用户名: 密码: 验证码:
特定基因甲基化研究方法建立及LEAFY基因甲基化与早实枳阶段发育关系研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
果树大多为多年生木本植物,从种子播种至首次开花结实要经历漫长的童期。童期的最基本特征是实生苗不具备开花能力。多年生木本植物由于个体体积大、童期长、遗传背景复杂等特点,极大地阻碍了木本植物,特别是一些以收获果实、花和种子为主的果树和经济林木的遗传学研究、育种进程和新品种推广。因此,研究木本植物成花分子机理、提早和调控果树成花成为果树学研究中的一个重要课题。早实枳为普通枳的一个实生变异,童期仅1-2年,与普通枳相比大大缩短,为木本植物童期发育研究提供了极好的材料。
     果树成花研究,早期主要集中于生理生化基础,环境因子和栽培技术措施对实生苗成花的影响,对于果树开花的分子机制及其遗传控制的研究较少,在果树成花的表观遗传学研究方面也鲜有报道。DNA的甲基化是真核生物的表观遗传调控的重要途径。建立植物基因甲基化研究方法、开展相关基因在阶段发育进程中甲基化与去甲基化的变化与发育进程的关系研究,有助于我们进一步揭示植物发育表观调控的机制,为进一步实现缩短童期和花期调控打下基础。
     本研究通过不同浓度的5-AzaC对早实枳种子进行去甲基化处理,观察植株生长状况,分析LFY、TFL等成花相关基因表达量变化,采用生物信息学方法对这些成花相关基因进行了甲基化区域扫描,针对有CpG岛的LFY基因,以亚硫氢酸钠修饰测序的方法对不同发育时期早实枳幼叶中LFY基因甲基化状态进行了比较。主要结果如下:
     1.通过0、250、500、1000μM浓度的5-AzaC对培养皿中对早实枳种子连续处理15天后,观察发现随着5-AzaC浓度的加大,种子的生长发育减缓,根的发育显著被抑制。处理15天后的早实枳种子实生苗转入营养土中生长20天以后观察,发现250μM 5-AzaC处理的种子的根和茎的发育均有所减缓,部分叶的发育出现畸形;而500μM 5-AzaC处理后种子的根,茎,叶的生长都出现明显的抑制,并表现畸形;1000μM 5-AzaC处理的种子和20天前相比较几乎没有生长,生长被完全抑制。
     2.从5-AzaC处理的早实枳叶片中提取RNA,用Real-time PCR方法分析了5个成花相关基因的表达水平,发现除FT相对表达量是随着5-AzaC处理浓度的增加而逐渐增加外,TFL、LFY、AP1、FLC四个基因的相对表达量都在250μM浓度时达到最大,处理浓度继续升高,基因的相对表达量下降。表明去甲基化处理对基因的转录有影响,大多数基因在低浓度去甲基化处理下,转录水平提高,而高浓度去甲基化会导致基因转录水平下降。
     3.使用Methyl Primer Express和EMBOSS CpG Plot Tool软件,依照新旧两种CpG岛的定义,对早实枳中分离得到的5个成花相关基因TFL、LFY、AP1、FLC、FT的基因及启动子序列进行甲基化相关的生物信息学分析,然而仅预测到LFY序列中存在CpG岛。
     4.借鉴医学研究中的亚硫氢酸钠修饰测序方法(Bisulfite Sequencing PCR),通过选择设计引物、优化反应条件,并采用巢式PCR方法,建立了柑橘类植物特定基因甲基化研究方法,并成功地应用于LFY基因的甲基化分析。
     5.采用改良的亚硫氢酸钠修饰测序方法(Bisulfite Sequencing PCR),对早实枳不同发育阶段LFY基因CpG岛区域和非CpG岛区域的甲基化状态进行了比较。发现LFY 5'-UTR非CpG岛区域的甲基化水平很低,且在不同发育阶段之间没有明显差别;在CpG岛区域,童期时存在一定程度的甲基化并且特定的位点分布规律,在成年期部分位点发生了去甲基化,表明去甲基化参与了LFY在发育进程中的表达调控。
     本研究对木本植物特定基因在不同发育进程中甲基化变化进行了分析,研究结果对研究木本植物发育调控分子机理可能有一定的参考意义。
Most fruit trees are woody perennial plants which have a long period of juvenile phase before flowering. A certain characteristic of juvenile phase is the seeding does not have a capability of flowering. Owing to the characteristics such as large individual, long period of juvenile phase and complex genetic backgrounds heavily impede genetic researches and breeding process in woody perennial plants, especially in fruit trees and economic forestry. Consequently, it is an important research area to study molecular mechanism in flowering and regulate the time to flowering in fruit trees. Precocious trifoliate orange is a mutant of trifoliate orange, which flowering time largely shorten to only one or two years. Therefore, precocious trifoliate orange is a suitable material for the molecular and genetic research on juvenile phase of woody perennial plants.
     Most researches on the mechanism of fruit tree flowering mainly focus on physiological, environmental factors or cultivation techniques at the initial stages, however, the molecular and genetic mechanisms are still not understand clearly, even few researches reported the epigenetic mechanisms of fruit tree flowering. DNA methylation is an important aspect of epigenetic regulation in eukaryotes. Establish a protocol for analyzing DNA methylation status in plant and study on the relationship between related genes methylation stauts and developmental phase are both better for us to explore the epigenetic mechanism in plant and lies a foundation for shortening juvenile phase.
     According to the phenotypic characteristics of precocious trifoliate orange mutant seedlings Treated by different 5-AzaC concentrations, we analyzed LFY, TEL etc. related flowering genes' relative expression levels in precocious trifoliate orange which treated by different 5-AzaC concentration. Then, we employed bioimformatic soft wares to analyze these genes in order to find whether these genes contain a CpG island. Fortunately, there is a CpG island found in LFY gene sequence. Therefore, we analyses cytosine methylation status in LFY CpG island DNA sequence from precocious trifoliate orange mutant in juvenile and adult phase by using bisulfate sequencing PCR method. The main results are as follows:
     1. Precocious trifoliate orange seeds continuous treated by 0, 250, 500, 1000μM 5-AzaC for 15 days in the dark. The results showed that the seeds developed slower with increasing 5-AzaC concentrations, especially for the root development. Then the seeds transplanted in the soil after 15 days treatment. After the seedlings grew in the soil for 20 days in the describe condition, the results showed that the root of seedlings treated by 250μM 5-AzaC grew slowly compared to the control, and the seedlings showed several aberrant leaves; the root and stem development of seedlings were obvious inhibited by :500μM 5-AzaC treatment, and most of leaves exhibit aberrant phenotype; the growth of 1000μM 5-AzaC treated seeding nearly standstill compared with 20 days ago.
     2. Extracted RNA from the leaves of different 5-AzaC concentrations treatment, and then analyzed five flowering genes' relative expression levels by using Real-time PCR. The results showed that FT relative expression level increased with the 5-AzaC concentrations. While, TFL, LFY, API, FLC showed highest relative expression levels in 250μM treatment, and these genes relative expression levels sharply decreased with higher concentrations. This means that demethylation treatment influences these genes expression, and most genes show high expression level in low demethylation treatment. However, the expression level would be decreased with higher concentration.
     3. According to Methyl Primer Express and EMBOSS CpG Plot Tool soft wares analysis, we adopted both the old and new CpG island criteria to search and analyze flowering genes TFL, LFY, API, FLC, FT that isolated from precocious trifoliate orange. The results showed that only LFY sense chain DNA sequence contained a CpG island.
     4. According to the references which successful analyzed gene sequence methylation status in mammalian, we optimized the modification protocol and adopted nested PCR by selecting proper primers to establish the bisulfite sequencing PCR protocol for analyzing DNA sequence methylation in citrus. This protocol has been successfully used for analyzing IFF DNA sequence methylation status.
     5. To compare the methylation status of LFY CpG region with 5'-UTR at both juvenile and adult phase of precocious trifoliate orange by using bisulfite sequencing PCR, we found that LFY 5'-UTR which not in CpG island region showed unmethylation and no differences in different developmental phase. While, there was a low degree methylation status in CpG island region at juvenile phase and the lower degree methylation happened in the same region at adult phase, which meant demethylation might be regulate LFY gene expression from juvenile transition to adult phase.
     The work is the first time to study on a certain gene's methylation status in the different developmental stages in woody perennial plants; the results might provide some evidence for further study.
引文
1.陈大明,金勇丰,张上隆.柑桔LEAFY同源基因片断基因及特性研究.园艺学报,2001,28(4):295-300
    2.刁现民,孙敬三.植物体细胞无性系变异的细胞学和分子生物学研究进展.植物学通报,1999,16(4):372-377
    3.葛才林,刘向农.重金属对水稻和小麦DNA甲基化水平的影响.植物生理与分子生物学学报,2002,28(5):363-368
    4.葛剑徽.焦磷酸测序技术的原理及应用.科技资讯,2006
    5.郝玉金,邓秀新.逆境处理和DNA甲基化影响柑橘体细胞胚发生.植物学报,2002,44(6):673-677
    6.洪柳,邓秀新.应用MSAP技术对脐橙品种进行DNA甲基化分析.中国农业科学,2005,38(11):2301-2307
    7.华志华,黄大年.植物转基因沉默研究与对策.生命科学,1999,11(2):51-53
    8.刘悦萍,赵晓萌,宫飞.转基因植物中外源基因沉默机制的研究进展.中国农学通报,2005,21(4):80-83
    9.陆光远,伍晓明,陈碧云,高桂珍,许鲲,李响枝.油菜种子萌发过程中DNA甲基化的MSAP分析.科学通报,2005,50(24):2750-2756
    10.南楠,曾凡锁,詹亚光.植物DNA甲基化及其研究策略.植物学通报,2008,25(1):102-111
    11.王利琳,梁海曼,庞基良,朱睦元.拟南芥LEAFY基因在花发育中的网络调控及其生物学功能.遗传,2004,26(1):137-142
    12.朱祝军,李梅兰,曾广文.5-氮胞苷(5-AzaC)和赤霉素(GA3)对白菜开花的影响.上海交通大学学报:农业科学版,2002,20(2)
    13.Antequera F,Bird A.Number of CpG islands and genes in human and mouse.Proceedings of the National Academy of Sciences,1993,90(24):11995-11999
    14.Ashikawa I.Gene-associated CpG Islands and the Expression Pattern of Genes in Rice.DNA Reasearch,2002,9(4):131-134
    15.Ashikawa I.Gene-associated CpG islands in plants as revealed by analyses of genomic sequences.Plant Journal,2001,26(6):617-625
    16.Baurens FC,Nicolleau J,Legavre T,Verdeil JL,Monteuuis O.Genomic DNA methylation of juvenile and mature acacia mangium micropropagated in vitro with reference to leaf morphology as a phase change marker.Tree Physiology, 2004,24(4):401-407
    
    17. Bell AD, Bryan A. Plant form: an illustrated guide to flowering plant morphology. Timber Press, 2008
    
    18. Bender J, Fink GR. Epigenetic control of an endogenous gene family is revealed by a novel blue fluorescent mutant of Arabidopsis. Current Biology, 1999, 9(16):617-619
    
    19. Bhagwat AS, Roberts RJ. Genetic analysis of the 5-azacytidine sensitivity of Escherichia coli K-12. Am Soc Microbiol, 1987,169(4): 1537-1546.
    
    20. Bingham ET, Groose RW, Woodfield DR, Kidwell KK. Complementary gene interactions in alfalfa are greater in autotetraploids than diploids. Crop Science, 1994,34(4):823
    
    21. Birchler JA, Auger DL, Riddle NC. In search of the molecular basis of heterosis. Plant Cell, 2003,15(10):2236-2239
    
    22. Bird AP. CpG-rich islands and the function of DNA methylation. Nature, 1986, 321(6067):209-213
    
    23. Blazquez, M.. Flower development pathways. Journal of Cell Science. 2000, (13)20:3547-8
    
    24. Blazquez, Miguel A. 2005. The Right Time and Place for Making Flowers. Science. 309:1024-1025
    
    25. Bock C, Reither S, Mikeska T, Mikeska T, Paulsen M, Walter J, Lengauer, T. BiQ Analyzer: visualization and quality control for DNA methylation data from bisulfite sequencing. Bioinformatics, 2005,21:4067-4068
    
    26. Boss PK, Bastow RM, Mylne JS, Dean C. Multiple pathways in the decision to flower: enabling, promoting, and resetting. Plant Cell, 2004,16(9001): 18-31
    
    27. Bowman JL. Control of flower development in Arabidopsis thaliana by APETALA1 and interacting genes. Development, 1993,119(3):721-743
    
    28. Bradley, D., Ratcliffe, O., Vincent, C., Carpenter, R., and Coen, E. 1997. Inflorescence commitment and architecture in Arabidopsis. Science. 275, 80-83
    
    29. Brown JCL, De Decker MM, Fieldes MA. A comparative analysis of developmental profiles for DNA methylation in 5-azacytidine-induced early-flowering flax lines and their control. Plant Science, 2008,175(3):217-225
    
    30. Burn JE, Bagnall DJ, Metzger JD, Dennis ES, Peacock WJ. DNA methylation, vernalization, and the initiation of flowering. Proceedings of the National Academy of Sciences, 1993,90(1):287-291
    
    31. Cai XL, Wang ZY, Xing YY, Zhang JL, Hong MM. Aberrant splicing of intron 1 leads to the heterogeneous 5'-UTR and decreased expression of waxy gene in rice cultivars of intermediate amylose content. Plant Journal, 1998, 14(4):459-465
    
    32. Chakrabarty D, Yu KW, Paek KY. Detection of DNA methylation changes during somatic embryogenesis of Siberian ginseng (Eleuterococcus senticosus). Plant science, 2003,165(1):61-68
    
    33. Chan SWL, Henderson IR, Jacobsen SE. Gardening the genome: DNA methylation in Arabidopsis thaliana. Nature Reviews Genetics, 2005, 6(5):351-360
    
    34. Chandler VL, Walbot V. DNA modification of a maize transposable element correlates with loss of activity. Proceedings of the National Academy of Sciences, 1986, 83(6):1767-1771
    
    35. Chen DC, Saarela J, Nuotio I, Jokiaho A, Peltonen L, Palotie A. Comparison of GenFlex Tag array and Pyrosequencing in SNP genotyping. Journal of Molecular Diagnostics, 2003, 5(4):243-249
    
    36. Coen ES, Meyerowitz EM. The war of the whorls: genetic interactions controlling flower development. Nature, 1991,353(6339):31-37
    
    37. Cubas P, Vincent C, Coen E. An epigenetic mutation responsible for natural variation in floral symmetry. Nature, 1999,401 (6749): 157-161
    
    38. Dean, Yaron Y. Levy and Caroline. 1998. The Transition to Flowering. The Plant Cell. 10,1973-1989
    
    39. Ebinger M, Senf L, Wachowski O, Scheurlen W. Promoter methylation pattern of Caspase-8, P16 INK4A, MGMT, TIMP-3, and E-cadherin in medulloblastoma. Pathology & Oncology Research, 2004,10(1):17-21
    
    40. Endo, T., T. Shimada, H. Fujii, Y. Kobayashi, T. Araki and M. Omura. Ectopic expression of an FT homolog from Citrus confers an early flowering phenotype on trifoliate orange (Poncirus trifoliata L. Raf.). Transgenic Research, 2005, 145, 703-712
    
    41. Fieldes MA, Harvey CG. Differences in developmental programming and node number at flowering in the 5-azacytidine-induced early flowering flax lines and their controls. International Journal of Plant Sciences, 2004,165(5):695-706
    
    42. Fieldes MA, Schaeffer SM, Krech MJ, Brown JCL. DNA hypomethylation in 5-azacytidine-induced early-flowering lines of flax. Theoretical and Applied Genetics, 2005,111(1):136-149
    
    43. Finnegan EJ, Genger RK, Kovac K, Peacock WJ, Dennis ES. DNA methylation and the promotion of flowering by vernalization. Proceedings of the National Academy of Sciences, 1998, 95(10):5824-5829
    
    44. Finnegan EJ, Genger RK, Peacock WJ, Dennis ES. DNA methylation in plants. Annual Reviews, 1998,49:223-247
    
    45. Finnegan EJ, Kovac KA, Jaligot E, Sheldon CC, Peacock WJ, Dennis ES. The downregulation of FLOWERING LOCUS C (FLQ expression in plants with low levels of DNA methylation and by vernalization occurs by distinct mechanisms. Plant Journal, 2005,44(3):420-432
    
    46. Finnegan EJ, Peacock WJ, Dennis ES. Reduced DNA methylation in Arabidopsis thaliana results in abnormal plant development. Proceedings of the National Academy of Sciences, 1996, 93(16):8449-8454
    
    47. Frommer M, McDonald LE, Millar DS, Collis CM, Watt F, Grigg GW, Molloy PL, Paul CL. A Genomic Sequencing Protocol That Yields a Positive Display of 5-Methylcytosine Residues in Individual DNA Strands. Proceedings of the National Academy of Sciences, 1992, 89(5): 1827-1831
    
    48. Gardiner-Garden M, Frommer M. CpG islands in vertebrate genomes. Journal of Molecular Biology, 1987,196(2):261-282
    
    49. Goll MG, Bestor TH. Eukaryotic cytosine methyltransferases. Annual Review of Biochemistry, 2005, 74:481-514
    
    50. Grunau C, Clark SJ, Rosenthal A. Bisulfite genomic sequencing: systematic investigation of critical experimental parameters. Nucleic Acids Research, 2001, 29(13):E65
    
    51. Grunau C, Schattevoy R, Mache N, Rosenthal A. MethTools-a toolbox to visualize and analyze DNA methylation data. Nucleic Acids Research, 2000, 28(5):1053
    
    52. Guo HS, Lopez-Moya JJ, Garcia JA. Mitotic stability of infection-induced resistance to plum pox potyvirus associated with transgene silencing and DNA methylation. Molecular Plant-Microbe Interactions, 1999,12(2): 103-111
    
    53. Hashida SN, Uchiyama T, Martin C, Kishima Y, Sano Y, Mikami T. The temperature-dependent change in methylation of the Antirrhinum transposon Tam3 is controlled by the activity of its transposase. Plant Cell, 2006, 18(1):104-118
    
    54. Henderson IR, Dean C. Control of Arabidopsis flowering: the chill before the bloom. Development, 2004,131(16):3829-3838
    
    55. Hetzl J, Foerster AM, Raidl G, Scheid OM. CyMATE: a new tool for methylation analysis of plant genomic DNA after bisulphite sequencing. Plant Journal, 2007, 51(3):526-536
    
    56. Horvath E, Szalai G, Janda T, Paldi E, Racz I, Lasztity D. Effect of vernalisation and 5-azacytidine on the methylation level of DNA in wheat (Triticum aestivum L, cv. Martonvasar 15). Plant science, 2003,165(4):689-692
    
    57. Hsiao WL, Gattoni-Celli S, Kirschmeier P, Weinstein IB. Effects of 5-azacytidine on methylation and expression of specific DNA sequences in C3H 10T1/2 cells. Molecular and Cellular Biology. 1984,4(4):634-641
    
    58. Iyer LM, Kumpatla SP, Chandrasekharan MB, Hall TC. Transgene silencing in monocots. Plant Molecular Biology, 2000,43(2):323-346
    
    59. Jablonka E, Lamb MJ. The inheritance of acquired epigenetic variations. Journal of theoretical biology, 1989,139(1):69-83
    
    60. Jacobsen SE, Meyerowitz EM. Hypermethylated SUPERMAN epigenetic alleles in Arabidopsis. Science, 1997, 277(5329): 1100-1103
    
    61. Jacobsen SE, Sakai H, Finnegan EJ, Cao X, Meyerowitz EM. Ectopic hypermethylation of flower-specific genes in Arabidopsis. Current Biology, 2000, 10(4): 179-186
    62. Jaeger KE, Wigge PA. FT protein acts as a long-range signal in Arabidopsis. Current Biology, 2007,17(12):1050-1054
    
    63. Jofuku, K. D., Boer, B. Montagu, MV. and Okamuro, J. K. Control of Arabidopsis Flower and Seed Development by the Homeotic Gene APETALA2. Plant Cell. 1994,6(9): 1211-1225
    
    64. Johnston JW, Harding K, Bremner DH, Souch G, Green J, Lynch PT, Grout B, Benson EE. HPLC analysis of plant DNA methylation: a study of critical methodological factors. Plant Physiology and Biochemistry, 2005,43(9):844-853
    
    65. Jones PA, Razin A, Cedar H, Riggs AD. DNA methylation: Biochemistry and biological significance. Springer-Verlag New York, 1984
    
    66. Jones PA, Takai D. The role of DNA methylation in mammalian epigenetics. Science, 2001,293(5532):1068-1070
    
    67. Kakutani T, Jeddeloh JA, Flowers SK, Munakata K, Richards EJ. Developmental abnormalities and epimutations associated with DNA hypomethylation mutations. Proceedings of the National Academy of Sciences, 1996, 93 (22): 12406-12411
    
    68. Kakutani T, Kato M, Kinoshita T, Miura A. Control of development and transposon movement by DNA methylation in Arabidopsis thaliana. Cold Spring Harbor Symposia on Quantitative Biology, 2004, 69(1):139-144
    
    69. Kankel MW, Ramsey DE, Stokes TL, Flowers SK, Haag JR, Jeddeloh JA, Riddle NC, Verbsky ML, Richards EJ. Arabidopsis MET1 cytosine methyltransferase mutants. Genetics, 2003, 163(3):1109-1122
    
    70. Karon M, Sieger L, Leimbrock S, Sieger L, Leimbrock S, Finklestein JZ, Nesbit ME, Swaney JJ. 5-Azacytidine: a new active agent for the treatment of acute leukemia. Blood, 1973,42(3):359-365
    
    71. Kato M, Miura A, Bender J, Jacobsen SE, Kakutani T. Role of CG and non-CG methylation in immobilization of transposons in Arabidopsis. Current Biology, 2003,13(5):421-426
    
    72. King GJ. Morphological development in Brassica oleracea is modulated by in vivo treatment with 5-azacytidine. Journal of Horticultural Science, 1995, 70(2):333-342
    
    73. Kishimoto N, Sakai H, Jackson J, Jacobsen SE, Meyerowitz EM, Dennis ES, Finnegan EJ. Site specificity of the Arabidopsis METI DNA methyltransferase demonstrated through hypermethylation of the superman locus. Plant Molecular Biology, 2001,46(2):171-183
    
    74. Kizaki H, Ohnishi Y, Azuma Y, Mizuno Y, Ohsaka F. 1-beta-D- arabinosylcytosine and 5-azacytidine induce internucleosomal DNA fragmentation and cell death in thymocytes. Immunopharmacology, 1992, 24(3): 219-27
    
    75. Kobayashi Y, Kaya H, Goto K, Iwabuchi M, Araki T. A pair of related genes with antagonistic roles in mediating flowering signals. Science, 1999, 286(5446): 1960-1962
    
    76. Kondo H, Miura T, Wada KC, Takeno K. Induction of flowering by 5-azacytidine in some plant species: relationship between the stability of photoperiodically induced flowering and flower-inducing effect of DNA demethylation. Physiologia Plantarum, 2007,131:462-469
    
    77. Kondo H, Ozaki H, Itoh K, Kato A, Takeno K. Flowering induced by 5-azacytidine, a DNA demethylating reagent in a short-day plant, Perilla frutescens var. crispa. Physiologia Plantarum, 2006,127(1):130-137
    
    78. Koornneef M, Alonso-Blanco C, Peeters AJM, Soppe W. Genetic control of flowering time in Arabidopsis. Annual Review of Plant Biology, 1998, 49(1):345-370
    
    79. Kotoda N, Wada M, Komori S, Kidou S, Abe K, Masuda T, Soejima J. Expression pattern of homologues of floral meristem identity genes LFY and AP1 during flower development in apple. American Society for Horticultural Science, 2000,125(4):398-403
    
    80. Kovar ik A, Koukalova B, Bezde k M, Opatrn Z. Hypermethylation of tobacco heterochromatic loci in response to osmotic stress. Theoretical and Applied Genetics, 1997,95(1):301-306
    
    81. Kumaki Y, Oda M, Okano M. QUMA: quantification tool for methylation analysis. Nucleic Acids Research, 2008, 36:170-175
    
    82. Law RD, Suttle JC. Chromatin remodeling in plant cell culture: patterns of DNA methylation and histone H3 and H4 acetylation vary during growth of asynchronous potato cell suspensions. Plant Physiology and Biochemistry, 2005, 43(6):527-534
    
    83. McClintock B. The suppressor-mutator system of control of gene action in maize. Carnegie Inst. Wash. Year Book, 1958:415-429
    
    84. Melquist S, Luff B, Bender J. Arabidopsis PAI gene arrangements, cytosine methylation and expression. Genetics, 1999,153(1):401-413
    
    85. Messeguer R, Ganal MW, Steffens JC, Tanksley SD. Characterization of the level, target sites and inheritance of cytosine methylation in tomato nuclear DNA. Plant Molecular Biology, 1991,16(5):753-770
    
    86. Michaels SD, Amasino RM. FLOWERING LOCUS C encodes a novel MADS domain protein that acts as a repressor of flowering. Plant Cell, 1999, 11(5):949-956
    
    87. Montero LM, Filipski J, Gil P, Capel J, Martinez-Zapater JM, Salinas J. The distribution of 5-methylcytosine in the nuclear genome of plants. Nucleic Acids Research, 1992,20(12):3207-3210
    
    88. Morel JB, Mourrain P, Beclin C, Vaucheret H. DNA methylation and chromatin structure affect transcriptional and post-transcriptional transgene silencing in Arabidopsis. Current Biology, 2000,10(24): 1591-1594
    
    89. Ng HH, Adrian B. DNA methylation and chromatin modification. Current Opinion in Genetics & Development, 1999,9(2):158-163
    
    90. Okamoto H, Hirochika H. Silencing of transposable elements in plants. Trends in Plant Science, 2001, 6(11):527-534
    
    91. Parcy F. Flowering: a time for integration. UBC Press (University of the Basque Country Press) Bilbao, Spain, 2005,49:585-593
    
    92. Parrow VC. 5-azacytidine-induced alterations in the GH12C1 cells: effects on cellular morphology, chromosome structure, DNA and protein synthesis. Journal of Cell Science, 1989, 93(3):533-543.
    
    93. Pena, L., M. Martin-Trillo, J. Juarez, J. A. Pina, L. Navarro and J. M. Martinez-Zapater. Constitutive expression of Arabidopsis LEAFY or APETALA1 genes in citrus reduces their generation time. Nature Biotechnology, 2001, 19(3), 263-267
    94. Philip A. Wigge. Min Chul Kim. atja E. Jaeger, Wolfgang Busch, Markus Schmid, Jan U. Lohmann, Detlef Weige. Integration of Spatial and Temporal Information During Floral Induction in Arabidopsis. Science, 2005, 309(12):1056-1059
    
    95. Phillips RL, Kaeppler SM, Olhoft P. Genetic instability of plant tissue cultures: breakdown of normal controls. Proceedings of the National Academy of Sciences, 1994,91:5222-5226
    
    96. Pidkowich MS, Klenz JE, Haughn GW. The making of a flower: control of floral meristem identity in Arabidopsis. Trends in Plant Science, 1999,4:64-70
    
    97. Pillitteri LJ, Lovatt CJ, Walling LL. Isolation and characterization of LEAFY and APETALA1 homologues from Citrus sinensis L. Osbeck'Washington'. American Society for Horticultural Science Alexandria, USA, 2004,129:846-856
    
    98. Pillitteri LJ, Lovatt CJ, Walling LL. Isolation and characterization of a TERMINAL FLOWER homolog and its correlation with juvenility in citrus. Plant Physiology, 2004,135:1540-1551
    
    99. Portis E, Acquadro A, Comino C, Lanteri S. Analysis of DNA methylation during germination of pepper (Capsicum annuum L.) seeds using methylation-sensitive amplification polymorphism (MSAP). Plant Science, 2004, 166:169-178
    
    100.Razin A, Cedar H. DNA methylation and genomic imprinting. Cell, 1994, 77:473
    101.Ronemus MJ, Galbiati M, Ticknor C, Chen J, Dellaporta SL. Demethylation-induced developmental pleiotropy in Arabidopsis. Science, 1996, 273:654-657
    102.Ruiz-Garcia L, Madueno F, Wilkinson M, Haughn G, Salinas J, Martinez- Zapater JM. Different roles of flowering-time genes in the activation of floral initiation genes in Arabidopsis. Plant Cell, 1997, 9:1921-1934
    103.Sano H, Kamada I, Youssefian S, Katsumi M, Wabiko H. A single treatment of rice seedlings with 5-azacytidine induces heritable dwarfism and undermethylation of genomic DNA. Molecular and General Genetics, 1990, 220(3):441-447
    104.Scorza R, Callahan A, Levy L, Damsteegt V, Webb K, Ravelonandro M. Post-transcriptional gene silencing in plum pox virus resistant transgenic European plum containing the plum pox potyvirus coat protein gene. Transgenic research, 2001,10(3):201-209
    105.Sheldon CC, Burn JE, Perez PP, Metzger J, Edwards JA, Peacock WJ, Dennis ES. The FLF MADS box gene a repressor of flowering in Arabidopsis regulated by vernalization and methylation. Plant Cell, 1999,11:445-458
    106.Sheldon CC, Hills MJ, Lister C, Dean C, Dennis ES, Peacock WJ. Resetting of FLOWERING LOCUS C expression after epigenetic repression by vernalization. Proceedings of the National Academy of Sciences, 2008,105(6):2214-2219
    107.Shen LL, Guo Y, Chen XL, Ahmed S, Issa JPJ. Optimizing annealing temperature overcomes bias in bisulfite PCR methylation analysis. Biotechniques, 2007,42(1):48
    108.Singal R, Ferris R, Little JA, Wang SZ, Ginder GD. Methylation of the minimal promoter of an embryonic globin gene silences transcription in primary erythroid cells. Proceedings of the National Academy of Sciences, 1997, 94:13724-13729
    109.Song F, Smith JF, Kimura MT, Morrow AD, Matsuyama T, Nagase H, Held WA. Association of tissue-specific differentially methylated regions (TDMs) with differential gene expression. Proceedings of the National Academy of Sciences, 2005,102:3336-3341
    110.Soppe WJJ, Jacobsen SE, Alonso-Blanco C, Jackson JP, Kakutani T, Koornneef M, Peeters AJM. The late flowering phenotype of fwa mutants is caused by gain-of-function epigenetic alleles of a homeodomain gene. Molecular Cell, 2000, 6:791-802
    111.Steward N, Ito M, Yamaguchi Y, Koizumi N, Sano H. Periodic DNA methylation in maize nucleosomes and demethylation by environmental stress. Journal of Biological Chemistry, 2002, 277(40):37741-37746
    112.Suzuki MM, Kerr ARW, De Sousa D, Bird A. CpG methylation is targeted to transcription units in an invertebrate genome. Genome Research, 2007, 17(5):625-631
    113.Sved J, Bird A. The expected equilibrium of the CpG dinucleotide in vertebrate genomes under a mutation model. Proceedings of the National Academy of Sciences, 1990, 87:4692-4696
    114.Tanaka K, Okamoto A. Degradation of DNA by bisulfite treatment. Bioorganic & Medicinal Chemistry Letters, 2007,17(7): 1912-1915
    115.Vanyushin BF, Shorning BY, Seredina AV, Aleksandrushkina NI. The effects of phytohormones and 5-azacytidine on apoptosis in etiolated wheat seedlings. Russian Journal of Plant Physiology, 2002,49(4):501-506
    116.Venter JC, Adams MD, Myers EW, Li PW, Mural RJ, Sutton GG, Smith HO, Yandell M, Evans CA, Holt RA. The sequence of the human genome. Science, 2001,291:1304-1351
    117. Venter JC. Initial sequencing and analysis of the human genome. Nature, 2001, 409:860-921
    118.Wada M, Cao Q, Kotoda N, Soejima J, Masuda T. Apple has two orthologues of FLORICAULA/LEAFY involved in flowering. Plant Molecular Biology, 2002, 49(6):567-577
    119.Wagner I, Capesius I. Determination of 5-methylcytosine from plant DNA by high-performance liquid chromatography. Biochimica and biophysica acta, 1981, 654:52-56
    120.Warnecke PM, Stirzaker C, Song J, Grunaub C, Melkia JR, Clark SJ. Identification and resolution of artifacts in bisulfite sequencing. Methods, 2002, 27(2):101-107
    121.Weigel, D. and Nilsson O. 1995. A developmental switch sufficient for flower initiation in diverse plants. Nature. 377,495-500
    122.White HE, Durston VJ, Harvey JF, Cross NC. Quantitative analysis of SNRPN (correction of SRNPN) gene methylation by pyrosequencing as a diagnostic test for Prader-Willi syndrome and Angelman syndrome. Clinical Chemistry, 2006, 52(6):1005-1013
    123.Wu CT, Morris JR. Genes, genetics, and epigenetics: a correspondence. Science, 2001,293:1103-1105
    124.Xiong LZ, Laird PW. COBRA: a sensitive and quantitative DNA methylation assay. Nucleic acids research, 1997,25(12):2532-2534
    125.Xiong LZ, Xu CG, Saghai Maroof MA, Zhang Q. Patterns of cytosine methylation in an elite rice hybrid and its parental lines, detected by a methylation-sensitive amplification polymorphism technique. Molecular and General Genetics, 1999,261(3):439-446
    126.Yamamoto N, Kobayashi H, Togashi T, Mori Y, Kikuchi K, Kuriyama K, Tokuji Y. Formation of embryogenic cell clumps from carrot epidermal cells is suppressed by 5-azacytidine, a DNA methylation inhibitor. Plant Physiology, 2005,162(1):47-54
    127.Yanofsky MF. Floral meristems to floral organs: genes controlling early events in Arabidopsis flower development. Annual Review of Plant Biology, 1995, 46(1):167-188
    128. Yin H, Blanchard KL. DNA methylation represses the expression of the human erythropoietin gene by two different mechanisms. Blood, 2000, 95(1):111-119
    129.Yusa K, Takeda J, Horie K. Enhancement of Sleeping Beauty transposition by CpG methylation: possible role of heterochromatin formation. Molecular and Cellular Biology, 2004,24:4004-4018
    130.Zagotta MT, Shannon S., Jacobs C., and Meeks-Waganer R. 1992. Early flowering mutants of Arabdopsis thaliana. Australian Journal of Plant Physiology. 19,411-418
    131.Zhang J. Identification of early-flower-related ESTs in an early-flowering mutant of trifoliate orange (Poncirus trifoliata) by suppression subtractive hybridization and macroarray analysis. Tree Physiology, 2008,28:1449-1457
    132.Zhang JZ, Li ZM, Mei L, Yao JL, Hu CG. PtFLC homolog from trifoliate orange (Poncirus trifoliata) is regulated by alternative splicing and experiences seasonal fluctuation in expression level. Planta, 2009, 229(4):847-859
    133.Zhang JZ, Li ZM, Yao JL, Hu CG. Identification of flowering-related genes between precocious trifoliate orange mutant and wild-type trifoliate orange (Poncirus trifoliata L. Raf.) by suppression subtraction hybridization (SSH) and macroarray. Gene, 2008, 430:95-104
    134.Zhang XY, Yazaki J, Sundaresan A, Cokus S, Chan SWL, Chen HM, Henderson IR, Shinn P, Pellegrini M, Jacobsen SE, Ecker JR. Genome-wide high-resolution mapping and functional analysis of DNA methylation in Arabidopsis. Cell, 2006, 126:1189-1201
    135.Zhao Y, Yu S, Xing C, Fan S, Song M. Analysis of DNA methylation in cotton hybrids and their parents. Molecular Biology, 2008,42(2): 169-178
    136.Zilberman D, Gehring M, Iran RK, Ballinger T, Henikoff S. Genome-wide analysis of Arabidopsis thaliana DNA methylation uncovers interdependence between methylation and transcription. Nature Genetics, 2006, 39:61-69

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700