用户名: 密码: 验证码:
耕作方式及其转变对麦玉两熟农田土壤CH_4、N_2O排放和固碳能力的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本实验于2007~2009年在山东农业大学农学试验站进行,利用静态箱-气相色谱法分析了耕作措施及其转变后麦玉两熟农田CH_4和N_2O季节排放规律和日变化规律并系统分析了其温室效应,结合土壤固碳量、作物产量,利用多指标综合评价法对5种耕作措施进行综合评价,探讨出在较优的产量基础上,具有较好的温室气体减排潜力和土壤固碳潜力,以期为该地区温室气体排放量估算、土壤固碳量提供数据支持,并为该地区制定符合农业可持续发展的合理耕作模式提供理论依据。主要研究结果如下:
     1耕作措施及其转变对麦玉两熟农田土壤CH_4和N_2O排放的影响
     不同耕作措施下土壤CH_4和N_2O有明显的季节变化和日变化,不同时期各处理均表现为CH_4的吸收汇和N_2O的排放源,CH_4、N_2O通量都呈现冬季底、夏季高的季节排放趋势。通过相关性分析表明,不同耕作措施下,土壤CH_4吸收通量与土壤5cm地温和地表温度呈正相关关系,与土壤0~20cm水分含量呈负相关关系; N_2O排放通量与土壤水分和土壤硝态氮含量呈正相关关系。不同耕作措施下,各处理CH_4、N_2O通量具有明显的差异。CH_4总吸收通量旋耕≈耙耕>常规耕作>深松耕>免耕,N_2O总排放通量免耕>耙耕>深松耕≈旋耕>常规耕作,旋耕的CH_4吸收通量最高且N_2O排放通量较低。耙耕、旋耕、免耕在原有耕作模式基础上进行深松后,CH_4吸收通量明显的增加而N_2O排放通量略有增加,说明保护性耕作+深松模式虽然会略微增加土壤N_2O的排放,但是其会大幅度增加土壤对CH_4的吸收。不同耕作方式其农田CH_4和N_2O的温室效应具有明显的差异,小麦季总温室效应:免耕>耙耕≈深松>旋耕>常规耕作;而玉米季总温室效应:常规≈旋耕>免耕>耙耕>深松。总温室效应:免耕>耙耕>旋耕>深松耕>常规耕作。
     2不同耕作措施及秸秆还田对麦田土壤有机碳含量的影响
     不同耕作措施下,秸秆还田各处理0~20cm有机碳含量显著比无秸秆还田处理高,说明秸秆还田能显著增加土壤表层有机碳含量,在秸秆还田条件下,保护性耕作各处理0~10cm土层有机碳含量显著高于0~20cm,而常规翻耕处理表现出相反的趋势。多因素方差分析表明:耕作因素、秸秆因素和两者交互效应在不同生育期对0~20 cm土层的有机碳含量都有显著影响。在秸秆还田条件下,根据两年有机碳含量的变化,计算出0~20cm土层土壤固碳量:深松耕>旋耕>常规耕作>耙耕>免耕,说明深松和旋耕模式具有较好的固碳潜力。
     3耕作措施及其转变对作物产量的影响
     秸秆还田条件下,不同耕作措施各处理小麦产量具有明显的差异,旋耕>常规>耙耕>深松>免耕,而深松后,各处理小麦显著增产,增产幅度免耕>耙耕>旋耕,说明采用保护性耕作2~3年后深松1次的耕作模式,结合秸秆还田技术,能促进作物生长,提高作物产量。
     4耕作措施综合评价
     通过多指标综合评价法中的RSR值综合评价法对5种耕作措施进行综合评价表明,旋耕措施在较优的产量基础上具有较好固碳潜力、温室气体减排潜力,是适应生态农业条件下较为合理的耕作模式。耙耕和深松处理次之,常规耕作较差,免耕最差。旋耕+深松措施虽然会略微增加温室效应,但却具有较好的增产效果和固碳效果。结合本课题组6年的保护性耕作定位试验,旋耕措施在实行一定年数后会有减产趋势,增加深松后,有利于打破犁底层,促进作物根系生长,增产效果和固碳效果非常明显,因此,2+1、3+1 (2、3年旋耕后深松一次)模式是实现作物产量、土壤固碳和温室气体减排三者协调统一的合理模式。
A field experiment was carried out at experimental plot of Shandong Agriculture University in 2007~2009 to study the effects of tillage measures and conversion on the seasonal and diurnal variation emission of soil CH_4&N_2O in wheat-maize farmland was using the Static-Chamber&the Gas Chromatography(GC) method and systematically analyzed its GWPs. Comprehensive evaluation five tillage measures using the Multi-index comprehensive evaluation method combined with soil carbon sequestration potential and crop yield. The objective is to carry out better with greenhouse gas reduction exhaust potential and soil carbon sequestration potential on basis of better yield. Provide data supportion to estimation of greenhouse gas emission and soil carbon sequestration amount. At the same time, provide theoretical basis to making reasonable tillage measure accord with agricultural sustainable development in this area. The main result was as follows:
     1 Effects of tillage measures and conversion on the emission of soil CH_4&N_2O in wheat-maize farmland
     CH_4&N_2O flux had obvious seasonal and diurnal variation under different tillage measures. All treatments were the sink of CH_4 absorption and emission source of N_2O in different growth periods, CH_4&N_2O flux present seasonal variation trend of lower in winter and higher in summer. By correlation analysis showed that, there was positive correlation between CH_4 uptake flux and soil temperature of 5cm depth, and negative correlation with soil water content of 0~20cm depth; in the same time, there was positive correlation between N_2O emission flux and soil water content of 0~20cm and ammonium N of 0~10cm depth. Comparison of CH_4&N_2O flux among different treatments indicated that CH_4 uptake flux under PR≈PH>PC>PS>PZ and N_2O emission flux under PZ>PH>PS≈PR>PC. PR has the highest of CH_4 uptake flux and the lowest of N_2O emission flux. PH, PR and PZ was subsoil tillage after basing on original tillage measure manifested as its will increase CH_4 uptake and N_2O emission flux, this phomenon showed that althought increased to N_2O emission appreciably, but CH_4 uptake flux was improved greatly. GWPs of CH_4&N_2O have an obvious difference under different tillage measures, total GWPs of wheat seasonal was PZ>PH≈PS>PR>PC; total GWPs of maize seasonal was PC≈PR>PZ>PH>PS. Total GWPs of wheat- maize farmland was PZ>PH>PR>PS >PC.
     2 Effects of different tillage measures and returning straw on soil organic carbon content in wheat field
     The results showed that, all treatments of straw returning had higher values than treatments with no straw returning, and that of conservation tillage was higher than conversional tillage. The soil organic carbon content in 0-10 cm soil layer of all treatments was higher than that in 10-20cm soil layer except conversional tillage treatments. Multi factor variance analysis showed that tillage measures, straw returning and their interaction significantly affected the organic carbon content in 0-20cm soil layer at various growth stages of wheat. Under the condition of straw returning and according of SOC content variation of two year, we calculated soil carbon sequestration amount in 0~20cm layer that PS>PR>PC>PH>PZ, it showed that PS and PR has good carbon sequestration potential
     3 Effects of tillage measures and conversion on crop yield in wheat-maize farmland
     All treatments yield of wheat has an obvious difference under different tillage measures with straw returning that PR>PC>PH>PS>PZ. After subsoil tillage measures, all treatments yield of wheat was significantly increased that PZ>PH>PR, it showed that must be subsoil tillage after two or three years with conservation tillage, and with strew returning could promote crop growth and increasing yield.
     4 Comprehensive evaluations of different tillage measures
     Comprehensive evaluations five tillage measures using the RSR value mothed of Multi-index comprehensive evaluation methods showed that, PR was a potential measure of greenhouse gas reduction exhause and soil carbon sequestration meanwhile has a basis on better yield, PH and PS took the second place, PC was poor and PZ was the poorest.
     Combined with the results of a 10-years located experiment of our team shows that it has trend of yield reduction carried to PR with several years, but after subsoil tillage, it will beneficial to breaking plough pans, promote to growth of crop roots, and has abvious effect on yield-increasing and carbon sequestration, therefore, measure of 2+1, 3+1 is a reasonable measures in coordination and unification of crop yield, soil carbon sequestration and greenhouse gas reduction exhaust.
引文
1.白小琳,张海林,陈阜.耕作措施对双季稻田CH_4与N_2O排放的影响.农业工程学报, 2010, 26(1): 282~289.
    2.鲍士旦.土壤农化分析.北京:中国农业出版社, 2000.
    3.蔡立群,齐鹏,张仁陟.保护性耕作对麦-豆轮作条件下土壤团聚体组成及有机碳含量的影响.水土保持学报, 2008, 22(2): 141~144.
    4.蔡立群,齐鹏,张仁陟.不同保护性耕作措施对麦-豆轮作土壤有机碳库的影响.中国生态农业学报, 2009, 17(1): 1~6.
    5.蔡祖聪,沈光裕,颜晓元.土壤质地、温度和Eh对稻田甲烷排放的影响.土壤学报, 1998, 35(2): 145~152.
    6.陈安磊,王凯荣,谢小立,等.不同施肥模式下稻田土壤微生物生物量磷对土壤有机碳和磷素变化的响应.应用生态学报, 2007, 18(12) : 2733~2738.
    7.陈全胜,李凌浩,韩兴国,等.典型温带草原群落土壤呼吸温度敏感性与土壤水分的关系.生态学报, 2004, 24(4): 831~836.
    8.陈全胜,李凌浩,韩兴国,等.水分对土壤呼吸的影响及机理.生态学报, 2003, 25(5): 972~978.
    9.陈尚洪,朱钟麟,刘定辉.秸秆还田和免耕对土壤养分及碳库管理指数的影响研究.植物营养与肥料学报, 2008, 14(4): 806~809.
    10.陈苇,卢婉芳.稻草还田对晚稻稻田甲烷排放的影响.土壤学报, 2002, 39(2): 170~176.
    11.陈义,吴春艳,水建国,等.长期施用有机肥对水稻土CO_2释放与固定的影响.中国农业科学, 2005, 38 (12): 2468~2473.
    12.崔骁勇,陈佐忠,陈四清.草地土壤呼吸研究进展.生态学报, 2001, 21(2): 315~325.
    13.杜睿.内蒙古大针茅草原的N_2O和CH_4通量变化特征.中国环境科学, 2001, 21(4): 289~292.
    14.冯虎元,程国栋,安黎哲.微生物介导的土壤甲烷循环及全球变化研究.冰川冻土, 2004, 26(4): 411~419.
    15.耿远波,章申,董云社,等.草原土壤的碳氮含量及其与温室气体通量的相关性.地理学报, 2001, 56(1): 44~53.
    16.韩宾,孔凡磊,张海林.耕作方式转变对小麦-玉米两熟农田土壤固碳能力的影响.应用生态学报, 2010, 21(1): 91~98.
    17.郝晓晖,苏以荣,胡荣桂.土壤利用管理对土壤甲烷氧化的影响.云南农业大学学报, 2005, 20(3): 369~374.
    18.胡立峰,李琳,陈阜,等.不同耕作制度对南方稻田甲烷排放的影响.生态环境, 2006, 15(6): 1216~1219.
    19.胡荣桂.氮肥对旱地土壤甲烷氧化能力的影响.生态环境, 2004, 13(1): 74~77.
    20.胡玉琼,王跃思,纪宝明,等.内蒙古草原温室气体排放日变化规律研究.南京气象学院学报, 2003, 26(1): 29~37.
    21.黄东迈,朱培立,王志明,等.旱地和水田有机碳分解速率的探讨与质疑.土壤学报, 1998, 35(4): 482~491.
    22.黄国宏,肖笃宁,李玉祥等.芦苇湿地温室气体甲烷(CH_4)排放研究.生态学报, 2001, 21(9): 1494~1497.
    23.黄国宏,陈冠雄,吴杰.东北典型旱作农田N_2O和CH_4排放通量研究.应用生态学报, 1995, 6(4): 383-386.
    24.黄明,李友军,吴金芝.深松覆盖对土壤性状及冬小麦产量的影响.河南科技大学学报(自然科学版), 2006, 27(2): 74~77.
    25.黄耀,刘世梁,沈其荣,等.农田土壤有机碳动态模拟模型的建立.中国农业科学, 2001, 34(5): 532~536.
    26.黄耀,刘世梁,沈其荣,等.环境因子对农田土壤有机碳分解的影响.应用生态学报, 2002, 13(6): 709~714.
    27.贾仲君,蔡祖聪.稻田甲烷氧化与铵氧化关系研究进展.农村生态环境, 2003, 19(4): 40~44.
    28.江长胜,王跃思,郑循华.耕作制度对川中丘陵区冬灌田CH_4和N_2O排放的影响.环境科学, 2006, 27(2): 207~213.
    29.冷寿慈.生物统计与田间试验设计.北京:中国广播电视出版社, 1992.
    30.李琳,李素娟,张海林.保护性耕作下土壤碳库管理指数的研究.水土保持学报, 2006, 20(3): 106~109.
    31.李长生,肖向明, Frolking S,等.中国农田的温室气体排放.第四纪研究, 2003, 23(5): 493~503.
    32.李晶,王明星,王跃思,等.农田生态系统温室气体排放研究进展.大气科学, 2003, 27(4): 740~749.
    33.李明峰,董云社,耿元波,等.草原土壤的碳氮分布与CO_2排放通量的相关性分析.环境科学, 2004, 25(2): 7~11.
    34.李淑芬,俞元春,何晟.土壤溶解有机碳的研究进展.土壤与环境, 2002, 11(4): 422~429.
    35.李玉娥,林而达,谢军飞,等.我国东部样带土地利用方式对温室气体排放通量的影响.中国生态农业学报, 2005, 13(2): 152~154.
    36.李正才,傅懋毅,杨校生.经营干扰对森林土壤有机碳的影响研究概述.浙江林学院学报, 2005, 22(4): 469~474.
    37.梁爱珍,张晓平,杨学明等.耕作方式对耕层黑土有机碳库储量的短期影响.中国农业科学, 2006, 39(6): 1287~1293.
    38.林而达,李玉娥,郭李萍,等.中国农业土壤固碳潜力与气候变化.北京:科学出版社, 2005.
    39.林明海,彭静霜.红壤性水稻土有机质消长因素的研究.土壤肥料, 1982, (5): 10~13.
    40.刘立晶,高焕文,李洪文.玉米-小麦一年两熟保护性耕作体系试验研究.农业工程学报, 2004, 20(3): 70~73.
    41.刘小燕,黄璜,杨治平,等.稻鸭鱼共栖生态系统CH_4排放规律研究.生态环境, 2006, 15(2): 265~269.
    42.柳敏,宇万太,姜子绍,等.土壤活性有机碳.生态学杂志, 2006, 25(11): 1412~1417.
    43.孟凡乔,关桂红,张庆忠.华北高产农田长期不同耕作方式下土壤呼吸及其季节变化规律.环境科学学报, 2006, 26(6): 992~999.
    44.孟磊,蔡祖聪,丁维新.长期施肥对土壤碳储量和作物固定碳的影响.土壤学报, 2005, 42 (5): 769~776.
    45.莫江明.鼎湖山主要森林土壤CO_2排放和CH_4吸收特征.广西植物, 2006, 26(2): 142~147.
    46.牛新胜,牛灵安,张宏彦.玉米秸秆覆盖免耕对土壤呼吸的影响.生态环境, 2008, 17(1): 256~260.
    47.欧阳学军,周国逸,黄忠良,等.土壤酸化对温室气体排放影响的培育实验研究.中国环境科学, 2005, 25(4): 465~470.
    48.潘根兴,李恋卿,张旭辉,等.中国土壤有机碳库量与农业土壤碳固定动态的若干问题.地球科学进展, 2003, 18 (4): 609~618.
    49.潘根兴,周萍,张旭辉,等.不同施肥对水稻土作物碳同化与土壤碳固定的影响.生态学报, 2006, 26 (11): 3704~3710.
    50.潘红丽,赵秀兰,谢祖彬,等.大气CO_2浓度升高对农田生态系统的影响.云南环境科学, 2005, 24(4): 6~9.
    51.彭少麟,李跃林,任海,等.全球变化条件下的土壤呼吸效应.地球科学进展, 2002, 17(5): 705~713.
    52.齐玉春,董云社,耿元波,等.我国草地生态系统碳循环研究进展.地理科学进展, 2003, 22(4): 342~352.
    53.齐玉春,董云社,章申.华北平原典型农业区土壤甲烷通量研究.农村生态环境, 2002, 18(3): 56~58.
    54.陕西省土壤普查办公室.陕西土壤.北京:科学出版社, 1992, 363~393.
    55.宋长春,王毅勇,王跃思,等.季节性冻融期沼泽湿地CO_2、CH_4和N_2O排放动态.环境科学, 2005, 26(4): 7~12.
    56.宋长春,王毅勇,王跃思,等.人类活动影响下淡水沼泽湿地温室气体排放变化.地理科学, 2006, 26(1): 82~86.
    57.宋长春,王毅勇.湿地生态系统土壤温度对气温的响应特征及对CO_2排放的影响.应用生态学报, 2006, 17(4): 625~629.
    58.宋明伟,李爱宗,蔡立群,等.耕作方式对土壤有机碳库的影响.农业环境科学学报, 2008, 27(2): 622~626.
    59.孙向阳,徐化成.北京低山区两种人工林土壤中N_2O排放通量的研究.林业科学, 2001, 37(5): 57~63.
    60.谭周进,周卫军,张杨珠,等.不同施肥制度对稻田土壤微生物的影响研究.植物营养与肥料学报, 2007, 13(3): 430~435.
    61.田凤调.秩和比法及其应用.北京:中国统计出版社, 1993.
    62.王燕,王小彬,刘爽,等.保护性耕作对土壤有机碳的影响.中国生态农业学报, 2008, 16(3): 766~771.
    63.王伯仁,徐明岗,文石林.长期不同施肥对旱地土壤性质和作物生长的影响.水土保持学报, 2005, 19 (1): 97~100.
    64.王长生,王遵义,苏成贵等.保护性耕作技术的发展现状.农业机械学报, 2004,
    35(1): 167~169.
    65.王改玲,陈德立,李勇.土壤温度、水分和NH4+-N浓度对土壤硝化反应速度及N_2O排放的影响.中国生态农业学报, 2010, 18(1): 1~6.
    66.王小彬,蔡典雄,华珞,等.土壤保持耕作-全球农业可持续发展优先领域.中国农业科学, 2006, 39(4): 741~749.
    67.王艳芬,马秀枝,纪宝明.内蒙古草甸草原CH_4和N_2O排放通量的时间变异.植物生态学报, 2003, 27(6): 792~796.
    68.王义祥,翁伯琦,黄毅斌.土地利用和覆被变化对土壤碳库和碳循环的影响.亚热带农业研究, 2005, 1(3): 44~51.
    69.吴金水,童成立,刘守龙.亚热带和黄土高原区耕作土壤有机碳对全球气候变化的影响.地球科学进展, 2004, 19(1): 131~137.
    70.伍芬琳,张海林,李琳,等.保护性耕作下双季稻农田甲烷排放特征及温室效应.中国农业科学, 2008, 41(9): 2703~2709.
    71.谢军飞,李玉娥.农田土壤温室气体排放机理与影响因素研究进展.中国农业气象, 2002, 23(4): 47~52.
    72.熊正琴,邢光熹,鹤田治雄,等.种植夏季豆科作物对旱地氧化亚氮排放贡献的研究.中国农业科学, 2002, 35(9): 1104~1108.
    73.徐阳春,沈其荣,冉炜.长期免耕与施用有机肥对土壤微生物生物量碳、氮、磷的影响.土壤学报, 2002, 39(1): 89~96.
    74.徐阳春,沈其荣,雷宝坤.水旱轮作下长期免耕和施用有机肥对某些肥力性状的影响.应用生态学报, 2000, 11(4): 549~552.
    75.许迪, Schmid R, Mermoud A.耕作方式对土壤水动态变化及夏玉米产量的影响.农业工程学报, 1999, 15(3): 101~106.
    76.杨昕,王明星,黄耀.地-气间碳通量气候响应的模拟Ⅰ.近百年来气候变化.生态学报, 2002, 22(2): 270~277.
    77.杨学明,张晓平,方华军,等.北美保护性耕作及其对中国的影响.应用生态学报, 2004, 15(2): 335~340.
    78.易志刚,蚁伟民,周国逸,等.鼎湖山三种主要植被类型土壤碳释放研究.生态学报, 2003, 23(8): 1673~1678.
    79.苑学霞,褚海燕,林先贵.土壤微生物生物量和呼吸强度大气CO_2浓度升高的响应.植物营养与肥料学报, 2005, 11(4): 564~567.
    80.岳进,黄国宏,梁巍,等.不同水分管理下稻田土壤CH_4和N_2O排放与微生物菌群的关系.应用生态学报, 2003, 14(12): 2273~2277.
    81.曾江海,王智平.华北半湿润区土壤有机质分解与积累特征.土壤肥料, 1996, (4): 1~4.
    82.张福锁,崔振岭,王激清,等.中国土壤和植物养分管理现状与改进策略植物学通报. 2007, 24 (6): 687~694.
    83.张海林,高旺盛,陈阜,等.保护性耕作研究现状、发展趋势及对策.中国农业大学学报, 2005, 10(1): 16~20.
    84.张金波,宋长春.土地利用方式对土壤碳库影响的敏感性评价指标.生态环境, 2003, 12(4): 500~504.
    85.张秀君.土壤N_2O产生的微生物过程.沈阳教育学院学报, 2005, 7(1): 129~131.
    86.张雪松,申双和,李俊.华北平原冬麦田土壤CH_4的吸收特征研究.南京气象学院学报, 2006, 29(2): 181~188.
    87.张振贤,华珞,尹逊霄,等.农田土壤N_2O的发生机制及其主要影响因素.首都师范大学学报:自然科学版, 2005, 26(3): 114~120.
    88.张志国,徐琪, Blevins R L, et al.长期秸秆覆盖免耕对土壤某些理化性质及玉米产量的影响.土壤学报, 1998, 35(3): 384~391.
    89.郑循华,王明星,王跃思,等.华东稻田CH_4和N_2O排放.大气科学, 1997, 21(2): 231~237.
    90.中国国家发展和改革委员会.中国应对气候变化国家方案.北京:中国环境科学出版社, 2007, 4~5.
    91.周存宇,周国逸,王迎红,等.鼎湖山针阔叶混交林土壤呼吸的研究.北京林业大学学报, 2005, 27(4): 23~27.
    92.周萍,张旭辉,潘根兴.长期不同施肥对太湖地区黄泥土总有机碳及颗粒态有机碳含量及深度分布的影响.植物营养与肥料学报, 2006, 12 (6): 765~771.
    93.周萍,潘根兴,李恋卿,等,南方典型水稻土长期试验下有机碳积累机制V.碳输入与土壤碳固定.中国农业科学, 2009, 42(12): 4260~4268.
    94.周涛,史培军,王绍强.气候变化及人类活动对中国土壤有机碳储量的影响.地理学报, 2003, 58(5): 727~734.
    95.朱培立,黄东迈,余晓鹤,等. 14C标记秸杆和根茬在淹水及旱地土壤中的矿化特征.土壤通报, 1994, 25(7): 67~70.
    96. Andersen M K, Jensen L S. Low soil temperature effects on short-term gross N mineralization-immobilization turnover after incorporation of a green manure. Soil Biology and Biochemistry, 2001, 33: 511~521.
    97. Anderson J M. Soil and climate change. Adv Ecol Res, 1992, 22: 188~210.
    98. Arnold K Von, Weslien P, Nilsson M, et al. Fluxes of CO_2, CH_4 and N_2O from drained coniferous forests on organic soils. Forest Ecology and Management, 2005, 210(1-3): 239~254.
    99. Baggs E M, Blum H. CH_4 oxidation and emissions of CH_4 and N_2O from Lolium perenne swards under elevated atmospheric CO_2. Soil Biology&Biochemistry, 2004, 36(4): 713~723.
    100. Belanger G, Richards J E, Angers D A. Longterm fertilization effectson soil carbon under permanent swards. Can J Soil Sci, 1999, 79: 99~102.
    101. Boucher O, Haigh J, Hauglustaine D, et al. Radiative forcing of climate. In: Climate Change, IPCC Scientific Assessment 2001. Cambridge: Cambridge University Press., 2001. 388~389.
    102. Bowman R A, Vigil M F, Nielsen D C, et al. Soil organic matter changes in intensively cropped dryland systems. Soil Sci Soc Am J, 1999, 63: 186~191.
    103. Campbell C A, Zentner R P, Liang B C, et al. Organic C accumulation in soil over 30 year in semiarid southwesternSaskatchewan-Effect of crop rotations and fertilizers. Can J Soil Sci, 2000, 80: 179~192.
    104. Campbell C A, Mconkey B G, Zentner R P, et al. Tillage and crop rotation effects on soil organic C and N in a course-textured Typic Haploboroll in southwestern Saskatchewan. Soiland Tillage Research, 1996, 37(1): 3~14.
    105. Campbell C A, Thomas A G, Biederbeck V O, et al. Converting from no-tillage to pre-seeding tillage: Influence on weeds, spring wheat grain yields and N, and soilquality. Soil andTillage Research, 1998, 46: 175~185.
    106. Campbell C A, Biederbeck V O, Zentner R P, et al. Effect of crop rotations and cultural practices on soil organic matter, microbial biomass and respiration in a thin Black Chernozem. Can J Soil Sci, 1991, 71: 363~376.
    107. Chadwick O A, Amundson R. Rapid exchangebetween soil carbon and atmospheric carbon dioxide driven bytemperature change. Science, 1996, 272: 393~396.
    108. Chimner R A, Cooper D J. Influence of water table levels on CO_2 emissions in a Colorado subalpine fen: an in situ microcosm study. Soil Biology & Biochemistry, 2003, 35(3): 345~351.
    109. Conant R T, Paustian K, Elliot E T. Grassland management and conversion into grassland: Effects on soil carbon. Ecol Appl, 2001, 11: 343~355.
    110. Dalal R C, Chan K Y. Soil organic matter in rainfed cropping systems of the Australian cerealbelt. Australian Journal of Soil Research, 2001, 39: 435~464.
    111. Dick W A. Organic carbon, nitrogen, and phosphorus concentrations and pH in soil profiles as affected tillage intensity. Soil Science Society of America Journal, 1983, 47: 102~107.
    112. Dunfield P. Methane production and consumption in temperate and subarctic peat soils: response to temperature and pH. Soil Biol Biochem, 1993, 25(3): 321~326.
    113. Food &Agriculture Organization (FAO). Soil Carbon Sequestration for Improved Land Management. World Soil Resources Reports, No.96, ISSN 0532-0488. Rome, Italy: FAO, 2001.
    114. Ghuman S, Sur H S. Tillage and residue management effects on soil properties and yields of rainfed maize and wheat in a subhumid subtropical climate. Soil and Tillage Research, 2001, 58(1): 1~10.
    115. Gregorich E G, Rochette P, Vandenbygart A J, et al. Greenhouse gas contributions of agricultural soils and potential mitigation practices in Eastern Canada. Soil & Tillage Research, 2005, 83(1): 53~72.
    116. Gregorich E G, Rochette P, Hopkins D W, et al. Tillage-induced environmental conditions in soil and substrate limitation determine biogenic gas production. Soil Biology & Biochemistry, 2006, 38(9): 2614~2628.
    117. Grogan P, MIChelsen A, Ambus P, et al.. Freeze-thaw regime effects on carbon and nitrogen dynamics in sub-arctic heath tundra mesocosms. Soil Biology & Biochemistry, 2004, 36(4): 641~654.
    118. Halvorson A D, Wienhold B J, BlackA L. Tillage, Nitrogen, and Cropping System Effects on Soil Carbon Sequestration. Soil Science Society of American Journal, 2002, 66: 906~912.
    119. Houghton R A. The annual net flux of carbon to the atmosphere from changes inland use 1850~1990. Tellus, 1999, 51B: 298~313.
    120. Huang X X, Gao M, Wei C F, et al. Tillage effects on organic carbon in a purple paddy soil. Pedosphere, 2006, 16 (5): 660~667.
    121. IPCC, Climate Change 1995, Summary for policymakers: the science of climate change, IPCC Second Assess Report, 1995, 21~24.
    122. IPCC Report: Climate Change. Working Group I, Cambridge University Press, U. K. 1995.
    123. IPCC. Climate change 2001: The Scientific Basis. Contribution of Work Group I to the Third Assessent Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, 2001.
    124. Jacinthe P A, Lal R. Labile carbon and methane uptake as affected by tillage intensity in a Mollisol. Soil&Tillage Research, 2005, 80(1-2): 35~45.
    125. Jones S K, Rees R M, Skiba U M, et al. Greenhouse gas emissions from managed grassland. Global and Planetary Change, 2005, 47(2-4): 201~211.
    126. Joseph O D, Schjonning P, Sibbesen E, et al. Aggregation and organic matter fractions of three Nigerian soils as affected by soil disturbance and incorporation of plant material. Soil and Tillage Research, 1999, 50: 105~114
    127. King J A, Bradley R I, Harrison R, Carter A D. Carbon sequestration and saving potential associated with changes to the management of agricultural soils in England. Soil Use and Management, 2004(20): 394~402.
    128. Knops J M H, Tilman D. Dynamics of soil nitrogen and carbon accumulation for 61 years after agricultural abandonment. Ecolgy, 2000, 81(1): 88~89.
    129. Koponen H T, Flojt L, Martikainen P J. Nitrous oxide emissions from agricultural soils at low temperatures: a laboratory microcosm study. Soil Biology & Biochemistry, 2004, 36(5): 757~766.
    130. Ladd J N, Oades J M, Amato M. Microbial biomass formed from 14C, 15N-labelled plant material decomposing in soils inthe field. Soil Biology and Biochemistry, 1981, 13: 119~126.
    131. Lai R. World soils and the greenhouse effect. Global Change Newsletter, 1999, 37: 4~5.
    132. Lal R, Griffin M, Apt J. Managing soil carbon. Science, 2004a, 304(4):393.
    133. Lal R, Kimble J M. Conservation tillage for carbon sequestration. Nutrient Cycling in Agroecosystems, 1997, 49: 243~253.
    134. Lal R, Logan T J, Fausey N R. Long-term tillage effects on a Mollic Ochraqualf in northwest Ohio III. soil nutrient profile. Soil Tillage Res, 1990, 15: 371~382.
    135. Lal R. Soil C sequestration in China through agricultural intensification and restoration of degraded and decertified soils. Land Degradation & Development,2002, 13: 469~478.
    136. Lal R. Soil carbon sequestration impacts on global climate change and food security. Science, 2004b, 304(11): 1623~1627.
    137. Lee J, Six J, King A P. Tillage and field scale controls on greenhouse gas emissions. Journal of Environmental Quality, 2006, 35(3): 714~725.
    138. Malhi S S, Brandt S, Gill K S. Cultivation and grassland type effects on light fraction and total organic C and N in a Dark Brown Chernozemic soil. Can J Soil Sci, 2003, 83: 145~153.
    139. Malhi S S, Nyborg M. Influence of various factors on the relative effectiveness of autumn-versus spring-applied N. Bajwa, M.S. Proceedings of the International Symposium on Nutrient Management for Sustainable Productivity, Vol.1. Ludhiana, Punjab, India: Department of Soils, Punjab Agricultural University, 1992, 355~365.
    140. Malhi S S, O’Sullivan P A. Soil temperature, moisture and compaction under zero and conventional tillage in central Alberta. Soil Tillage Res, 1990, 17: 167~172.
    141. Malhi S S, Harapiak J T, Nyborg M, et al. Autumn and spring applications of ammonium nitrate and urea to bromegrass influence total and light fraction organic C in a Black Chernozem soil. Can J Soil Sci, 2002, 82: 211~217.
    142. Malhi S S, Harapiak J T, Nyborg M, et al. Total and light fraction organic C in a thin Black Chernozemic grassland soil as affected by 27 annual applications of six rates of fertilizer N. Nutrient Cycling Agroecosystems, 2003, 66: 33~41.
    143. Maljanen M, Liikanen A, Silvola J, et al. Nitrous oxide emissions from boreal organic soil under different land-use. Soil Biology & Biochemistry, 2003, 35(5): 1~12.
    144. McCarl B A, Metting F B, Rice C. Soil carbon sequestration. Climatic Change, 2007, 80: 1~3.
    145. Metay A L, MoreiraJ A A, Bernoux M, et al. Storage and forms of organic carbon in a no-tillage under cover crops system on clayey Oxisol in dryland rice production (Cerrados, Brazil). Soil and Tillage Research, 2007, 94: 122~132.
    146. Miko U F K. The temperature dependence of SOM decomposi-tion and the effect of global warming on soil organic C storage. Soil Biology and Biochemistry, 1995, 27(6): 753~760.
    147. Mosier A R, Delgado J A, Keller M. Methane and nitrous oxide fluxes in an acid Oxisol in western Puerto Rico: effects of tillage,l iming and fertilization. Soil Biology and Biochemistry, 1998, 30(14): 2087~2098.
    148. Nyborg M, Solberg E D, Malhi S S, et al., Fertilization N, ccrop residue, and tillage alter soil C and N content in a decade. Advance in Soil Science. Boca Raton, FL: Lewis Publisher, CRC Press, 1995.93~100.
    149. Nyborg M, Malhi S S, Solberg E D, et al. Carbon storage and light fraction C in a grassland Dark Gray chernozem soil as influenced by N and S fertilization. Can J Soil Sci, 1999, 79: 317~320.
    150. Orchard V A, Cook F J. Relationship between soil respiration and soil moisture. Soil Biol Biochem, 1983, 15: 447~453.
    151. Pan G X, Li L Q, Wu L S, et al. Storage and sequestration potential of topsoil organic carbon in China’s paddy soils. Global Change Biology, 2003, 10: 79~92.
    152. Paustain K, Bobertson G P, Elliott E T. Management impact on carbon storage and gas fluxes (CO_2, CH_4) in mid-latitude cropland. Journal of Environmental Quality, 1996, 25(1): 178-183.
    153. Paustian K, Andren O, Janzen H, et al. Agricultural soil as a C sink to offset CO_2 emissions. Soil Use and Management, 1997, 13: 230~244.
    154. Ponnanperuma F N. Straw as source of nutrients for wetland rice. Organic Matter and Rice. IRRI publication, 1984. 117~136.
    155. Porter G S, Bajita-locke J B, Hue NV, et al. Manganese solubility and phytotoxicity affected by soil moisture, oxygen levels, and green manure additions. Communications in Soil Science and Plant Analysis, 2004, 35(1-2): 99~116.
    156. Raun W R, Johnson G V, Phillips S B, et al. Effect of long-term N fertilization on soil organic C and total N in continuous wheat under conventional tillage in Oklahoma. Soil and Tillage Research, 1998, 47: 323~330.
    157. Reeder J D, Schuman G E, Bowman R A. Soil C and N changes on conservation reserve program lands in the Central Great Plains. Soil and Tillage Research, 1998, 47: 339~349.
    158. Reicosky D C, Archer D W. Moldboard plow tillage depth and short-term carbon dioxide release. Soil&Tillage Research, 2007, 94(1): 109~121.
    159. Richard D. Chronic nitrogen additions reduce total soil respiration and microbial respiration in temperate forest soils at the Harvard Forest Bowden. Forest Ecology and Management, 2004, 196: 43~56.
    160. Roscoe R, Buurman P. Tillage effects on soil organic matter in density fractions of a Cerrado Oxisol. Soil and Tillage Research, 2003, 70: 107~119.
    161. Rudaz A O, Walti E, Kyburz G, et al. Temporal variation in N_2O and N2 fluxes from a permanent pasture in Switzerland in relation to management, soil water content and soil temperature. Agriculture Ecosystem & Environment, 1999, 73(1): 83~91.
    162. Schimel D S, Braswell B H, Holland E A, et al. Climatic, edaphic and biotic controls over storage and turnover of carbon in soils. Global Biogeochemical Cycle, 1994, 8: 279~293.
    163. Sheppard S K, Lloyd D. Diurnal oscillations in gas production (O2, CO_2, CH_4 and N_2)in soil monoliths. Biological Rhythm Research, 2002, 33(5):577~591.
    164. Sherrod L A, Peterson G A, Westfall D G, et al. Cropping Intensity Enhances Soil Organic Carbon and Nitrogen in a No-Tillage Agroecosystem. Soil Sci Soc Am. J, 2003, 67: 1533~1543.
    165. Singh J S, Gupta S R. Plant decomposition and soil respiration in terrestrial ecosystems. Bot Rev, 1977, 43: 449~528.
    166. Smith P, Martino D, Cai Z, et al. Policy and technological constraints to implementation of greenhouse gas mitigation options in agriculture. Agriculture, Ecosystem & Environment, 2007, 118: 6~28
    167. Song Changchun, Wang Yuesi, Wang Yiyong, et al. Emission of CO_2, CH_4 and N_2O from freshwater marsh during freeze-thaw period in Northeast of China. Atmospheric Environment, 2006, 40(35): 6879~6885.
    168. Subke J A, Reichstein M, Tenhunen J D. Explaining temporal variation in soil CO_2 efflux in a mature spruce forest in Southern Germany. Soil Biology & Biochemistry, 2003, 35(11): 1467~1483.
    169. Wang Z P, Han X G, Li L H, et al. Methane emission from small wetlands and implications for semiarid region budgets. Journal of Geophysical Research-Atmospheres, 2005, 110(D13): Art. No. D13304.
    170. West T O, Post W M. Soil organic carbon sequestration rates by tillage and crop rotation: A global data analysis. Soil Science Society of America Journal, 2002, 66: 1930~1946.
    171. Yu K W, Chen G X, Xu H, et al. Rice yield reduction by chamber enclosure: a possible effect on enhancing methane production. Biology and Fertility of Soils, 2006, 43(2): 257~261.
    172. Yue J, Shi Y, Ligang W, et al. Methane and nitrous oxide emissions from rice field and related microorganism in black soil, northeastern China. Nutrient Cycling in Agroecosystem, 2005, 73(2-3): 293~301.
    173. Zhang Jinbo, Song Changchun, Yang Wenyan. Cold season CH_4, CO_2 and N_2O fluxes from freshwater marshes in northeast China. Chemosphere, 2005, 59(11): 1703~1705.
    174. Zhang W, Yu Y Q, Sun W J, et al. Simulation of soil organic carbon dynamics in Chinese rice paddies from 1980 to 2000. Pedosphere, 2007, 17 (1): 1~10.
    175. Zhou Cunyu. Diurnal variations of greenhouse gas fluxes from mixed broad leaved and coniferous forest soil in Dinghushan.China Forestry Science and Technology, 2005, 4(2):1~7.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700