, M. G., Suzzi, G. Procedure for mutagenizing spores of Saccharomycescerevisiae strain by a breeding program. Applied and Environmental Microbiology,1983,50:1064-1067
    Rous, C. V., Snow, R. E. Reduction of higher alcohols by fermentation with aLeucme-auxotrophic mutant of wine yeast. Journal of the Institute of Brewing,1983,89(4):274-278
    Sahara, H., Kotaka, A., Kondo, A., Ueda, M., Hata, Y. Using promoter replacement andselection for loss of heterozygosity to generate an industrially applicable sake yeaststrain that homozygously overproduces isoamyl acetate. Journal of Bioscience andBioengineering,2009,108:359-364
    Sauer, U. Evolutionary engineering of industrially important microbial phenotypes[M].Berlin: Springer-Verlag,2001
    Saerens S. M. G., Delvaux, F. R., Verstrepen, K. J., Thevelein, J. M. Production and biologicalfunction of volatile esters in Saccharomyces cerevisiae. Microbial Biotechnology,2010,3:165-177
    Saerens, S. M. G., Verbelen, P. J., Vanbeneden, N., Thevelein, J. M., Delvaux, F. R.Monitoring the influence of high-gravity brewing and fermentation temperature onflavour formation by analysis of gene expression levels in brewing yeast. AppliedMicrobiology and Biotechnology,2008,80:1039-1051
    Saerens, S. M. G., Verstrepen, K. J., Van Laere, S. D. M., Voet, A. R. D., Dijck, P. V., Delvaux,F. R., Thevelein, J. M. The Saccharomyces cerevisiae EHT1and EEB1genes encodenovel enzymes with mediumchain fatty acid ethyl ester synthesis and hydrolysiscapacity. Journal of Biological Chemistry,2006,281:4446-4456
    Schmitz, H. P., Jockel, J., Block, C., Heinisch, J. J. Domain shuffling as a tool forinvestigation of protein function: substitution of the cysteine-rich region of Raf kinaseand PKC for that of yeast Pkc1p. Journal of Molecular Biology,2001,311(1):1-7
    Schiestl, R. H., Gietz, R. D. High efficiency transformation of intact yeast cells using singlestranded nucleic acids as a carrier. Current genetics,1989,16(5-6):339-346
    Schermers, F. H., Duffs, J. H., MacLeod, A. M. Studies on yeast esterase. Journal of theInstitute of Brewing,1976,82:170
    Schoondermark-Stolk, S. A., Tabernero, M., Chapman, J., Schure, E. G. T., Verrips, C. T.,Verkleij, A. J., Boonstra, J. Bat2p is essential in Saccharomyces cerevisiae for fuselalcohol production on the non-fermentable carbon source ethanol. FEMS Yeast Research,2005,5:757-766
    Styger, G., Jacobson, D., Bauer, F. F. Identifying genes that impact on aroma profles producedby Saccharomyces cerevisiae and the production of higher alcohols. AppliedMicrobiology and Biotechnology,2011,91:713-730
    Singh, R., Vadlani, P. V., Harrison, M. L., Bennett, G. N., San, K.-Y. Aerobic production ofisoamyl acetate by overexpression of the yeast alcohol acetyl-transferases AFT1andAFT2in Escherichia coli and using low-cost fermentation ingredients. Bioprocess andBiosystems Engineering,2008,31:299-306
    Suomalainen, H. Yeast esterases and aroma esters in alcoholic beverages. Journal of theInstitute of Brewing,1981,87:296-300
    Szlavko, C. Influence of wort glucose level on formation of aromatic higher alcohols. Journalof the Institute of Brewing,1974,80:534-539
    Taguchi, S., Ozaki, A., Mose, H. Engineering of a cold adapted protease by sequential randommutagenesis and screening system. Applied and Environmental Microbiology,1998,64:492-495
    Tao, Y. S., Li, H., Wang, H., Zhang., L. Volatile compounds of young Cabernet Sauvignon redwine from Changli County (China). Journal of Food Composition and Analysis,2008,21:689-694
    Thevelein, J. M., Cauwenberga, L., Colomboa, S., Windea, J. H. D., Donationa, M.,Dumortiera, F., Kraakmana, L., Lemairea, K., Maa, P., Nauwelaersa, D., Rollanda, F.,Teunissena, A., Dijcka, P. V., Verselea, M., Weraa, S., Winderickxa, J. Nutrient-inducedsignalling transduction through the protein kinase A pathway and its role in the control ofmetabolism, stress resistance and growth in yeast. Enzyme and Microbial Technology,2000,26:819-825
    Van Laere, S. D. M., Saerens, S. M. G., Verstrepen, K. J., Dijck, P. V., Thevelein, J. M.,Delvaux, F. R. Flavour formation in fungi: characterisation of KlAtf, the Kluyveromyceslactis orthologue of the Saccharomyces cerevisiae alcohol acetyltransferases Atf1andAtf2. Applied Microbiology and Biotechnology,2008,78:783-792
    Verbelen, P. J., Saerens, S. M. G., Van Mulders, S. E., Delvaux, F., Delvaux, F. R. The role ofoxygen in yeast metabolism during high cell density brewery fermentations. AppliedMicrobiology and Biotechnology,2009,82:1143-1156
    Verstrepen, K. J., Moonjai, N., Bauer, F. F., Derdelinckx, G., Dufour, J.-P., Winderickx, J.,Thevelein, J. M., Pretorius, I. S., Delvaux, F. R. Genetic regulation of ester synthesis inbrewer’s yeast: new facts, insights and implications for the brewer. In: Smart K (ed)Brewing yeast fermentation performance,2nd edn. Blackwell Science, Oxford,2006
    Verstrepen, K. J., Derdelinckx, G., Dufour, J. P., Winderickx, J., Pretorius, I. S., Thevelein, J.M., Delvaux, F. R. The Saccharomyces cerevisiae alcohol acetyl transferase gene ATF1is a target of the cAMP/PKA and FGM nutrient-signalling pathways. FEMS YeastResearch,2003,4:285-296
    Verstrepen, K. J., Derdelinckx, G., Dufour, J. P., Winderickx, J., Thevelein, J. M., Pretorius, I.S., Delvaux, F. R. Flavor-active esters: adding fruitiness to beer. Journal of Bioscienceand Bioengineering,2003,96:110-118
    Verstrepen, K. J., Van Laere, S. D. M., Vanderhaegen, B. M. P., Derdelinckx, G., Dufour, J. P.,Pretorius, I. S., Winderickx, J., Thevelein, J. M., Delvaux, F. R. Expression levels of theyeast alcohol acetyltransferase genes ATF1, Lg-ATF1, and ATF2control the formation ofa broad range of volatile esters. Applied and Environmental Microbiology,2003,69:5228-5237
    Vivas, N., Vivas de Gaulejac, N., Nonier, M. F. Technological implications of the value of pHin the conservation of red wines. Revue des Oenologues, France,2004,31(110):12-16
    Wang J. Q., Jiang, J. C., Jazwinski, S. M. Gene regulatory changes in yeast during lifeextension by nutrient limitation. Experimental Gerontology,2010,45:621-631
    Wei, P. Y., Li, Z. L., He, P., Lin, Y. P., Jiang, N. Genome shuffling in the ethanologenic yeastCandida krusei to improve acetic acid tolerance. Biotechnology and AppliedBiochemistry,2008,49(2):113-120
    Watanabe, M., Nagai, H., Kondo, K. Properties of sake yeast mutants resistant to isoamylmonochloroacetate. Journal of Fermentation and Bioengineering,1995,80:291-293
    White, F., Portno, A. The influence of wort composition on beer ester levels. In: Proceedingsof the17th European brewery convention congress, Berlin, DSW, Dordrecht,1979
    Yu, L., Pei, X. L., Lei, T., Wang, Y. H., Feng, Y. Genome shuffling enhanced L-lactic acidproduction by improving glucose tolerance of Lactobacillus rhamnosus. Journal ofBiotechnology,2008,134:154-159
    Yoshimoto, H., Fujiwara, D., Momma, T., Ito, C., Sone, H., Kaneko, Y., Tamai, Y.Characterization of the ATF1and Lg-ATF1genes encoding alcohol acetyltransferases inthe bottom fermenting yeast Saccharomyces pastorianus. Journal of Fermentation andBioengineering,1998,86:15-20
    Yoshimoto, H., Fujiwara, D., Momma, T., Tanaka, K., Sone, H., Nagasawa, N., Tamai, Y.Isolation and characterization of the ATF2gene encoding alcohol acetyl transferase II inthe bottom fermenting yeast Saccharomyces pastorianus. Yeast,1999,15:409-417
    Yoshioka, K., Hashimoto, H. Ester formation by alcohol acetyltransferase from brewers’yeast. Agricultural and Biological Chemistry,1981,45:2183-2190
    Younis, O., Stewart, G. Effect of malt wort, very-high-gravity malt wort, andvery-high-gravity adjunct wort on volatile production in Saccharomyces cerevisiae.Journal of the American Society of Brewing Chemists,1999,57:39-45
    Yoshimoto, H., Fukushige, T., Yonezawa, T., Sone, H. Genetic and physiological analysis ofbranched-chain alcohols and isoamyl acetate production in Saccharomyces cerevisiae.Applied Microbiology and Biotechnology,2002,59:501-508
    Zambonelli, C. I lieviti selezionati Microbiologia e biotecnologia dei wini. Edagricole:Bologna,1988.123-136
    Zhang, J. W., Zhang, C. Y., Dai, L. H., Dong, J., Liu, Y. L., Guo, X. W., Xiao, D. G. Effects ofoverexpression of the alcohol acetyltransferase-encoding gene ATF1and disruption ofthe esterase-encoding gene IAH1on the flavour profiles of Chinese yellow rice wine.International Journal of Food Science and Technology,2012,47,2590-2596
    Zhang, M. X., Pan, Q. H., Yan, G. L., Duan, C. Q. Using headspace solid phasemicro-extraction for analysis of aromatic compounds during alcoholic fermentation ofred wine. Food Chemistry,2011,125:743-749
    Zhang, W., Geng, A. L. Improved ethanol production by a xylose-fermenting recombinantyeast strain constructed through a modified genome shuffling method. Biotechnology forBiofuels,2012,5:46-57
    Zhang, Y. X., Perry, K., Vinci, V. A., Powell, K., Stemmer, W. P. C., Cardayré, S. B. d.Genome shuffling leads to rapid phenotypic improvement in bacteria. Nature,2002,415(6872):644-646
    Zhao, K., Ping, W. X., Zhang, L. N., Liu, J., Lin, Y., Jin, T., Zhou, D. P. Screening andbreeding of high taxol producing fungi by genome shuffling. Science in China Series C:Life Sciences,2008,51(3):222-231
    Zhou, D. P., Ping, W. X., Sun, J. Q., Zhang, B. G., Wang, C., Guo, X. Q..Breeding of yeast forbeer manufacturing by inactivated protoplast fusion. Acta Microbiologica Sinica,1999,39:454-460

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700