用户名: 密码: 验证码:
手性卟啉酞菁配合物的合成及拆分研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
卟啉和酞菁是非常重要的染料分子,它们都属于环状四吡咯化合物,其中的四个吡咯或异吲哚氮原子可以和金属元素络合而形成多种多样的配合物。当配位的中心金属离子半径较大时(例如稀土元素,锕系元素以及主族元素In,Sn,As,Sb,Bi等),倾向于形成八配位的三明治型二层或三层配合物。在三明治型配合物中,由于两个或三个共轭大环配体之间距离很近,所以具有非常强的分子内π-π相互作用,这就使得这类配合物具有非常特殊的功能性质和应用前景,例如可以作为电致变色显示材料、场效应晶体管材料、气体传感材料以及光合作用反应中心特殊对的结构和谱学模型等。
     光学活性的四吡咯大环衍生物和许多生物学过程相关,并且具有多方面的应用潜力,因而激起了学者们极大的研究热情。近几十年来,人们对手性卟啉化合物进行了大量的研究,主要集中在对自然界中存在的卟啉衍生物的结构和功能模拟上,而对手性酞菁衍生物的研究报道是最近才出现的。本文的研究内容就主要集中在手性共轭四吡咯大环化合物的合成、表征及拆分研究方面,包括以下三部分:
     1、氨基酸修饰的三明治型混杂卟啉酞菁稀土双层配合物的合成及光谱性质研究
     在自然界,卟啉化合物构成了血红蛋白、细胞色素及叶绿素等生物大分子的活性中心,参与生物体系的一系列重要过程。利用卟啉独特的结构和性能进行功能分子的设计、合成及应用研究一直受到化学、生物、医学各界的广泛关注。此前,科研工作者已合成了一系列的卟啉衍生物,试图模拟其生理特性,但到目前为止,还只是局限于相对简单的卟啉衍生物,且大都有很强的疏水性,无法模拟生物体内的真实环境。利用氨基酸对卟啉环进行修饰,能获得结构和性能更加接近天然卟啉的化合物。另外,由于氨基酸是蛋白质的重要组成部分,氨基酸侧链的引入使得整个卟啉分子对特定的蛋白质分子表现出选择性识别。据作者所知,目前仅有过氨基酸修饰的单层卟啉(或酞菁)金属配合物的报道,而相应的氨基酸修饰的三明治型双层(或三层)金属配合物的研究还未见报道。在本文中作者合成、分离和表征了三明治型混杂卟啉酞菁稀土双层配合物[EuⅢH{Pc(α-3-OC5H11)4}{TriBPP(NHR)}](R=H, C8H17)(1,2)[HoⅢH{Pc(α-3-OC5H11)4}{TriClPP(NHR)}](R=H,C8H17)(5,6)[HoⅢH{Pc(α-3-OC5H11)4}{TriBPP(NHR)}](R=H,C8H17)(9,10)和[HoⅢH{Pc(α-OC4H9)8}{TriBPP(NHR)}][(R=H,C8H17)(13,14),及其对应的N-(叔丁氧羰基)-L-苯基丙氨酸修饰的三明治型混杂卟啉酞菁稀土双层配合物[EuⅢH{Pc(α-3-OC5H11)4}{TriBPP(NR-L-Phe-Boc)}](R=H,C8H17)(3,4)[HoⅢH{Pc(α-3-OC5H11)4}{TriClPP(NR-L-Phe-Boc)}](R=H,C8H17)(7,8)[HoⅢH{Pc(α-3-OC5H11)4}{TriBPP(NR-L-Phe-Boc)}](R=H,C8H17)(11,12)和[HoⅢH{Pc(α-OC4H9)8}{TriBPP(NR-L-Phe-Boc)}](R=H,C8H17)(15,16)。通过质谱、元素分析、核磁共振氢谱和紫外可见吸收光谱等手段表征了手性氨基酸基团修饰的三明治型配合物的结构。
     2、具有C4对称性的手性三明治型混杂卟啉酞菁稀土双层配合物的合成、拆分及绝对构型的指认研究
     三明治型卟啉酞菁金属配合物具有独特的结构、性质和其在材料科学方面的应用潜力,人们已经对其开展了大量的研究工作。设计和制备新型手性三明治型混杂卟啉酞菁稀土配合物是开发其在材料科学和生命科学领域应用的重要基础。然而据作者所知,手性三明治型四毗咯金属配合物仍然少有报道。作者合成手性三明治型四吡咯配合物的策略是利用1,8,15,22-四(烷氧基)取代酞菁的C4h对称性。这一酞菁配体呈现单向旋转的取代基排列模式,从而具有一个前手性面。在该酞菁环的轴向两侧或任意一侧引入不同的结构单元后,通过大环的对称面不复存在,分子的对称性会降低到C4,甚至C2或C1,从而具有手性。通过这种思路,作者设计合成了具有C4对称性的手性混杂卟啉酞菁稀土三明治型双层配合物[HMⅢ{Pc(α-3-OC5H11)4}{TOAPP}][M=Y(1),Ho(2);Pc(α-3-OC5H11)4=1,8,15,22-四(3-戊氧基)酞菁;TOAPP=meso-四(4-辛胺基苯基)卟啉],并通过了质谱、元素分析、核磁共振氢谱和紫外可见光谱等表征。利用X射线单晶衍射分析可以确定这些分子属于三斜晶系,在每个晶胞中包含有一对互为对映异构体的配合物分子,证明这两个配合物都是以外消旋混合物的形式存在。利用N-(叔丁氧羰基)-L-苯基丙氨酸(Boc-L-Phe-OH)作为手性拆分试剂,与配合物相结合形成非对映异构体,第一次成功的运用手性高效液相色谱技术对其进行了光学拆分。通过对实验所得的CD光谱数据与应用含时密度泛函理论方法模拟所得的CD光谱数据相比较,指认了该C4手性配合物的绝对构型。这一工作对于光学拆分具有相似手性源模式的化合物具有开创性的指导意义。
     3、新型萘基取代手性卟啉的合成及拆分研究
     由于光学活性的四吡咯大环衍生物和许多生物过程相关,并且具有多方面的应用潜力,因而激起了学者们极大的研究热情,目前已发现细胞色素P450能选择性地催化一系列的羟基化和环氧化反应,金属卟啉的手性催化引起了化学家们极大的兴趣,其中最主要的挑战是手性催化剂的合成。对于meso位取代的萘基卟啉,由于萘基9号位上的H原子与卟啉环的β位的H原子存在空间位阻,卟啉环上meso-取代萘基沿着C(meso)-C(nph)键的转动受到限制,只能在卟啉环一侧进行扰动。利用这一特性,作者设计合成了两种新型的meso位萘基取代的手性卟啉配合物:10-苯基-15-萘基-20-(4-十六烷氧基苯基)锌卟啉ZnPor(Ph)(Nph)(PhOC16H33)(1)和5-苯基-10,20-二萘基-15-(4-羟基苯基)锌卟啉ZnPor(Ph)(dNph)(PhOH)(2),并通过了质谱、核磁共振氢谱和紫外可见光谱等手段进行了表征。尝试使用手性高效液相色谱技术对其进行光学拆分,但是目前还未能达到拆分目的。合成新型手性卟啉并对其进行光学拆分进而研究其不对称催化性能将是未来工作的重点。
Phthalocyanines and porphyrins are two important classes of pigments which have found their applications in various disciplines. Both series belong to a cyclic tetrapyrrole family in which the four isoindole or pyrrole nitrogen atoms are able to complex with a range of metal ions. With large metal centers which favor octa-coordination (e.g. rare earths, actinides, group 4 transition metals, and main group elements such as In, Sn, As, Sb, and Bi), sandwich-type complexes in the form of double-and triple-deckers can be formed. Due to the intramolecular-interactions and the intrinsic nature of the metal centers, these novel complexes display characteristic features, which cannot be found in their non-sandwich counterparts, enabling them to be used in different areas. They are versatile materials for electrochromic displays, field effect transistors, gas sensors and as structural and spectroscopic models for the special pair found in the bacterial photosynthetic reaction centers.
     Chiral porphyrinic compounds are abundant in living systems. Due to their fundamental importance in many biological processes, chiral porphyrins (Pors) have been extensively studied in view of biomimetic synthetic models over the past few decades. The phthalocyanine counterparts have only been reported recently. Our research work has been focused on the synthesis, characterization and resolution of chiral macrocyclic tetrapyrrole compounds include the following three parts:
     1. Amino Acid Modified Mixed (Porphyrinato) (Phthalocyaninato) Rare Earth Double-Decker Complexes:Synthesis and spectroscopic studies
     Porphyrins play essential roles in hemoglobin, cytochrome, chlorophyll and other biological macromolecules and participate in the process of a series of important biological systems. Studies of molecular design, synthesis and application using the unique structure and properties features of porphyrin has been subject to chemical, biological, and medical scientists. Previously, researchers have synthesized a series of porphyrin derivatives, trying to simulate the physiological characteristics, so far, it is still limited to relatively simple derivatives, which have very strong hydrophobicity.. The use of amino acids on the porphyrin ring was modified to be closer to the natural structure and properties of porphyrin compounds. Amino acid is the major component of proteins; the introduction of amino acid side chain makes the whole porphyrin molecule to specific protein molecules demonstrating selective recognition. According to our knowledge, only few studies on monomeric porphyrin (or phthalocyanine) complexes modified by amino acid have been reported. We have prepared a new series of sandwich type mixed (porphyrinato) (phthalocyaninato) rare earth double-decker complexes [EuⅢH{Pc(α-3-OC5H(11))4}{TriBPP(NHR)}] (R= H, C8H(17)) (1,2), [HoⅢH{Pc(α-3-OC5H(11))4}{TriCIPP(NHR)}] (R= H, C8H(17)) (5,6), [HoⅢH{Pc(α-3-OC5H(11))4}{TriBPP(NHR)}] (R= H, C8H(17)) (9,10) [HoⅢH{Pc(α-OC4H9)8}{TriBPP(NHR)}] (R-H, C8H(17)) (13,14) and the corresponding amino acid modified double-deckers [EuⅢH{Pc(αa-3-OC5H(11))4}{TriBPP(NR-L-Phe-Boc)}] (R= H, C8H(17)) (3,4), [HoⅢH{Pc(α-3-OC5H(11))4}{TriClPP(NR-L-Phe-Boc)}] (R= H, C8H(17)) (7,8), [HoⅢH{Pc(α-3-OC5H(11))4}{TriBPP(NR-L-Phe-Boc)}] (R-H, C8H(17)) (11,12) [HoⅢH{Pc(α-OC4H9)8}{TriBPP(NR-L-Phe-Boc)}] (R= H, C8H(17)) (15,16) for the first time. These complexes have been fully characterized by elemental analyses and a wide range of spectroscopic methods, including Mass, UV-Vis and NMR.
     2. Mixed (Phthalocyaninato)(Porphyrinato) Rare Earth Double-Decker Complexes with C4-Chirality:Synthesis, Optical Resolution, and Absolute Configuration Assignment
     We are motivated to design and prepare new chiral sandwich-type phthalocyaninato and porphyrinato rare earth complexes with a view to creating novel applications in material science and catalysis. The strategy towards chiral sandwich-type tetrapyrrole rare earth complexes involves utilization of 1,8,15,22-tetrakis(alkoxy)-substituted phthalcoyanine ligand with C(4h) symmetry. This tetrapyrrole ligand possesses a single-handed rotational arrangement of the substituted pattern, actually two enantiotopic faces. As a result, attachment of the entity on either side of the Pc ring will eliminate the mirror plane of C(4h) symmetry and lead to chiral molecules with a C4 or even further decreased symmetry, C2 or C5. In the present chapter, we describe the synthesis and first optical resolution of mixed (phthalocyaninato)(porphyrinato) rare earth double-decker complexes [HMⅢ{Pc(α-3-OC5H(11))4}{TOAPP}] [M= Y (1), Ho (2)] with C4 symmetry, by using a chiral HPLC technique combined with the formation of their diastereotopic mixture, utilizing L-Boc-Phe-OH as the chiral resolving agent. The absolute configurations of these C4-chiral complexes were assigned by comparing experimental CD spectra with simulated one on the basis of time-dependent density functional theory.
     3. Synthesis and Optical Resolution of Naphthalene-Substituted Chiral Porphyrin
     There has been a growing interest in optically active tetrapyrrole derivatives because of their biological relevance and various potential applications. Chiral porphyrins, ranging from synthetic to naturally occurring analogues, have been extensively studied over the past few decades. A series of hydroxylation and epoxidation selectively catalyzed by cytochrome P450 has been reported recently. Catalysts of chiral metalloporphyrin have attracted great interest in chemists, and the most important challenge is the synthesis of chiral catalysts. For the meso-substituted naphthyl porphyrin, rotation of the naphthyl along the C (meso)-C (nph) bond is restricted only in one side of the porphyrin ring and perturbed due to the steric hindrance. We have prepared two novel meso-naphthyl substituted chiral porphyrins: ZnPor(Ph)(Nph)(PhOC(16)H(33)) (1) and ZnPor(Ph)(dNph)(PhOH) (2), which have been characterized by Mass, UV-Vis and NMR. Resolution of the two complexes using a chiral HPLC technique has been failed. Synthesis and optical resolution of novel chiral porphyrins, study of their performance as asymmetric catalysis will be the focus of future work.
引文
[1]Fischer, H. et al. Die Chemie des pyrrols. [M] Vol 2, part 1, Akad. Verlagsges; Leipzig. 1937,158.
    [2]Zaleski, J. Porphyrin. [J] Z. Physiol. Chem.1902,37,54.
    [3]Wong, C. P.; Venteicher, R. R.; Horrocks Jr., W. D. Lanthanide porphyrin complexes. Potential new class of nuclear magnetic resonance dipolar probe. [J] J. Am. Chem. Soc, 1974,96,7149-7150.
    [4]Wong, C. P.; Horrocks Jr., W. D. New metalloporphyrins. Thorium and yttrium complexes of tetraphenylporphin. [J] Tetrahedron Lett.,1975,16,2637-2640.
    [5]计亮年,彭小彬,黄锦汪.金属卟啉配合物模拟某些金属酶的研究进展[J]自然科学进展,2002,12,120-129.
    [6]Sessler, J. L.; Weghorn, S. J. Expanded, Contracted & Isomeric Porphyrins. [M] Pergamon:Oxford, U. K.,1997.
    [7]李德平,胡静.血卟啉类化合物诊治肿瘤的研究进展及应用[J]中国生化药物杂志,2003,24,162-163.
    [8]杨新国,孙景志,汪茫,陈红征,黄骥.卟啉类光电功能材料的研究进展[J]功能材料,2003,34,113-117.
    [9](a) Uyeda, N.; Kobayashi, T.; Suito, E.; Harada, Y.; Watanabe. M. Molecular image resolution in electron microscopy. [J] J. Appl. Phys.1972,43,5181-5189. (b) Kobayashi, T.; Isoda, S. Lattice Images and Molecular Images of Organic Materials. [J] J. Mater. Chem.1993,3,1-14.
    [10]Eley, D. D. Phthalocyanines as Semiconductors. [J] Nature 1948,162,819-819.
    [11](a) Schramm, C. J.; Stojakovic, D. R.; Hoffman, B. M.; Marks, T. J. New Low-Dimensional Molecular Metals:Single-Crystal Electrical Conductivity of Nickel Phthalocyanine Iodide. [J] Science,1978,200,47-48. (b) Marks, T. J. Electrically Conductive Metallomacrocyclic Assemblies. [J] Science,1985,227,881-889.
    [12]Bott, B.; Jones, T. A. A highly sensitive NO2 sensor based on electrical conductivity changes in phthalocyanine films. [J] Sensors and Actuators,1984,5,43-53.
    [13]Vartanyan, A. T. Poluprovodnikovye Svoistva Organicheskikh Krasitel. [J] Zh. Fiz Khim.1948,22,769-774.
    [14]Law, K. Y. Organic photoconductive materials:recent trends and developments. [J] Chem. Rev.1993,93,449-486.
    [15]Tang, C. W. Two-layer organic photovoltaic cell. [J] Appl. Phys. Lett.1986,48, 183-185.
    [16]Nazeeruddin, M. K.; Humphry-Baker, R.; Gratzel, M.; Murrer, B. A. Efficient near IR sensitization of nanocrystalline TiO2 films by ruthenium phthalocyanines. [J] Chem. Commun.1998,719-720.
    [17]Wohrle, D.; Tennigkeit, B.; Elbe, J.; Kreienhoop, L.; Schnurffeil, G. Various Porphyrins and Aromatic Tetracarboxylic Acid Diimides in Thin Film pln-Solar Cells [J] Mol. Cryst. Liq.Cryst.1993,228,221-226.
    [18]王朝晖,衷庆华,熊轶嘉,孙亚,孔繁敖.酞菁锌分子激发态的超快内转移和振动弛豫[J]化学物理学报,1998,11,15-19.
    [19]De la Torre, G.; Vazquez. P.; Agullo-Lopez, F.; Torres, T. Phthalocyanines and related compounds:organic targets for nonlinear optical applications. [J] J. Mater. Chem.1998, 8,1671-1683.
    [20]Shirk, J. S.; Lindle, J. R.; Bartoli, F. J. Boyle, M. E. Third-order optical nonlinearities of bis(phthalocyanines). [J] J. Phys. Chem.1992,96,5847-5852.
    [21]陈仕艳,刘云圻,黄学斌,邱文丰,朱道本.酞菁在分子材料器件方面的研究进展[J]自然科学进展,2004,14,125-131.
    [22]Leznoff, C. C; Lever; A. B. P. Phthalocynines:properties and applications. [M] Volumes 1-4, New York:VCH,1989.
    [23]Borisenkova, S. A. New aspects of the heterogeneous catalysis of thiol oxidation by phthalocyanines. [J] Petroleum Chem.1991,31,379-398.
    [24]Bennett, W. E.; Broberg, D. E.; Baenziger, N. C. Crystal structure of stannic phthalocyanine, an eight-coordinated tin complex. [J] Inorg. Chem.1973,12,930-936.
    [25]Kirin, I. S.; Moskalev, P. N.; Makashev, Y. A. Formation of phthalocyanines of rare-earth elements. [J] Russ. J. Inorg. Chem.1965,10,1065-1066.
    [26]De Cian, A.; Moussavi, M.; Fischer, J.; Weiss, R. Synthesis, structure, and spectroscopic and magnetic properties of lutetium(Ⅲ) phthalocyanine derivatives: LuPc2.CH2Cl2 and [LuPc(OAc)(H2O)2].H2O.2CH3OH. [J] Inorg. Chem.1985,24, 3162-3167.
    [27]Lux, F.; Dempf, D.; Graw, D. Diphthalocyaninato-thorium(IV) and-uranium (Ⅳ). [J]
    Angew. Chem. Int. Ed.1968,7,819-820.
    [28]Bouvet, M.; Simon, J. Electrical properties of rare earth bisphthalocyanine and bisnaphthalocyanine complexes. [J] Chem. Phys. Lett.1990,172,299-302.
    [29]Ng, D. K. P.; Jiang, J. Sandwich-Type Heteroleptic Phthalocyaninato and Porphyrinato Metal Complexes. [J] Chem. Soc. Rev.1997,26,433-442.
    [30]姜建壮,吴基培,刘伟,谢经雷,孙思修.对称的二层及三层三明治型金属酞菁配合物的研究进展.[J]化学通报.1999,2-10.
    [31]Gieren, A.; Hoppe, W. X-Ray crystal structure analysis of bisphthalocyaninatouranium(Ⅳ). [J] Chem. Commun.1971,413-415.
    [32]Koike, N.; Uekusa, H.; Ohashi, Y.; Harnoode, C.; Kitamura, F.; Ohsaka, T.; Tokuda, K. Relationship between the Skew Angle and Interplanar Distance in Four Bis(phthalocyaninato)lanthanide(Ⅲ) Tetrabutylammonium Salts ([NBu4n][LnⅢPc2]; Ln =Nd, Gd, Ho, Lu). [J] Inorg. Chem.1996,35,5798-5804.
    [33]Buchler, J. W.; De Cian, A.; Fischer, J.; Kihn-Botulinski, M.; Paulus, H.; Weiss, R. Metal complexes with tetrapyrrole ligands. 40. Cerium(Ⅳ) bis(octaethylporphyrinate) and dicerium(Ⅲ) tris(octaethylporphyrinate):Parents of a new family of lanthanoid double-decker and triple-decker molecules. [J] J. Am. Chem. Soc.1986,108,3652-3659.
    [34]Collin, G. C. S.; Schiffrin, D. J. The electrochromic properties of lutetium and other phthalocyanines. [J] J. Electroanal. Chem.1982,139,335-369.
    [35]Frampton, C. S.; O'Connor, J. M.; Peterson, J. I. M.; Silver, J. Enhanced colours and properties in the electrochromic behaviour of mixed rare-earth-element bisphthalcoyanines. [J] Displays,1988,9,174-178.
    [36]Capobianchi, A.; Paoletti, A. M.; Pennesi, G.; Rossi, G.; Panero, S. Electrochromism in sandwich-type diphthalocyanines:electrochemical and spectroscopic behaviour of bis(phthalocyaninato)titanium(Ⅳ) (Ti(Pc)2) film. [J] Synth. Met.1995,75,37-42.
    [37]McKeown, N. B. Out of the Blue:Recent advances in the applications of phthalocyanines. [J] Chemistry and Industry 1999,92-98.
    [38]Andre, J. J.; Holczer, K.; Petit, P.; Riou, M. T.; Simon, J. Electrical and magnetic properties of thin films and single crystals of bis(phthalocyaninato) lutetium. [J] Chem. Phys. Lett.1985,115,463-466.
    [39]Padilla, J.; Hatifield, W. E. Magnetic and electrical properties of sandwich-like lanthanide phthalocyanines. [J] Synth. Met.1989,29,45-50.
    [40]Padilla, J.; Hatifield, W. E. Correlation between π-orbital overlap and conductivity in bis-phthalocyaninato lanthanides. [J] Inorg. Chim. Acta.1991,185.131-136.
    [41]Souto, J.; Aroca, R.; Desaja, J. A. Gas Adsorption and Electrical Conductivity of Langmuir-Blodgett Films of Terbium Bisphthalocyanine. [J] J. Phys. Chem.1994,98, 8998-9001.
    [42]Trometer, M.; Even, R.; Simon, J.; Dubon, A.; Laval, J. Y.; Germain, J. P.; Maleysson, C.; Pauly, A.; Robert, H. Lutetium bisphthalocyanine thin films for gas detection. [J] Sens. Actuators B Chem.1992,8,129-135.
    [43]Simon, J.; Sirlin, S. Mesomorphic molecular materials for electronics, opto-electronics, iono-electronics: octaalkylphthalocyanine derivatives. [J] Pure Appl. Chem.1989,61, 1625-1629.
    [44]Guillaud, G.; Al Sadoun, M.; Maitrot, M.; Simon, J.; Bouvet, M. Field-effect transistors based on intrinsic molecular semiconductors. [J] Chem. Phys. Lett.1990,167,503-506.
    [45]Clarisse, C.; Riou, M. T.; Gauneau, M.; Le Cntellec, M. Field-Effect Transistor with Diphthalocyanine Thin Film. [J] Electron. Lett.1988,24,674-675.
    [46]Toupance, T.; Ahsen, V.; Simon, J. Iono-electronics:crown ether substituted lutetium bisphthalocyanines. [J] J. Chem. Soc. Chem. Commun.1994,75-76.
    [47](a) Nicholson, M. M.; Pizzarello, F. A. Effects of the Gaseous Environment on Propagation of Anodic Reaction Boundaries in Lutetium Diphthalocyanine Films. [J] J. Electrochem Soc.1980,127,2617-2620. (b) Nicholson, M. M.; Weismuller, T. P. The Role of Oxygen in the Redox Chemistry of Luterrium Diphthalocyanine. [J] J. Electrochem Soc.1984,131,2311-2313.
    [48]Trojan, K. L.; Kendall, J. L.; Kepler, K. D.; Hatfield, W. E. Strong exchange coupling between the lanthanide ions and the phthalocyaninato Iigand radical in bis(phthalocyaninato)lanthanide sandwich compounds. [J] Inorg. Chim. Acta.1992, 198-200,795-803.
    [49](a) Adler, A. D.; Longo, F. R.; Shergalis, W. Mechanistic Investigations of Porphyrin Syntheses. I. Preliminary Studies on ms-Tetraphenylporphinl. [J] J. Am. Chem. Soc.1964, 86,3145-3149. (b) Adler, A. D.; Longo, F. R.; Finarelli, J. D.; Goldmacher, J.; Assour, J.; Korsakoff, L. A simplified synthesis for meso-tetraphenylporphine. [J] J. Org. Chem.1967, 32,476-476.
    [50]Lindsey, J. S.; Schreiman, I. C; Hsu, H. C.; Kearney, P. C.; Marguerettaz, A. M. Rothemund and Adler-Longo reactions revisited:synthesis of tetraphenylporphyrins under equilibrium conditions. [J] J. Org. Chem.1987,52,827-836.
    [51]Arsenault, G. P.; Bullock, E.; MacDonald, S. F.; Pyrromethanes and Porphyrins Therefrom. [J] J. Am. Chem. Soc,1960,82,4384-4389.
    [52]Adler, A. D.; Longo, F. R. On the preparation of metalloporphyrins. [J] J. Inorg. Nucl. Chem.1970,32,2443-2445.
    [53]Linstead, R. P.; Lowe, A. R. Phthalocyanines. Part Ⅲ. Preliminary Experiments on the Preparation of Phthalocyanines from Phthalonitrile. [J] J. Chem. Soc.1934,1022-1027.
    [54]Joyner, R. D.; Kenney, M. E. Phthalocyaninosilicon Compounds. [J] Inorg. Chem.1962, 1,236-238.
    [55](a) Ogoshi, H.; Saita, K.; Sakurai, K.; Watanabe, T.; Toi, H.; Aoyama, Y.; Okamoto, Y. Novel Chiral Porphrins with C2 Symmetry. [J] Tetrahedron Lett.1986,27,6365-6368. (b) Aoyama, Y.; Uzawa, T.; Saita, K.; Tanaka, Y.; Toi, H.; Ogoshi, H.; Okamoto, Y Molecular Recognition in the Ternary Systems of a Trifunctional Chiral Metalloporphyrin, Amino Esters and HPLC Adsorbent. [J] Tetrahedron Lett.1988,29,5271-5274.
    [56]Mizutani, T.; Ema, T.; Tomita, T.; Kuroda, Y.; Ogoshi, H. Design and Synthesis of a Trifunctional Chiral Porphyrin with C2 Symmetry as a Chiral Recognition Host for Amino Acid Esters. [J] J. Am. Chem. Soc.1994,116,4240-4250.
    [57]Aoyama, Y.; Saita, K.; Toi, H.; Ogoshi, H.; Okamoto, Y Preparation and optical resolution of novel 5,10-Dioryloctaethyl-porphrins with C2 Symmetry. [J] Tetrahedron Lett.1987,28,4853-4856.
    [58](a) Naruta, Y.; Tani, F.; Ishihara, N.; Maruyama, K. Catalytic and Asymmetric Epoxidation of Olefins with Iron Complexes of "Twin—Coronet" Porphyrins. A Mechanistic Insight into the Chiral Induction of Styrene Derivatives. [J] J. Am. Chem. Soc. 1991,113,6865-6872. (b) Kuroda, Y.; Kato, Y.; Higashioji, T.; Ogoshi, H. New Chiral Porphrins-Syntheses and Molecular Recognition of Amino Acid Esters. [J] Angew. Chem. Int. Ed.1993,32,723-724. (c) Collman, J. P.; Lee, V. J.; Kellen-Yuen, C. J.; Zhang, X.; Ibers, J. A.; Brauman, J. I. Threitol-Strapped Manganese porphrins as Enantioselsctive Epoxidation Catalysts of Unfunctionalized Olefins. [J] J. Am. Chem. Soc.1995,117, 692-703.
    [59]Konishi, K.; Sugino, T.; Aida, T.; Inoue, S. Stereochemical Studies on Reversible Metal-Nrtrogin Transfer of Alkyl and Aryl Groups in Chiral Cobalt(Ⅲ)Porphyrins. Relevance to the Mechanism of a Metabolic Heme Inactivation Process. [J] J. Am. Chem. Soc.1991,113,6487-6491.
    [60]Groves, J. T.; Myers, R. S. Catalytic Asymmetric Epoxidations with Chiral Iron Porphyrins. [J] J. Am. Chem. Soc.1983,105,5791-5796.
    [61](a) Mansuy, D.; Battioni, P.; Renaud, J. P.; Guerin, P. Asymmetric Epoxidation of Alkenes catalysed by a "Basket-handle" Iron-Porphyrin bearing Amino Acids. [J] J. Chem. Soc. Chem. Commun.1985,155-156. (b) Groves, J. T.; Viski, P. Asymmetric Hydroxylation, Epoxidation, and Sulfoxidation Catalyzed by Vaulted Binaphthyl Metalloporphyrins. [J] J. Org. Chem.1990,55,3628-3634.
    [62]O'Malley, S.; Kodadek, T. Synthesis and Characterization of the "Chiral Wall" Porphyrin: a Chemically Robust Ligand for Metal-Catalyzed Asymmetric Epoxidations. [J] J. Am. Chem. Soc.1989,111,9116-9117.
    [63](a) Tamiaki, H.; Suzuki, S.; Maruyama, K. Intramolecular interaction of Porphyrin Moieties in 2,5-Piperazine-diond-Bridged Porphyrin Dimers. [J] Bull. Chem. Soc. Jpn. 1993,66,2633-2637. (b) Ema, T.; Nemugaki, S.; Tsuboi, S.; Utaka, M. Synthesis and CD Spectrum of Chiral Porphyrin Dimer. [J] Tetrahedron Lett.1995,36,5905-5908.
    [64]Crossley, M. J.; Hambley, T. W.; Mackay, L. G.; Try, A. C.; Walton, R. Porphyrin Analogues of Troger's Base:Large Chiral Cavities with a Bimetallic Binding Site. [J] J. Chem. Soc. Chem. Conmum.1995,1077-1079.
    [65]Ishimaru, Y. Synthesis and Characterization of Intramolecular N-strapped Porphyrins. [J] Chem. Commun.1997,2187-2188.
    [66](a) Mizutani, T.; Ema, T.; Yoshida, T.; Kuroda, Y.; Ogoshi, H. Recognition of a-Amino Acid Esters by Zinc Porphyrin Derivatives via Coordination and Hydrogen Bonding Interactions. Evidence for Two-Point Fixation from Thermodynamic and Induced Circular Dichroism Spectroscopic Studies. [J] Inorg. Chem.1993,32,2072-2077. (b) Mizutani, T.; Murakami, T.; Kurahashi, T.; Ogoshi, H. An Artificial Receptor for Dimethyl Aspartate. [J] J. Org. Chem.1996,61,539-548. (c) Mizutani, T.; Kurahashi, T.; Murakami, T.; Matsumi, N.; Ogoshi, H. Molecular Recognition of Carbohydrates by Zinc Porphyrins:Lewis Acid/Lewis Base Combinations as a Dominant Factor for Their Selectivity. [J] J. Am. Chem. Soc.1997,119,8991-9001.
    [67]Arimori, S.; Takeuchi, M.; Shinkai, S. Sugar-Controlled Aggregate Formation in Boronic Acid-Appended Porphyrin Amphiphiles. [J] J. Am. Chem. Soc.1996,118,245-246.
    [68]Cho, I.; Lim, Y. Synthesis and Morphology of New Discogenic Phthalocyanine Derivatives. [J] Mol. Cryst. Liq. Cryst.1988,154,9-26.
    [69](a) van Nostrum, C. F.; Bosman, A. W.; Gelinck, G. H.; Picken, S. J.; Shouten, P. G.; Warman, J. M.; Schouten, A. J.; Nolte, R. J. M. Evidence of a chiral superstructure in the discotic mesophase of an optically active phthalocyanine. [J] J. Chem. Soc. Chem. Commun.1993,1120-1122. (b) van Nostrum, C. F.; Bosman, A. W.; Gelinck, G. H.; Shouten, P. G.; Warman, J. M.; Kentgens, A. P. M.; Devillers, M. A. C.; Meijerink, A.; Picken, S. J.; Sohling, U.; Schouten, A. J.; Nolte, R. J. M. Supramolecular Structure, Physical Properties, and Langmuir-Blodgett Film Formation of an Optically Active Liquid-Crystalline Phthalocyanine. [J] Chem. Eur. J.1995,1,171-182.
    [70]Engelkamp, H.; Middlebeek, S.; Nolte, R. J. M. Self-Assembly of Disk-Shaped Molecules to Coiled-Coil Aggregates with Tunable Helicity. [J] Science 1999,284, 785-788.
    [71]Kimura, M.; Muto, T.; Takimoto, H.; Wada, K.; Ohta, K.; Hanabusa, K.; Shirai, H.; Kobayashi, N. Fibrous Assemblies Made of Amphiphilic Metallophthalocyanines. [J] Langmuir 2000,16,2078-2082.
    [72]Cook, A. S.; Williams, D. B. G.; White, A. J. P.; Williams, D. J.; Lange, S. J.; Barrett, A. G. M.; Hoffman, B. M. Enantiomerically Pure "Winged" Spirane Porphyrazinoctaols. [J] Angew. Chem. Int. Ed.1997,36,760-761.
    [73]Kobayashi, N.; Nevin, W. A. Optically Active Tetrapyrazinoporphyrazines and Their Circular Dichroism in Monomeric and Dimeric Forms. [J] Chem. Lett.1998,851-852.
    [74](a) Kobayashi, N.; Kobayashi, Y.; Osa, T. Optically active phthalocyanines and their circular dichroism. [J] J. Am. Chem. Soc.1993,115,10994-10995. (b) Kobayashi, N. Optically active'adjacent'type non-centrosymmetrically substituted phthalocyanines. [J] Chem. Commun.1998,487-488.
    [75]Kobayashi, N.; Muranaka, A. The 50th Annual Meeting of Coordination Chemistry Society, Kusatsu, Japan, September 16-18,2000.
    [76]Kobayashi, N. The 24th International Symposium on Macrocyclic Chemistry, July 18-23, 1999, Barcelona, Spain, Abstr. OS2-1.
    [77]Kobayashi, N.; Nonomura, T. First observation of the circular dichroism spectra of chiral subphthalocyanines with C3 symmetry. [J] Tetrahedron Lett.2002,43,4253-4255.
    [1](a) Phthalocyanine:Properties and Applications, [M] Vol.1-4; (Eds.:Lever, A. B. P.; Leznoff, C. C), VCH, New York,1989-1996. (b) Phthalocyanines Materials:Synthesis, Structure and Function; [M] (Ed.:McKeown, N. B.), Cambridge University Press, New York,1998. (c) The Porphyrin Handbook, [M] Vol.1-20; (Eds.:Kadish, K. M.; Smith, K. M.; Guilard, R.), Academic Press, San Diego,2000 and 2003. (d) Senge, M. O.; Fazekas, M.; Notaras, E. G. A.; Blau, W. J.; Zawadzka, M.; Locos, O. B.; Ni Mhuircheartaigh, E. M. Nonlinear Optical Properties of Porphyrins. [J] Adv. Mater.2007,19,2731-2774.
    [2](a) Jiang, J.; Kasuga, K.; Arnold, D. P. in Supramolecular Photosensitive and Electroactive Materials; [M] (Ed.:Nalwa, H. S.), Academic Press, New York,2001, chapter 2, pp.113-210. (b) Ng, D. K. P.; Jiang, J. Sandwich-Type Heteroleptic Phthalocyaninato and Porphyrinato Metal Complexes [J] Chem. Soc. Rev.1997,26, 433-442. (c) Jiang, J.; Liu, W.; Arnold, D. P. Sandwich complexes of naphthalocyanine with the rare earth metals. [J] J. Porphyrins Phthalocyanines 2003,7,459-473. (d) Jiang, J.; Bao, M.; Rintoul, L.; Arnold, D. P. Vibrational spectroscopy of phthalocyanine and naphthalocyanine in sandwich-type (na)phthalocyaninato and porphyrinato rare earth complexes. [J] Coord. Chem. Rev.2006,250,424-448. (e) Jiang, J.; Bian, Y.; Furuya, F.; Liu, W.; Choi, M. T. M.; Kobayashi, N.; Li, H.-W.; Yang, Q.; Mak, T. C. W.; Ng, D. K. P. Synthesis, Structure, Spectroscopic Properties, and Electrochemistry of Rare Earth Sandwich Compounds with Mixed 2,3-Naphthalocyaninato and Octaethylporphyrinato Ligands. [J] Chem. Eur. J.2001,7,5059-5069. (f) Zhu, P.; Pan, N.; Li, R.; Dou, J.; Zhang, Y.; Cheng, D. Y Y.; Wang, D.; Ng, D. K. P.; Jiang, J. Electron-Donating Alkoxy-Group-Driven Synthesis of Heteroleptic Tris(phthalocyaninato) Lanthanide(Ⅲ) Triple-Deckers with Symmetrical Molecular Structure. [J] Chem. Eur. J.2005,11, 1425-1432. (g) Wang, R.; Li, R.; Bian, Y.; Choi, C.-F.; Ng, D. K. P.; Dou, J.; Wang, D.; Zhu, P.; Ma, C.; Hartnell, R. D.; Arnold, D. P.; Jiang, J. Studies of "Pinwheel-Like"Bis[1,8,15,22-tetrakis(3-pentyloxy)-phthalocyaninato] Rare Earth(Ⅲ) Double-Decker Complexes. [J] Chem. Eur. J.2005,11,7351-7357 (h) Yoshimoto, S.; Sawaguchi, T.; Su, W.; Jiang, J.; Kobayashi, N. Superstructure Formation and Rearrangement in the Adlayer of a Rare-Earth-Metal Triple-Decker Sandwich Complex at the Electrochemical Interface. [J] Angew. Chem. Int. Ed.2007,46,1071-1074. (i) Ye, T.; Takami, T.; Wang, R.; Jiang, J.; Weiss, P. S. Tuning Interactions between Ligands in Self-Assembled Double-Decker Phthalocyanine Arrays. [J] J. Am. Chem. Soc.2006, 128,10984-10985. (j) Bian, Y; Chen, X.; Wang, D.; Choi, C.-F.; Zhou, Y.; Zhu, P.; Ng, D. K. P.; Jiang, J.; Weng, Y.; Li, X. Porphyrin-Appended Europium(Ⅲ) Bis(phthalocyaninato) Complexes:Synthesis, Characterization, and Photophysical Properties. [J] Chem. Eur. J.2007,13,4169-4177. (k) Ishikawa, N.; lino, T.; Kaizu, Y. Interaction between f-Electronic Systems in Dinuclear Lanthanide Complexes with Phthalocyanines. [J] J. Am. Chem. Soc.2002,124,11440-11447. (l) Ishikawa, N.; Otsuka, S.; Kaizu, Y. The Effect of the f-f Interaction on the Dynamic Magnetism of a Coupled 4f8 System in a Dinuclear Terbium Complex with Phthalocyanines. [J] Angew. Chem. Int. Ed.2005,44,731-733.
    [3]Kirin, I. S.; Moskalev, P. N.; Makashev, Y A. Formation of phthalocyanines of rare-earth elements. [J] Russ. J. Inorg. Chem.1965,10,1065-1066.
    [4]Buchler, J. W.; Kapellmann, H. G.; Knoff, M.; Lay, K. L.; Pfeifer, S. Z. Metal complexes with tetrapyrrole ligands. [J] Naturforsch. B:Anorg. Chem. Org. Chem.1983,38B, 1339-1345.
    [5](a) Jiang, J.; Mak, T. C. W.; Ng, D. K. P. Isolation and Spectroscopic Characterization of Heteroleptic, Anionic and Neutral (Phthalocyaninato) (tetra-4-pyridylporphyrinato) lanthanide(Ⅲ) Double-Deckers. [J] Chem. Ber.1996,129,933-936. (b) Jiang, J.; Lau, R. L. C.; Chan, T.W. D.; Mak, T. C. W.; Ng, D. K. P. Synthesis and spectroscopic properties of heteroleptic sandwich-type (phthalocyaninato)(porphyrinato) lanthanide(Ⅲ) complexes. [J] Inorg. Chim. Acta.1997,255,59-64. (c) Jiang, J.; Choi, M. T. M.; Law, W.-F.; Chen, J.; Ng, D. K. P. A new pathway to heteroleptic double-decker (phthalocyaninato)(porphyrinato)europium(Ⅲ) complexes. [J] Polyhedron 1998,17, 3903-3908. (d) Jiang, J.; Liu, W.; Sun, X.; Zhang, X.; Ng, D. K. P. Isolation and Spectroscopic Characterization of Protonated Mixed [Tetrakis (4-pyridyl) porphyrinato] (phthalocyaninato) Rare Earth (Ⅲ)Double-decker Compounds. [J] Chemical Research in Chinese Universities 2001,17,134-142. (e) Lu, F.; Sun, X.; Li, R.; Liang, D.; Zhu, P.; Zhang, X.; Choi, C.-F.; Ng, D. K. P.; Fukuda, T.; Kobayashi, N.; Jiang, J. Synthesis, spectroscopic properties, and electrochemistry of heteroleptic rare earth double-decker complexes with phthalocyaninato and meso-tetrakis (4-chlorophenyl)porphyrinato
    ligands. [J] New J. Chem.2004,28,1116-1122. (f) Sun, X.; Li, R.; Wang, D.; Dou, J.; Zhu, P.; Lu, F.; Ma, C; Choi, C.-F.; Cheng, D. Y. Y.; Ng, D. K. P.; Kobayashi, N.; Jiang, J. Synthesis and Characterization of Mixed Phthalocyaninato and meso-Tetrakis(4-chlorophenyl)porphyrinato Triple-Decker Complexes-Revealing the Origin of Their Electronic Absorptions. [J] Eur. J. Inorg. Chem.2004,3806-3813. (g) Lu, F.; Zhang, L; Cui, J.; Yan, X. Synthesis and Characterization of Novel Sandwich-type Lanthanide(Ⅲ) Complexes with Mixed [tetrakis(4-chlorophenyl)porphyrinato] and [(a-octa-butoxy)phthalocyaninato] Ligands. [J] Synthesis and Reactivity in Inorganic Metal-Organic and Nano-Metal Chemistry 2005,35,463-467. (h) Wang, R.; Li, R.; Li, Y.; Zhang, X.; Zhu, P.; Lo, P.-C.; Ng, D. K. P.; Pan, N.; Ma, C.; Kobayashi, N.; Jiang, J. Controlling the Nature of Mixed (Phthalocyaninato)(porphyrinato) Rare-Earth(Ⅲ) Double-Decker Complexes:The Effects of Nonperipheral Alkoxy Substitution of the Phthalocyanine Ligand. [J] Chem. Eur. J.2006,12,1475-1485. (i) Lu, F.; Cui, J.; Yang, Q. Synthesis and characterization of four novel mixed (porphyrinato)(phthalocyaninato) sandwich-type europium(Ⅲ) complexes with [tetrakis(4-chlorophenyl)porphyrinato] and diversely substituted phthalocyaninato ligands. [J] Inorg. Chim. Acta.2007,360,2751-2757. (j) Zhang, X.; Muranaka, A.; Lv, W.; Zhang, Y.; Bian, Y.; Jiang, J.; Kobayashi, N. Optically Active Mixed Phthalocyaninato-Porphyrinato Rare-Earth Double-Decker Complexes: Synthesis, Spectroscopy, and Solvent-Dependent Molecular Conformations. [J] Chem. Eur. J.2008,14,4667-4674.
    [6]Chabach, D.; Tahiri, M.; De Cian, A.; Fischer, J.; Weiss, R.; El Malouli Bibout, M. Tervalent-Metal Porphyrin-Phthalocyanine Heteroleptic Sandwich-Type Complexes. Synthesis, Structure, and Spectroscopic Characterization of Their Neutral, Singly-Oxidized, and Singly-Reduced States. [J] J. Am. Chem. Soc.1995,117, 8548-8556.
    [7](a) Lachkar, M.; De Cian, A.; Fischer, J.; Weiss, R. Bioinorganic chemistry:an inorganic perspective of life. [J] New J. Chem.1988,12,729-731. (b) Tran-Thi, T.-H.; Mattioli, T. A.; Chabach, D.; De Cian, A.; Weiss, R. Hole Localization or Delocalization An Optical, Raman, and Redox Study of Lanthanide Porphyrin-Phthalocyanine Sandwich-Type Heterocomplexes. [J] J. Phys. Chem.1994,98,8279-8288.
    [8]Kadish, K. M.; Moninot, G.; Hu, Y.; Dubois, D.; Ibnlfassi, A.; Barbe, J.-M.; Guilard, R. Double-decker actinide porphyrins and phthalocyanines. Synthesis and spectroscopic characterization of neutral, oxidized, and reduced homo-and heteroleptic complexes. [J] J. Am. Chem. Soc.1993,115,8153-8166.
    [9]Guilard, R.; Barbe, J.-M.; Ibnlfassi, A.; Zrineh, A.; Adamian, V. A.; Kadish, K. M. Synthesis, Characterization, and Electrochemistry of Heteroleptic Double-Decker Complexes of the Type Phthalocyaninato-Porphyrinato-Zirconium(Ⅳ) or-Hafnium(Ⅳ). [J] Inorg. Chem.1995,34,1472-1481.
    [10]Tadashi, M.; Kenji, W.; Susumu, K. Porphyrin Receptors for Amines, Amino Acids, and Oligopeptides in Water. [J] J. Am. Chem. Soc.1999,121,11425-11431.
    [11]Masato, U.; Atsushi, Y.; Takeshi, Y.; Yasuo, S.; Fumio, A. A 12-Porphyrin System: Syntheses of Peptide Porphyrins with Multiple Histidines and the Aggregation Behavior in the Presence of Hemin. [J] Chemical Society of Japan Bulletin 1999,72,1351-1364
    [12]Toru, A.; Akio, T.; Katsoml, K.; Hironao, A.; Takahiro, H.; Norikazu, N. Synthesis of a membrane-spanning lipophilic porphyrin with links to two alamethicin fragments on each face. [J] J. Chem. Soc. Perkin Trans.2.2000,1381-1390.
    [13]Choma, C. T.; Kaestle, K.; Akerfeldt, K. S.; Kim, R. M.; Groves, J. T.; DeGrado, W. F. A general method for coupling unprotected peptides to bromoacetamido porphyrin templates. [J] Tetrahedron Lett.1994,35,6191-6194.
    [14]Gibson, S. L.; Nguyen, M. L.; Havens, J. J.; Barbarin, A.; Hilf, R. Relationship of δ-Aminolevulinic Acid-Induced Protoporphyrin Ⅸ Levels to Mitochondrial Content in Neoplastic Cells in Vitro. [J] Biochemistry and Biophysics Research Communication 1999,265,315-321.
    [15](a) Ni, C.; Wang, J.; Jia, M.; Qin, Z. Studies on the syntheses and spectroscopic properties of four new monosubstituted amino acid tetraphenylporphyrin zinc complexes. [J] Chinese Journal of Inorganic Chemistry 1997,13,115-118. (b) Luo, G.; Li, L.; Lian, P.; Guo, G. The Synthesis and characterization of New Amino Acid Tailed Porphyrin and their Zinc Complexes. [J] Chinese Journal of Inorganic Chemistry 2000,16,843-846. (c) Zhao, X.; Ruan, W.; Zhang, Y.; Han, H.; Zhu, Z. Synthesis and Spectrum of Chiral Boc Protected Amino Acids Linked Porphyrins. [J] Chem. J. Chinese U.2003,24, 1419-1423. (d) Dong, R. Synthesis, solution properties and photodynamic effect of phthalocyanine modified by amino acid. [J] Chemical Reagents 2004,26,321-322. (e) Wang, S.; Ruan, W.; Luo, D.; Zhu, Z. Study on Molecular Recognition of Amino Acid Esters by Novel Tetraphenylporphinatozinc Complex Modified with Chiral Tyrosine. [J] Acta. Chim. Sinica.2004,62,2165-2170.
    [16]Stites, J. G.; McCarty, C. N.; Quill, L. L. The Rare Earth Metals and their Compounds. Ⅷ. An Improved Method for the Synthesis of Some Rare Earth Acetylacetonates. [J] J. Am. Chem. Soc.1948,70,3142-3143.
    [17](a) Kasuga, K.; Kawashima, M.; Asano, K.; Sugimori, T.; Abe, K.; Kikkawa, T.; Fujiwara, T. Preparation of One Structural Isomer of Tetra-substituted Phthalocyanine, 1,8,15,22-Tetra(3'-pentoxy)phthalocyanine, and a Crystal Structure of Its Nickel(Ⅱ) Complex. [J] Chem. Lett.1996,867-868. (b) Rager, C.; Schmid, G.; Hanack, M. Influence of Substituents, Reaction Conditions and Central Metals on the Isomer Distributions of 1(4)-Tetrasubstituted Phthalocyanines. [J] Chem. Eur. J.1999,5, 280-288.
    [18](a) Cook, M. J.; Dunn, A. J.; Howe, S. D.; Thomson, A. J. Octa-alkoxy phthalocyanine and naphthalocyanine derivatives:dyes with Q-band absorption in the far red or near infrared. [J] J. Chem. Soc. Perkin Trans. I 1988,2453-2458. (b) Rihter, B. D.; Kenney, M. E.; Ford, W. E.; Rodgers, M. A. J. Synthesis and photoproperties of diamagnetic octabutoxyphthalocyanines with deep red optical absorbance. [J] J. Am. Chem. Soc. 1990,112,8064-8070.
    [19]Little, R.G The Synthesis of Covalently Linked Tetraarylporphyrin Dimers. [J] Journal of Heterocyclic Chemistry 1978,15,203-208.
    [20]Williams, A.; Ibrahim, I. T. Carbodiimide chemistry: recent advances. [J] Chem. Rev. 1981,81,589-636.
    [21](a) Guyon, F.; Pondaven, A.; Guenot, P.; L'Her, M. Bis(2,3-naphthalocyaninato) lutetium(Ⅲ) and (2,3-Naphthalocyaninato)(phthalocyaninato) lutetium(Ⅲ) Complexes: Synthesis, Spectroscopic Characterization, and Electrochemistry. [J] Inorg. Chem.1994, 33,4787-4793. (b) Cadiou, C.; Pondaven, A.; L'Her, M.; Jehan, P.; Guenot, P. An Amphiphilic Lutetium Bisphthalocyanine:Lu[(PEO)4Pc][(DodO)4Pc]. [J] J. Org. Chem. 1999,64,9046-9050.
    [1](a) Deisenhofer, J.; Epp,O.; Miki, K.; Huber, R.; Michel, H. X-ray structure analysis of a membrane protein complex:Electron density map at 3 A resolution and a model of the chromophores of the photosynthetic reaction center from Rhodopseudomonas viridis. [J] J. Mol. Biol.1984,180,385-398. (b) Deisenhofer, J.; Epp,O.; Miki, K.; Huber, R.; Michel, H. Structure of the protein subunits in the photosynthetic reaction centre of Rhodopseudomonas viridis at 3A resolution. [J] Nature 1985,318,618-624. (c) Deisenhofer, J.; Michel, H. The Photosynthetic Reaction Center from the Purple Bacterium Rhodopseudomonas viridis. [J] Science 1989,245,1463-1473. (d) Allen, J. P.; Feher, G.; Yeates, T.O.; Rees, D. C.; Deisenhofer, J.; Michel, H.; Huber, R. Structural homology of reaction centers from Rhodopseudomonas sphaeroides and Rhodopseudomonas viridis as determined by x-ray diffraction. [J] Proc. Natl. Acad. Sci. USA 1986,83,8589-8593. (e) Barber, J.; Andersson, B. Revealing the blueprint of photosynthesis. [J] Nature 1994,370,31-34. (f) Xiong, J.; Fischer, W. M.; Inoue, K.; Nakahara, M.; Bauer, C. E. Molecular Evidence for the Early Evolution of Photosynthesis. [J] Science 2000,289,1724-1730.
    [2](a) Dawson, J. H. Probing structure-function relations in heme-containing oxygenases and peroxidases. [J] Science 1988,240,433-439. (b) Tappel, A. L. Unsaturated Lipide Oxidation Catalyzed by Hematin Compounds. [J] J. Biol. Chem.1955,217,721-733. (c) Benard, H.; Gajdos, A.; Gajdostorok, M. Action of Vitamin B(12), Folic Acid and Liver Extracts on the Free Protoporphyrin Content of Red Blood Cells.[J] Nature 1951,167, 990-991. (d) Chen, Y.; Zhang, X. P. Vitamin B(12) Derivatives as Natural Asymmetric Catalysts:Enantioselective Cyclopropanation of Alkenes. [J] J. Org. Chem.2004,69, 2431-2435.
    [3](a) Imai, K. Allosteric Effects in Haemoglobin. [M] Cambridge University Press: Cambridge,1982. (b) Ackers, G. K.; Doyle, M. L.; Myers, D.; Daugherty, M. A. Molecular Code for Cooperativity in Hemoglobin. [J] Science 1992,255,54-63. (c) Wang, J. H.; Nakahara, A.; Fleischer, E. B. Hemoglobin Studies. I. The Combination of Carbon Monoxide with Hemoglobin and Related Model Compounds. [J] J. Am. Chem.
    Soc.1958,80,1109-1113. (d) Pauling, L. Nature of the Iron-Oxygen Bond in Oxyh(?)moglobin. [J] Nature 1964,203,182-183.
    [4](a) Gust, D.; Moore, T. A.; Moore, A. L. Mimicking Photo synthetic Solar Energy Transduction. [J] Ace. Chem. Res.2001,34,40-48. (b) Lin, V. S. Y.; Dimagno, S. G.; Therien, M. J. Highly conjugated, acetylenyl bridged porphyrins:new models for light-harvesting antenna systems. [J] Science 1994,264,1105-1111. (c) Guldi, D. M. Fullerene-porphyrin architectures; photosynthetic antenna and reaction center models. [J] Chem. Soc. Rev.2002,31,22-36. (d) Holten, D.; Bocian, D. F.; Lindsey, J. S. Probing Electronic Communication in Covalently Linked Multiporphyrin Arrays. A Guide to the Rational Design of Molecular Photonic Devices. [J] Ace. Chem. Res.2002,35,57-69. (e) Imahori, H.; Norieda, H.; Yamada, H.; Nishimura, Y; Yamazaki, I.; Sakata, Y.; Fukuzumi, S. Light-Harvesting and Photocurrent Generation by Gold Electrodes Modified with Mixed Self-Assembled Monolayers of Boron-Dipyrrin and Ferrocene-Porphyrin-Fullerene Triad. [J] J. Am. Chem. Soc.2001,123,100-110. (f) Burrell, A. K.; Officer, D. L.; Plieger, P. G.; Reid, D. C. W. Synthetic Routes to Multiporphyrin Arrays. [J] Chem. Rev.2001,101,2751-2796. (g) Nakano, A.; Osuka, A.; Yamazaki, I.; Yamazaki, T.; Nishimura, Y Windmill-Like Porphyrin Arrays as Potent Light-Harvesting Antenna Complexes. [J] Angew. Chem. Int. Ed.1998,37,3023-3027. (h) Anderson, S.; Anderson, H. L.; Bashall, A.; McPartlin, M.; Sanders, J. K. M. Assembly and Crystal Structure of a Photoactive Array of Five Porphyrins. [J] Angew. Chem. Int. Ed.1995,34,1096-1099. (i) Sessler, J. L.; Capuano, V. L.; Harriman, A. Electronic energy migration and trapping in quinone-substituted, phenyl-linked dimeric and trimeric porphyrins. [J] J. Am. Chem. Soc.1993,115,4618-4628. (j) Davila, J.; Harriman, A.; Milgrom, L. R. A light-harvesting array of synthetic porphyrins [J] Chem. Phy. Lett.1987,136,427-430.
    [5](a) Kojima, T.; Honda, T.; Ohkubo, K.; Shiro, M.; Kusukawa, T.; Fukuda, T.; Kobayashi, N.; Fukuzumi, S. A Discrete Supramolecular Conglomerate Composed of Two Saddle-Distorted Zinc(Ⅱ)-Phthalocyanine Complexes and a Doubly Protonated Porphyrin with Saddle Distortion Undergoing Efficient Photoinduced Electron Transfer. [J] Angew. Chem. Int. Ed.2008,47,6712-6716. (b) Whitten, D. G.; Wildes, P. D.; DeRosier, C. A. Photochemistry of metalloporphyrin complexes. Ligand photoisomerization via intramolecular energy transfer. [J] J. Am. Chem. Soc.1972,94, 7811-7823. (c) Imahori, H.; Hagiwara, K.; Aoki, M.; Akiyama, T.; Taniguchi, S.; Okada, T.; Shirakawa, M.; Sakata, Y. Linkage and Solvent Dependence of Photoinduced Electron Transfer in Zincporphyrin-C(60) Dyads. [J] J. Am. Chem. Soc.1996,118, 11771-11782. (d) Sessler, J. L.; Wang, B.; Harriman, A. Photoinduced energy transfer in associated, but noncovalently-linked photosynthetic model systems. [J] J. Am. Chem. Soc.1995,117,704-714. (e) Moore, T.A.; Gust, D.; Mathis, P.; Mialocq, J.-C; Chachaty, C.; Bensasson, R. V.; Land, E. J.; Doizi, D.; Liddell, P. A.; Lehman, W. R.; Nemeth, G. A.; Moore, A. L. Photodriver charge separation in a carotenoporphyrin-quinone triad. [J] Nature 1984,307,630-632. (f) Liddell, P. A.; Kuciauskas, D.; Sumida, J. P.; Nash, B.; Nguyen, D.; Moore, A. L.; Moore, T. A.; Gust, D. Photoinduced Charge Separation and Charge Recombination to a Triplet State in a Carotene-Porphyrin-Fullerene Triad. [J] J. Am. Chem. Soc.1997,119,1400-1405. (g) Ward, M. D. Photo-induced electron and energy transfer in non-covalently bonded supramolecular assemblies. [J] Chem. Soc. Rev.1997,26,365-375. (h) Jiang, D. L.; Aida, T. Morphology-Dependent Photochemical Events in Aryl Ether Dendrimer Porphyrins:Cooperation of Dendron Subunits for Singlet Energy Transduction. [J] J. Am. Chem. Soc.1998,120,10895-10901. (i) Imahori, H.; Tamaki, K.; Guldi, D. M.; Luo, C. P.; Fujitsuka, M.; Ito, O.; Sakata, Y.; Fukuzumi, S. Modulating Charge Separation and Charge Recombination Dynamics in Porphyrin-Fullerene Linked Dyads and Triads:Marcus-Normal versus Inverted Region. [J] J. Am. Chem. Soc.2001,123, 2607-0617. (j) Imahori, H.; Guldi, D. M.; Tamaki, K.; Yoshida, Y; Luo, C. P.; Sakata, Y.; Fukuzumi, S. Charge Separation in a Novel Artificial Photosynthetic Reaction Center Lives 380 ms. [J] J. Am. Chem. Soc.2001,123,6617-6628. (k) Hunter, C. A.; Hyde, R. K. Photoinduced Energy and Electron Transfer in Supramolecular Porphyrin Assemblies. [J] Angew. Chem. Int. Ed.1996,35,1936-1939. (1) Sharma, C. V. K.; Broker, G. A.; Huddleston, J. G.; Baldwin, J. W.; Metzger, R. M.; Rogers, R. D. Design Strategies for Solid-State Supramolecular Arrays Containing Both Mixed-Metalated and Freebase Porphyrins. [J] J. Am. Chem. Soc.1999,121,1137-1144. (m) El-Khouly, M. E.; Ito, O.; Smith, P. M.; D'Souza, F. Intermolecular and supramolecular photoinduced electron transfer processes of fullerene-porphyrin/phthalocyanine systems. [J] J. Photochem. Photobiol., C 2004,5,79-104. (n) Harriman, A.; Sauvage, J. P. A strategy for constructing photo synthetic models:porphyrin-containing modules assembled around transition metals. [J] Chem. Soc. Rev.1996,25,41-48. (o) Imahori, H.; Mori, Y.; Matano, Y. Nanostructured artificial photosynthesis. [J] J. Photochem. Photobiol., C 2003,4,51-83.
    [6](a) Maeda, C.; Kamada, T.; Aratani, N.; Osuka, A. Chiral self-discriminative self-assembling of meso-meso linked diporphyrins. [J] Coord. Chem. Rev.2007,251, 2743-2752. (b) Ogoshi, H.; Mizutani, T. Multifunctional and Chiral Porphyrins:Model Receptors for Chiral Recognition. [J] Ace. Chem. Res.1998,31; 81-89. (c) Collman, J. P.; Fu, L. Synthetic Models for Hemoglobin and Myoglobin. [J] Ace. Chem. Res.1999, 32,455-463. (d) Konishi, K.; Miyazaki, K.; Aida, T.; Inoue, S. Photoinduced conformational ruffling of distorted porphyrin. Optical resolution and photochemical behavior of chiral "single-armed" porphyrin complexes. [J] J. Am. Chem. Soc.1990, 112,5639-5640. (e) Konishi, K.; Oda, K.; Nishida, K.; Aida, T.; Inoue, S. Asymmetric epoxidation of olefins catalyzed by manganese complexes of chiral "strapped" porphyrins with diastereotopic faces. A novel strategy for stereochemical modeling of the active site of cytochrome P-450. [J] J. Am. Chem. Soc.1992,114,1313-1317. (f) Konishi, K.; Yahara, K.; Toshishige, H.; Aida, T.; Inoue, S. A Novel Anion-Binding Chiral Receptor Based on a Metalloporphyrin with Molecular Asymmetry. Highly Enantioselective Recognition of Amino Acid Derivatives. [J] J. Am. Chem. Soc.1994, 116,1337-1344. (g) Mizuno, Y.; Aida, T.; Yamaguchi, K. Chirality-Memory Molecule: Crystallographic and Spectroscopic Studies on Dynamic Molecular Recognition Events by Fully Substituted Chiral Porphyrins. [J] J. Am. Chem. Soc.2000,122,5278-5285. (h) Chiang, L. C.; Konishi, K.; Aida, T.; Inoue, S. Asymmetric oxidation of sulfides catalysed by an iron complex of C2-chiral strapped porphyrin as a conceptually new P-450 model catalyst. [J] J. Chem. Soc. Chem. Commun.1992,254-256. (i) Che, C. M.; Huang, J. S.; Lee, F. W.; Li, Y.; Lai, T. S.; Kwong, H. L.; Teng, P. F.; Lee, W. S.; Lo, W. C.; Peng, S. M.; Zhou, Z. Y Asymmetric Inter-and Intramolecular Cyclopropanation of Alkenes Catalyzed by Chiral Ruthenium Porphyrins. Synthesis and Crystal Structure of a Chiral Metalloporphyrin Carbene Complex. [J] J. Am. Chem. Soc.2001,123, 4119-4129. (j) Liang, J. L.; Huang, J. S.; Yu, X. Q.; Zhu, N. Y.; Che, C. M. Metalloporphyrin-Mediated Asymmetric Nitrogen-Atom Transfer to Hydrocarbons: Aziridination of Alkenes and Amidation of Saturated C-H Bonds Catalyzed by Chiral Ruthenium and Manganese Porphyrins. [J] Chem. Eur. J.2002,8,1563-1572. (k) Groves, J. T.; Myers, R. S. Catalytic asymmetric epoxidations with chiral iron porphyrins. [J] J. Am. Chem. Soc.1983,105,5791-5796. (1) Groves, J. T.; Viski, P. Asymmetric hydroxylation by a chiral iron porphyrin. [J] J. Am. Chem. Soc.1989,111, 8537-8538. (m) Berkessel, A.; Frauenkron, M. Catalytic asymmetric epoxidation with a chiral ruthenium porphyrin and N-oxides. [J] J. Chem. Soc. Perkin. Trans.1 1997, 2265-2266. (n) Veyrat, M.; Maury,O.; Faverjon, F.; Over, D. E.; Ramasseul, R.; Marchon, J. C.; Turowskatyrk, I.; Scheidt, W. R. Chiroporphyrins:An Approach to Asymmetric Catalysts with Stereocenters Near the Plane of the Porphyrin Ring. [J] Angew. Chem. Int. Ed.1994,33,220-223. (o) Paolesse, R.; Monti, D.; La Monica, L. Venanzi, M.; Froiio, A.; Nardis, S.; Di Natale, C.; Martinelli, E.; D'Amico A. Preparation and Self-assembly of Chiral Porphyrin Diads on the Gold Electrodes of Quartz Crystal Microbalances:A Novel Potential Approach to the Development of Enantioselective Chemical Sensors. [J] Chem. Eur. J.2002,8,2476-2483. (p) Boyd, P. D. W.; Hodgson, M. C.; Rickard, C. E. F.; Oliver, A. G.; Chaker, L.; Brothers, P. J.; Bolskar, R. D.; Tham, F. S.; Reed, C. A. Selective Supramolecular Porphyrin/Fullerene Interactions. [J] J. Am. Chem. Soc.1999,121,10487-10495. (q) Boyd, P. D. W.; Reed, C. A. Fullerene-Porphyrin Constructs. [J] Acc. Chem. Res.2005,38,235-242. (r) Tashiro, K.; Aida, T.; Zheng, J.-.Y.; Kinbara, K.; Saigo, K.; Sakamoto, S.; Yamaguchi, K. A Cyclic Dimer of Metalloporphyrin Forms a Highly Stable Inclusion Complex with C(60). [J] J. Am. Chem. Soc.1999,121,9477-9478. (s) Tashiro, K.; Aida, T. Metalloporphyrin hosts for supramolecular chemistry of fullerenes. [J] Chem. Soc. Rev.2007,36,189-197. (t) Bonar-law, R. P.; Sanders, J. K. M. Polyol Recognition by a Steroid-Capped Porphyrin. Enhancement and Modulation of Misfit Guest Binding by Added Water or Methanol. [J] J. Am. Chem. Soc.1995,117,259-271. (u) Taylor, P. N.; Anderson, H. L, Cooperative Self-Assembly of Double-Strand Conjugated Porphyrin Ladders. [J] J. Am. Chem. Soc.1999,121,11538-11545. (v) Kubo, Y.; Yamamoto, M.; Ikeda, M.; Takeuchi, M.; Shinkai, S.; Yamaguchi, S.; Tamao, K. A Colorimetric and Ratiometric Fluorescent Chemosensor with Three Emission Changes: Fluoride Ion Sensing by a Triarylborane-Porphyrin Conjugate. [J] Angew. Chem. Int. Ed.2003,42,2036-2040. (w) Crossley, M. J.; Mackay, L. G.; Try, A. C. Enantioselective recognition of histidine and lysine esters by porphyrin chiral clefts and detection of amino acid conformations in the bound state. [J] J. Chem. Soc. Chem. Commun.1995,1925-1927. (x) Huang, X. F.; Rickman, B. H.; Borhan, B.; Berova, N.; Nakanishi, K. Zinc Porphyrin Tweezer in Host-Guest Complexation:Determination of Absolute Configurations of Diamines, Amino Acids, and Amino Alcohols by Circular Dichroism. [J] J. Am. Chem. Soc.1998, 120,6185-6186. (y) Gunter, M. J.; Hockless, D. C. R.; Johnston, M. R.; Skelton, B. W.; White, A. H. Self-Assembling Porphyrin [2]-Catenanes. [J] J. Am. Chem. Soc.1994, 116,4810-4823.
    [7](a) Torres, T. Perspectives in the selective synthesis of phthalocyanines and related compounds. [J] J. Porphyrins Phthalocyanines 2000,4,325-330. (b) Kobayashi, N. Optically active phthalocyanines. [J] Coord. Chem. Rev.2001,219-221,99-123, and references cited therein.
    [8](a) Cho, I.; Lim, Y. Synthesis and Morphology of New Discogenic Phthalocyanine Derivatives. [J] Mol. Cryst. Liq. Cryst.1988,154,9-26. (b) Rager, C.; Schmid, G.; Hanack, M. Influence of Substituents, Reaction Conditions and Central Metals on the Isomer Distributions of 1(4)-Tetrasubstituted Phthalocyanines. [J] Chem. Eur. J.1999,5, 280-288. (c) Engelkamp, H.; Middelbeek, S.; Nolte, R. J. M. Self-Assembly of Disk-Shaped Molecules to Coiled-Coil Aggregates with Tunable Helicity. [J] Science 1999,284,785-788. (d) Kimura, M.; Muto, T.; Takimoto, H.; Wada, K.; Ohta, K. Hanabusa, K.; Shirai, H.; Kobayashi, N. Fibrous Assemblies Made of Amphiphilic Metallophthalocyanines. [J] Langmuir 2000,16,2078-2082. (e) Kimura, M.; Kuroda, T. Ohta, K.; Hanabusa, K.; Shirai, H.; Kobayashi, N. Self-Organization of Hydrogen-Bonded Optically Active Phthalocyanine Dimers. [J] Langmuir 2003,19, 4825-4830. (f) Lee, H.; Kim, D.; Lee, H. K.; Qiu, W. F.; Oh, N. K.; Zin, W. C.; Kim, K. Discotic liquid crystalline materials for potential nonlinear optical applications: synthesis and liquid crystalline behavior of 1,3,5-triphenyl-2,4,6-triazine derivatives containing achiral and chiral alkyl chains at the periphery. [J] Tetrahedron Lett.2004,45, 1019-1022. (g) Muto, T.; Sassa, T.; Wada, T.; Kimura, M.; Shirai, H. Enhanced Third-order Optical Nonlinearity in Helical Assembly of a Chiral Vanadyl Phthalocyanine. [J] Chem. Lett.2004,33,132-133. (h) Rai, R.; Saxena, A.; Ohira, A.; Fujiki, M. Programmed Hyperhelical Supramolecular Assembly of Nickel Phthalocyanine Bearing Enantiopure 1-(p-Tolyl)ethylaminocarbonyl Groups. [J] Langmuir 2005,21,3957-3962. (i) Adachi, K.; Chayama, K.; Watarai, H. Formation of Helical J-Aggregate of Chiral Thioether-Derivatized Phthalocyanine Bound by Palladium(Ⅱ) at the Toluene/Water Interface. [J] Langmuir 2006,22,1630-1639. (j) Kandaz, M.; Cetin, H. S.; Koca, A.; Ozkaya, A. R. Metal ion sensing multi-functional differently octasubstituted ionophore chiral metallophthalocyanines:Synthesis, characterization, spectroscopy, and electrochemistry. [J] Dyes Pigm.2007,74,298-305.
    [9](a) Nemykin, V. N.; Koposov, A. Y.; Subbotin, R. I.; Sharma, S. Preparation and characterization of first optically active rigid phthalocyanine dimmers. [J] Tetrahedron Lett.2007,48,5425-5428. (b) Fox, J. M.; Katz, T. J.; Van Elshocht, S.; Verbiest, T.; Kauranen, M.; Persoons, A.; Thongpanchang, T.; Krauss, T.; Brus, L. Synthesis, Self-Assembly, and Nonlinear Optical Properties of Conjugated Helical Metal Phthalocyanine Derivatives. [J] J. Am. Chem. Soc.1999,121,3453-3459. (c) Liu, H. W.; Chen, C. F.; Ai, M.; Gong, A. J.; Jiang, J.; Xi, F. Synthesis of optically active 1,1%-binaphthyl-phthalocyanines linked via a crown ether unit. [J] Tetrahedron: Asymmetry 2000,11,4915-4922. (d) Wang, P.; Zhang, S.; Wu, P. J.; Ye, C.; Liu, H. W.; Xi, F. Optical limiting properties of optically active phthalocyanine derivatives. [J] Chem. Phys. Lett.2001,340,261-266. (e) Liu, H. W.; Liu, Y. H.; Liu, M. H.; Chen, C. F.; Xi, F. Synthesis and properties of optically active 6,6'-didodecyl-1,1'-binaphthyl-phthalocyanine linked through crown ether units. [J] Tetrahedron Lett.2001,42,7083-7086.
    [10](a) Ishikawa, N.; lino, T.; Kaizu, Y. Interaction between f-Electronic Systems in Dinuclear Lanthanide Complexes with Phthalocyanines. [J] J. Am. Chem. Soc.2002, 124,11440-11447. (b) Ishikawa, N.; Otsuka, S.; Kaizu, Y. The Effect of the f-f Interaction on the Dynamic Magnetism of a Coupled 4f8 System in a Dinuclear Terbium Complex with Phthalocyanines. [J] Angew. Chem. Int. Ed.2005,44,731-733. (c) Liu, Z.; Yasseri, A. A.; Lindsey, J. S.; Bocian, D. F. Molecular Memories That Survive Silicon Device Processing and Real-World Operation. [J] Science 2003,302,1543-1545. (d) Wei, L.; Padmaja, K.; Youngblood, W. J.; Lysenko, A. B.; Lindsey, J. S.; Bocian, D. F. Diverse Redox-Active Molecules Bearing Identical Thiol-Terminated Tripodal Tethers for Studies of Molecular Information Storage. [J] J. Org. Chem.2004,69, 1461-1469.
    [11](a) Jiang, J.; Ng, D. K. P. A Decade Journey in the Chemistry of Sandwich-Type Tetrapyrrolato-Rare Earth Complexes. [J] Acc. Chem. Res.2009,42,79-88. (b) Jiang, J.; Kasuga, K.; Arnold, D. P. in Supramolecular Photosensitive and Electroactive Materials. [M] (Ed.:Nalwa, H. S.), Academic Press, New York,2001, chapter 2, pp.113-210. (c) Ng, D. K. P.; Jiang, J.; Sandwich-type heteroleptic phthalocyaninato and porphyrinato metal complexes. [J] Chem. Soc. Rev.1997,26,433-442. (d) Jiang, J.; Liu, W.; Arnold, D. P. Sandwich complexes of naphthalocyanine with the rare earth metals. [J] J. Porphyrins Phthalocyanines 2003,7,459-473. (e) Jiang, J.; Bao, M.; Rintoul, L.; Arnold, D. P. Vibrational spectroscopy of phthalocyanine and naphthalocyanine in sandwich-type (na)phthalocyaninato and porphyrinato rare earth complexes. [J] Coord. Chem. Rev.2006,250,424-448.
    [12](a) Jiang, J.; Bian, Y.; Furuya, F.; Liu, W.; Choi, M. T. M.; Kobayashi, N.; Li, H.-W.; Yang, Q.; Mak, T. C. W.; Ng, D. K. P. Synthesis, Structure, Spectroscopic Properties, and Electrochemistry of Rare Earth Sandwich Compounds with Mixed 2,3-Naphthalocyaninato and Octaethylporphyrinato Ligands. [J] Chem. Eur. J.2001,7, 5059-5069. (b) Bian, Y.; Jiang, J.; Tao, Y.; Choi, M. T. M.; Li, R.; Ng, A. C. H.; Zhu, P.; Pan, N.; Sun, X.; Arnold, D. P.; Zhou, Z.-Y.; Li, H.-W.; Mak, T. C. W.; Ng, D. P. K. Tuning the Valence of the Cerium Center in (Na)phthalocyaninato and Porphyrinato Cerium Double-Deckers by Changing the Nature of the Tetrapyrrole Ligands. [J] J. Am. Chem. Soc.2003,125,12257-12267. (c) Wang, R.; Li, R.; Bian, Y.; Choi, C.-F.; Ng, D. K. P.; Dou, J.; Wang, D.; Zhu, P.; Ma, C.; Hartnell, R. D.; Arnold, D. P.; Jiang, J. Studies of "Pinwheel-Like"Bis[1,8,15,22-tetrakis(3-pentyloxy)-phthalocyaninato] Rare Earth(Ⅲ) Double-Decker Complexes. [J] Chem. Eur. J.2005,11,7351-7357. (d) Wang, R.; Li, R.; Li, Y.; Zhang, X.; Zhu, P.; Lo, P.-C.; Ng, D. K. P.; Pan, N.; Ma, C.; Kobayashi, N.; Jiang, J. Controlling the Nature of Mixed (Phthalocyaninato)(porphyrinato) Rare-Earth(Ⅲ) Double-Decker Complexes:The Effects of Nonperipheral Alkoxy Substitution of the Phthalocyanine Ligand. [J] Chem. Eur. J.2006,12,1475-1485. (e) Bian, Y.; Chen, X.; Wang, D.; Choi, C.-F.; Zhou, Y.; Zhu, P.; Ng, D. K. P.; Jiang, J.; Weng, Y.; Li, X. Porphyrin-Appended Europium(Ⅲ) Bis(phthalocyaninato) Complexes:Synthesis, Characterization, and Photophysical Properties. [J] Chem. Eur. J.2007,13,4169-4177. (f) Zhang, Y.; Cai, X.; Yao, P.; Xu, H.; Bian, Y.; Jiang, J. Location of the Hole and Acid Proton in Neutral Nonprotonated and Protonated Mixed (Phthalocyaninato)(porphyrinato) Yttrium Double-Decker Complexes:Density Functional Theory Calculations. [J] Chem. Eur. J.2007,13,9503-9514. (g) Lu, G.; Chen, Y.; Zhang, Y.; Bao, M.; Bian, Y.; Li, X.; Jiang, J. Morphology Controlled Self-Assembled Nanostructures of Sandwich Mixed (Phthalocyaninato)(Porphyrinato) Europium Triple-Deckers. Effect of Hydrogen Bonding on Tuning the Intermolecular Interaction. [J] J. Am. Chem. Soc.2008,130,11623-11630. (h) Yoshimoto, S.; Sawaguchi, T.; Su, W.; Jiang, J.; Kobayashi, N. Superstructure Formation and Rearrangement in the Adlayer of a Rare-Earth-Metal Triple-Decker Sandwich Complex at the Electrochemical Interface. [J] Angew. Chem. Int. Ed.2007,46,1071-1074. (i) Ye, T.; Takami, T.; Wang, R.; Jiang, J.; Weiss, P. S. Tuning Interactions between Ligands in Self-Assembled Double-Decker Phthalocyanine Arrays. [J] J. Am. Chem. Soc.2006, 128,10984-10985.
    [13](a) Tashiro, K.; Konishi, K.; Aida, T. Enantiomeric Resolution of Chiral Metallobis(porphyrin)s:Studies on Rotatability of Electronically Coupled Porphyrin Ligands. [J] Angew. Chem. Int. Ed.1997,36,856-858. (b) Tashiro, K.; Fujiwara, T.; Konishi, K.; Aida, T. Rotational oscillation of two interlocked porphyrins in cerium bis(5,15-diarylporphyrinate) double-deckers. [J] Chem. Commun.1998,1121-1122. (c) Tashiro, K.; Konishi, K.; Aida, T. Metal Bisporphyrinate Double-Decker Complexes as Redox-Responsive Rotating Modules. Studies on Ligand Rotation Activities of the Reduced and Oxidized Forms Using Chirality as a Probe. [J] J. Am. Chem. Soc.2000, 122,7921-7926.
    [14](a) Takeuchi, M.; Imada, T.; Shinkai, S. A Strong Positive Allosteric Effect in the Molecular Recognition of Dicarboxylic Acids by a Cerium(Ⅳ) Bis[tetrakis(4-pyridyl)-porphyrinate] Double Decker. [J] Angew. Chem. Int. Ed.1998, 37,2096-2099. (b) Sugasaki, A.; Ikeda, M.; Takeuchi, M.; Robertson, A.; Shinkai S. Efficient chirality transcription utilizing a cerium(Ⅳ) double decker porphyrin:a prototype for development of a molecular memory system. [J] J. Chem. Soc. Perkin Trans.11999,128,3259-3264. (c) Sugasaki, A.; Ikeda, M.; Takeuchi, M.; Shinkai, S. Novel Oligosaccharide Binding to the Cerium(Ⅳ) Bis(porphyrinate) Double Decker: Effective Amplification of a Binding Signal through Positive Homotropic Allosterism. [J] Angew. Chem. Int. Ed.2000,39,3839-3842. (d) Takeuchi, M.; Ikeda, M.; Sugasaki, A.;
    Shinkai, S. Molecular Design of Artificial Molecular and Ion Recognition Systems with Allosteric Guest Responses. [J] Acc. Chem. Res.2001,34,865-873. (e) Ikeda, M.; Takeuchi, M.; Shinkai, S.; Tani, F.; Naruta, Y.; Sakamoto, S.; Yamaguchi, K. Allosteric Binding of an Ag+ Ion to Cerium(Ⅳ) Bis-porphyrinates Enhances the Rotational Activity of Porphyrin Ligands. [J] Chem. Eur. J.2002,8,5541-5550.
    [15]Negrimovskii, V. M.; Bouvet, M.; Luk'yanets, E. A.; Simon, J. Towards chiral 1,2-naphthalocyanines:2. Synthesis of lutetium bismacrocyclic derivatives. [J] J. Porphyrins Phthalocyanines 2001,5,423-427.
    [16]Zhang, X.; Muranaka, A.; Lv, W.; Zhang, Y.; Bian, Y.; Jiang, J.; Kobayashi, N. Optically Active Mixed Phthalocyaninato-Porphyrinato Rare-Earth Double-Decker Complexes:Synthesis, Spectroscopy, and Solvent-Dependent Molecular Conformations. [J] Chem. Eur. J.2008,14,4667-4674.
    [17]Kasuga, K.; Kawashima, M.; Asano, K.; Sugimori, T.; Abe, K.; Kikkawa, T.; Fujiwara, T. Preparation of One Structural Isomer of Tetra-substituted Phthalocyanine, 1,8,15,22-Tetra(3'-pentoxy)phthalocyanine, and a Crystal Structure of Its Nickel(Ⅱ) Complex. [J] Chem. Lett.1996,867-868.
    [18]Bian, Y.; Li, L.; Dou, J.; Cheng, D. Y Y.; Li, R.; Ma, C.; Ng, D. K. P.; Kobayashi, N.; Jiang. J. Synthesis, Structure, Spectroscopic Properties, and Electrochemistry of (1,8,15,22-Tetrasubstituted phthalocyaninato)lead Complexes. [J] Inorg. Chem.2004,43, 7539-7544.
    [19](a) Bian, Y.; Wang, R.; Jiang, J.; Lee, C.-H.; Wang, J.; Ng, D. K. P. Synthesis, spectroscopic characterisation and structure of the first chiral heteroleptic bis(phthalocyaninato) rare earth complexes. [J] Chem. Commun.2003,1194-1195. (b) Bian, Y.; Wang, R.; Wang, D.; Zhu, P.; Li, R.; Dou, J.; Liu, W.; Choi, C.-F.; Chan, H.-S.; Ma, C.; Ng, D. K. P.; Jiang, J. Synthesis, Structure, and Spectroscopic and Electrochemical Properties of Heteroleptic Bis(phthalocyaninato) Rare Earth Complexes with a C4 Symmetry. [J] Helv. Chim. Acta 2004,87,2581-2596.
    [20]Bian, Y.; Li, L.; Wang, D.; Choi, C.-F.; Cheng, D. Y Y.; Zhu, P.; Li, R.; Dou, J.; Wang, R.; Pan, N.; Ng, D. K. P.; Kobayashi, N.; Jiang, J. Synthetic, Structural, Spectroscopic, and Electrochemical Studies of Heteroleptic Tris(phthalocyaninato) Rare Earth Complexes. [J] Eur. J. Inorg. Chem.2005,2612-2618.
    [21]In this step, upon refluxing in 1-octanol for prolonged time (> 24h), the p-amino groups of H2TAPP reacted with 1-octanol producing p-octylamino groups efficiently. Thus, half-sandwich complexes [MⅢ(acac)(TOAPP)] were formed instead of [MⅢ(acac)(TAPP)]. The reported examples of directly N-alkylation of anilines with alkyl alcohols can be seen:(a) Watanabe, Y.; Morisaki, Y.; Kondo, T.; Mitsudo, T. Ruthenium Complex-Controlled Catalytic N-Mono-or N,N-Dialkylation of Heteroaromatic Amines with Alcohols. [J] J. Org. Chem.1996,61,4214-4218. (b) Fujita, K.; Li, Z.; Ozeki, N.; Yamaguchi, R. N-Alkylation of amines with alcohols catalyzed by a Cp*Ir complex. [J] Tetrahedron Lett.2003,44,2687-2690. (c) Fujita, K.; Enoki, Y.; Yamaguchi, R. Cp*Ir-catalyzed N-alkylation of amines with alcohols. A versatile and atom economical method for the synthesis of amines. [J] Tetrahedron 2008,64, 1943-1954. (d) Balcells, D.; Nova, A.; Clot, E.; Gnanamgari, D.; Crabtree, R. H.; Eisenstein, O. Mechanism of Homogeneous Iridium-Catalyzed Alkylation of Amines with Alcohols from a DFT Study. [J] Organometallics 2008,27,2529-2535. (e) Blank, B.; Madalska, M.; Kempe, R. An Efficient Method for the Selective Iridium-Catalyzed Monoalkylation of (Hetero)aromatic Amines with Primary Alcohols. [J] Adv. Synth. Catal.2008,350,749-758.
    [22]Tran-Thi, T.-H.; Mattioli, T. A.; Chabach, D.; De Cian, A.; Weiss, R. Hole Localization or Delocalization? An Optical, Raman, and Redox Study of Lanthanide Porphyrin-Phthalocyanine Sandwich-Type Heterocomplexes. [J] J. Phys. Chem.1994, 98,8279-8288.
    [23]Kadish, K. M.; Moninot, G.; Hu, Y.; Dubois, D.; Ibnlfassi, A.; Barbe, J.-M.; Guilard, R. Double-decker actinide porphyrins and phthalocyanines. Synthesis and spectroscopic characterization of neutral, oxidized, and reduced homo-and heteroleptic complexes. [J] J. Am. Chem. Soc.1993,115,8153-8166.
    [24]Jiang, J.; Mak, T. C. W.; Ng, D. K. P. Isolation and Spectroscopic Characterization of Heteroleptic, Anionic and Neutral (Phthalocyaninato) (tetra-4-pyridylporphyrinato) lanthanide(Ⅲ) Double-Deckers. [J] Chem. Ber.1996,129,933-936.
    [25]Guilard, R.; Barbe, J.-M.; Ibnlfassi, A.; Zrineh, A.; Adamian, V. A.; Kadish, K. M. Synthesis, Characterization, and Electrochemistry of Heteroleptic Double-Decker Complexes of the Type Phthalocyaninato-Porphyrinato-Zirconium(Ⅳ) or-Hafnium(Ⅳ). [J] Inorg. Chem.1995,34,1472-1481.
    [26]Chabach, D.; Tahiri, M.; De Cian, A.; Fischer, J.; Weiss, R.; El Malouli Bibout, M. Tervalent-Metal Porphyrin-Phthalocyanine Heteroleptic Sandwich-Type Complexes. Synthesis, Structure, and Spectroscopic Characterization of Their Neutral, Singly-Oxidized, and Singly-Reduced States. [J] J. Am. Chem. Soc.1995,117, 8548-8556.
    [27]Williams, A.; Ibrahim, I. T. Carbodiimide chemistry:recent advances. [J] Chem. Rev. 1981,81,589-636.
    [28]Normal phase analytic high-performance liquid chromatography (HPLC) was performed at 20 ℃ using a (?)4.6×150 mm HiQ SIL (KYA Tech. Co.) column with hexane/CHCl3 (1:3 to 1:1, v/v) as an eluent at a flow rate of 0.5 or 1.0 mL.min(-1), monitored by a UV detector at 400 nm.
    [29](a) Zhang, Y.; Cai, X.; Zhou, Y.; Zhang, X.; Xu, H.; Liu, Z.; Li, X.; Jiang, J. Structures and Spectroscopic Properties of Bis(phthalocyaninato) Yttrium and Lanthanum Complexes:Theoretical Study Based on Density Functional Theory Calculations. [J] J. Phys. Chem. A 2007,111,392-400. (b) Muranaka, A.; Matsumoto, Y.; Uchiyama, M.; Jiang, J.; Bian, Y.; Ceulemans, A.; Kobayashi, N. Definitive Assignments of the Visible-Near-IR Bands of Porphyrin-Naphthalocyanine Rare-Earth Sandwich Double-and Triple-Decker Compounds by Magnetic Circular Dichroism Spectroscopy. [J] Inorg. Chem.2005,44,3818-3826.
    [30]Stites, J. G.; McCarty, C. N.; Quill, L. L. The Rare Earth Metals and their Compounds. Ⅷ. An Improved Method for the Synthesis of Some Rare Earth Acetylacetonates. [J] J. Am. Chem. Soc.1948,70,3142-3143.
    [31](a) Bettelheim, A.; White, B. A.; Raybuck, S. A.; Murray, R.W. Electrochemical polymerization of amino-, pyrrole-, and hydroxy-substituted tetraphenylporphyrins. [J] Inorg. Chem.1987,26,1009-1017. (b) Sorrell, T. N.; Bump, C. M.; Jordan, J. (Dioxygen)(N-Methylimidazole)[(All-Cis)-5,10,15,20-Tetrakis [2-(2,2-Dimethylpropionamido)-Phenyl] Porphyrinato(2-)] Iron(Ⅱ). [M] Inorg. Synth. 1980,20,161-169.
    [32]SMART and SAINT for Windows NT Software Reference Manuals, Version 5.0, Bruker Analytical X-Ray Systems, Madison, WI,1997.
    [33]G. M. Sheldrick, SADABS-A Software for Empirical Absorption Correction, University of Gottingen,1997.
    [34]SHELXL Reference Manual, Version 5.1, Bruker Analytical X-Ray Systems, Madison, WI,1997.
    [35](a) Lee, C.; Yang, W.; Parr, R. G. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. [J] Phys. Rev. B 1988,37,785-789. (b) Becke, A. D. J. Density-functional thermochemistry. Ⅲ. The role of exact exchange. [J] Chem. Phys.1993,98,5648-5652.
    [36](a) Hay, P. J.; Wadt, W. R. Ab initio effective core potentials for molecular calculations. Potentials for K to Au including the outermost core orbitals. [J] J. Chem. Phys.1985,82, 299-310. (b) Dunning, T. H.; Hay P. J. in Modern Theoretical Chemistry, [M] Vol.3, (Ed.:H. F. Schaefer Ⅲ), Plenum, New York,1976.
    [37]Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Montgomery, J. A.; Jr. Vreven, T.; Kudin, K. N.; Burant, J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev,O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich, S.; Daniels, A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M. Gill,; P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C.; Pople, J. A. Gaussian 03, Revision B.05; Gaussian, Inc.:Pittsburgh, PA,2004.
    [1](a) Deisenhofer, J.; Epp,O.; Miki, K.; Huber, R.; Michel, H. Structure of the protein subunits in the photosynthetic reaction centre of Rhodopseudomonas viridis at 3A resolution. [J] Nature 1985,318,618-624. (b) Deisenhofer, J.; Michel, H. The Photosynthetic Reaction Center from the Purple Bacterium Rhodopseudomonas viridis. [J] Science 1989,245,1463-1473. (c) Barber, J.; Andersson, B. Revealing the blueprint of photosynthesis. [J] Nature 1994,370,31-34. (d) Xiong, J.; Fischer, W. M.; Inoue, K.; Nakahara, M.; Bauer, C. E. Molecular Evidence for the Early Evolution of Photosynthesis. [J] Science 2000,289,1724-1730.
    [2](a) Dawson, J. H. Probing structure-function relations in heme-containing oxygenases and peroxidases. [J] Science 1988,240,433-439. (b) Benard, H.; Gajdos, A.; Gajdostorok, M. Action of Vitamin B(12), Folic Acid and Liver Extracts on the Free Protoporphyrin Content of Red Blood Cells.[J] Nature 1951,167,990-991.
    [3](a) Imai, K. Allosteric Effects in Haemoglobin. [M] Cambridge University Press: Cambridge,1982. (b) Ackers, G. K.; Doyle, M. L.; Myers, D.; Daugherty, M. A. Molecular Code for Cooperativity in Hemoglobin. [J] Science 1992,255,54-63. (c) Pauling, L. Nature of the Iron-Oxygen Bond in Oxyhaemoglobin. [J] Nature 1964,203, 182-183.
    [4](a) Gust, D.; Moore, T. A.; Moore, A. L. Mimicking Photosynthetic Solar Energy Transduction. [J] Acc. Chem. Res.2001,34,40-48. (b) Lin, V. S. Y.; Dimagno, S. G.; Therien, M. J. Highly conjugated, acetylenyl bridged porphyrins:new models for light-harvesting antenna systems. [J] Science 1994,264,1105-1111. (c) Guldi, D. M. Fullerene-porphyrin architectures; photosynthetic antenna and reaction center models. [J] Chem. Soc. Rev.2002,31,22-36. (d) Holten, D.; Bocian, D. F.; Lindsey, J. S. Probing Electronic Communication in Covalently Linked Multiporphyrin Arrays. A Guide to the Rational Design of Molecular Photonic Devices. [J] Acc. Chem. Res.2002,35,57-69. (e) Burrell, A. K.; Officer, D. L.; Plieger, P. G.; Reid, D. C. W. Synthetic Routes to Multiporphyrin Arrays. [J] Chem. Rev.2001,101,2751-2796.
    [5](a) Kojima, T.; Honda, T.; Ohkubo, K.; Shiro, M.; Kusukawa, T.; Fukuda, T.; Kobayashi, N.; Fukuzumi, S. A Discrete Supramolecular Conglomerate Composed of Two Saddle-Distorted Zinc(Ⅱ)-Phthalocyanine Complexes and a Doubly Protonated Porphyrin with Saddle Distortion Undergoing Efficient Photoinduced Electron Transfer. [J] Angew. Chem. Int. Ed.2008,47,6712-6716. (b) Whitten, D. G.; Wildes, P. D.; DeRosier, C. A. Photochemistry of metalloporphyrin complexes. Ligand photoisomerization via intramolecular energy transfer. [J] J. Am. Chem. Soc.1972,94, 7811-7823. (c) Imahori, H.; Hagiwara, K.; Aoki, M.; Akiyama, T.; Taniguchi, S.; Okada, T.; Shirakawa, M.; Sakata, Y. Linkage and Solvent Dependence of Photoinduced Electron Transfer in Zincporphyrin-C(60) Dyads. [J] J. Am. Chem. Soc.1996,118, 11771-11782. (d) Sessler, J. L.; Wang, B.; Harriman, A. Photoinduced energy transfer in associated, but noncovalently-linked photosynthetic model systems. [J] J. Am. Chem. Soc.1995,117,704-714. (e) Moore, T.A.; Gust, D.; Mathis, P.; Mialocq, J.-C.; Chachaty, C.; Bensasson, R. V.; Land, E. J.; Doizi, D.; Liddell, P. A.; Lehman, W. R.; Nemeth, G. A.; Moore, A. L. Photodriver charge separation in a carotenoporphyrin-quinone triad. [J] Nature 1984,307,630-632. (f) Liddell, P. A.; Kuciauskas, D.; Sumida, J. P.; Nash, B.; Nguyen, D.; Moore, A. L.; Moore, T. A.; Gust, D. Photoinduced Charge Separation and Charge Recombination to a Triplet State in a Carotene-Porphyrin-Fullerene Triad. [J] J. Am. Chem. Soc.1997,119,1400-1405. (g) Ward, M. D. Photo-induced electron and energy transfer in non-covalently bonded supramolecular assemblies. [J] Chem. Soc. Rev.1997,26,365-375. (h) Jiang, D. L, Aida, T. Morphology-Dependent Photochemical Events in Aryl Ether Dendrimer Porphyrins:Cooperation of Dendron Subunits for Singlet Energy Transduction. [J] J. Am. Chem. Soc.1998,120,10895-10901. (i) Imahori, H.; Tamaki, K.; Guldi, D. M.; Luo, C. P.; Fujitsuka, M.; Ito, O.; Sakata, Y.; Fukuzumi, S. Modulating Charge Separation and Charge Recombination Dynamics in Porphyrin-Fullerene Linked Dyads and Triads:Marcus-Normal versus Inverted Region. [J] J. Am. Chem. Soc.2001,123, 2607-0617.(j) Imahori, H.; Guldi, D. M.; Tamaki, K.; Yoshida, Y.; Luo, C. P.; Sakata, Y.; Fukuzumi, S. Charge Separation in a Novel Artificial Photosynthetic Reaction Center Lives 380 ms. [J] J. Am. Chem. Soc.2001,123,6617-6628. (k) Sharma, C. V. K.; Broker, G. A.; Huddleston, J. G.; Baldwin, J. W.; Metzger, R. M.; Rogers, R. D. Design Strategies for Solid-State Supramolecular Arrays Containing Both Mixed-Metalated and Freebase Porphyrins. [J] J. Am. Chem. Soc.1999,121,1137-1144. (l) Harriman, A.; Sauvage, J. P. A strategy for constructing photosynthetic models:porphyrin-containing modules assembled around transition metals. [J] Chem. Soc. Rev.1996,25,41-48.
    [6](a) Maeda, C.; Kamada, T.; Aratani, N.; Osuka, A. Chiral self-discriminative self-assembling of meso-meso linked diporphyrins. [J] Coord. Chem. Rev.2007,251, 2743-2752. (b) Ogoshi, H.; Mizutani, T. Multifunctional and Chiral Porphyrins:Model Receptors for Chiral Recognition. [J] Acc. Chem. Res.1998,31; 81-89. (c) Collman, J. P.; Fu, L. Synthetic Models for Hemoglobin and Myoglobin. [J] Acc. Chem. Res.1999, 32,455-463. (d) Konishi, K.; Miyazaki, K.; Aida, T.; Inoue, S. Photoinduced conformational ruffling of distorted porphyrin. Optical resolution and photochemical behavior of chiral "single-armed" porphyrin complexes. [J] J. Am. Chem. Soc.1990, 112,5639-5640. (e) Konishi, K.; Oda, K.; Nishida, K.; Aida, T.; Inoue, S. Asymmetric epoxidation of olefins catalyzed by manganese complexes of chiral "strapped" porphyrins with diastereotopic faces. A novel strategy for stereochemical modeling of the active site of cytochrome P-450. [J] J. Am. Chem. Soc.1992,114,1313-1317. (f) Konishi, K.; Yahara, K.; Toshishige, H.; Aida, T.; Inoue, S. A Novel Anion-Binding Chiral Receptor Based on a Metalloporphyrin with Molecular Asymmetry. Highly Enantioselective Recognition of Amino Acid Derivatives. [J] J. Am. Chem. Soc.1994, 116,1337-1344. (g) Mizuno, Y.; Aida, T.; Yamaguchi, K. Chirality-Memory Molecule: Crystallographic and Spectroscopic Studies on Dynamic Molecular Recognition Events by Fully Substituted Chiral Porphyrins. [J] J. Am. Chem. Soc.2000,122,5278-5285. (h) Che, C. M.; Huang, J. S.; Lee, F. W.; Li, Y.; Lai, T. S.; Kwong, H. L.; Teng, P. F.; Lee, W. S.; Lo, W. C.; Peng, S. M.; Zhou, Z. Y. Asymmetric Inter-and Intramolecular Cyclopropanation of Alkenes Catalyzed by Chiral Ruthenium Porphyrins. Synthesis and Crystal Structure of a Chiral Metalloporphyrin Carbene Complex. [J] J. Am. Chem. Soc. 2001,123,4119-4129. (i) Groves, J. T.; Myers, R. S. Catalytic asymmetric epoxidations with chiral iron porphyrins. [J] J. Am. Chem. Soc.1983,105,5791-5796. (j) Groves, J. T.; Viski, P. Asymmetric hydroxylation by a chiral iron porphyrin. [J] J. Am. Chem. Soc. 1989,111,8537-8538. (k) Boyd, P. D. W.; Hodgson, M. C.; Rickard, C. E. F.; Oliver, A. G.; Chaker, L.; Brothers, P. J.; Bolskar, R. D.; Tham, F. S.; Reed, C. A. Selective Supramolecular Porphyrin/Fullerene Interactions. [J] J. Am. Chem. Soc.1999,121, 10487-10495. (1) Boyd, P. D. W.; Reed, C. A. Fullerene-Porphyrin Constructs. [J] Acc. Chem. Res.2005,38,235-242. (m) Tashiro, K.; Aida, T.; Zheng, J.-Y.; Kinbara, K.; Saigo, K.; Sakamoto, S.; Yamaguchi, K. A Cyclic Dimer of Metalloporphyrin Forms a Highly Stable Inclusion Complex with C(60). [J] J. Am. Chem. Soc.1999,121,9477-9478. (n) Tashiro, K.; Aida, T. Metalloporphyrin hosts for supramolecular chemistry of fullerenes. [J] Chem. Soc. Rev.2007,36,189-197. (o) Bonar-law, R. P.; Sanders, J. K. M. Polyol Recognition by a Steroid-Capped Porphyrin. Enhancement and Modulation of Misfit Guest Binding by Added Water or Methanol. [J] J. Am. Chem. Soc.1995,117, 259-271. (p) Taylor, P. N.; Anderson, H. L. Cooperative Self-Assembly of Double-Strand Conjugated Porphyrin Ladders. [J] J. Am. Chem. Soc.1999,121, 11538-11545. (q) Huang, X. F.; Rickman, B. H.; Borhan, B.; Berova, N.; Nakanishi, K. Zinc Porphyrin Tweezer in Host-Guest Complexation:Determination of Absolute Configurations of Diamines, Amino Acids, and Amino Alcohols by Circular Dichroism. [J] J. Am. Chem. Soc.1998,120,6185-6186. (r) Gunter, M. J.; Hockless, D. C. R.; Johnston, M. R.; Skelton, B. W.; White, A. H. Self-Assembling Porphyrin [2]-Catenanes. [J] J. Am. Chem. Soc.1994,116,4810-4823.
    [7]Collman, J. P.; Zhang, X. M.; Vigil, Lee. et al. Regioselective and Enantioselsctive Epoxidatic Catalyzed by Metallporphrins. [J] Science,1993,261,1404-1411.
    [8]Laha, J. K.; Dhanalekshmi, S.;, Taniguchi, M.; Ambroise, A.; Lindsey, J. S. A Scalable Synthesis of Meso-Substituted Dipyrromethanes. [J] Org. Process Res. Dev.2003,7, 799-812.
    [9]Shoji, Y.; Tashiro, K.; Aida, T. Selective Extraction of Higher Fullerenes Using Cyclic Dimers of Zinc Porphyrins. [J] J. Am. Chem. Soc.2004,126,6570-6571.
    [10]Littler, B. J.; Ciringh, Y.; Lindsey, J.S. Investigation of Conditions Giving Minimal Scrambling in the Synthesis of trans-Porphyrins from Dipyrromethanes and Aldehydes. [J] J. Org. Chem.1999,64,2864-2872.
    [1](a) Phthalocyanine:Properties and Applications, [M] Vol.1-4; (Eds.:Lever, A. B. P.; Leznoff, C. C), VCH, New York,1989-1996. (b) Phthalocyanines Materials:Synthesis, Structure and Function; [M] (Ed.:McKeown, N. B.), Cambridge University Press, New York,1998. (c) The Porphyrin Handbook, [M] Vol.1-20; (Eds.:Kadish, K. M.; Smith, K. M.; Guilard, R.), Academic Press, San Diego,2000 and 2003. (d) Senge, M. O.; Fazekas, M.; Notaras, E. G. A.; Blau, W. J.; Zawadzka, M.; Locos, O. B.; Ni Mhuircheartaigh, E. M. Adv. Mater.2007,19,2734-2774.
    [2](a) Jiang, J.; Kasuga, K.; Arnold, D. P. in Supramolecular Photosensitive and Electroactive Materials; [M] (Ed.:Nalwa, H. S.), Academic Press, New York,2001, chapter 2, pp.113-210. (b) Ng, D. K. P.; Jiang, J. Chem. Soc. Rev.1997,26,433-442. (c) Jiang, J.; Liu, W.; Arnold, D. P. J. Porphyrins Phthalocyanines 2003,7,459-473. (d) Jiang, J.; Bao, M.; Rintoul, L.; Arnold, D. P. Coord. Chem. Rev.2006,250,424-448. (e) Jiang, J.; Bian, Y; Furuya, F.; Liu, W.; Choi, M. T. M.; Kobayashi, N.; Li, H.-W.; Yang, Q.; Mak, T. C. W.; Ng, D. K. P. Chem. Eur. J.2001,7,5059-5069. (f) Zhu, P.; Pan, N.; Li, R.; Dou, J.; Zhang, Y; Cheng, D. Y Y.; Wang, D.; Ng, D. K. P.; Jiang, J. Chem. Eur. J. 2005,11,1425-1432. (g) Wang, R.; Li, R.; Bian, Y.; Choi, C.-F.; Ng, D. K. P.; Dou, J.; Wang, D.; Zhu, P.; Ma, C.; Hartnell, R. D.; Arnold, D. P.; Jiang, J. Chem. Eur. J.2005,11, 7351-7357 (h) Yoshimoto, S.; Sawaguchi, T.; Su, W.; Jiang, J.; Kobayashi, N. Angew. Chem. Int. Ed.2007,46,1071-1074. (i) Ye, T.; Takami, T.; Wang, R.; Jiang, J.; Weiss, P. S. J. Am. Chem. Soc.2006,128,10984-10985. (j) Bian, Y.; Chen, X.; Wang, D.; Choi, C.-F.; Zhou, Y.; Zhu, P.; Ng, D. K. P.; Jiang, J.; Weng, Y.; Li, X. Chem. Eur. J.2007,13, 4169-4177. (k) Ishikawa, N.; lino, T.; Kaizu, Y J. Am. Chem. Soc.2002,124, 11440-11447. (l) Ishikawa, N.; Otsuka, S.; Kaizu, Y Angew. Chem. Int. Ed.2005,44, 731-733.
    [3]Kirin, I. S.; Moskalev, P. N.; Makashev, Y. A. Russ. J. Inorg. Chem.1965,10,1065-1066.
    [4]Buchler, J. W.; Kapellmann, H. G.; Knoff, M.; Lay, K. L.; Pfeifer, S. Z. Naturforsch. B. 1983,38,1339-1345.
    [5](a) Jiang, J.; Mak, T. C. W.; Ng, D. K. P. Chem. Ber.1996,129,933-936. (b) Jiang, J.; Lau, R. L. C.; Chan, T.W. D.; Mak, T. C. W.; Ng, D. K. P. Inorg. Chim. Acta.1997,255, 59-64. (c) Jiang, J.; Choi, M. T. M.; Law, W.-F.; Chen, J.; Ng, D. K. P. Polyhedron 1998, 17,3903-3908. (d) Jiang, J.; Liu, W.; Sun, X.; Zhang, X.; Ng, D. K. P. Chemical Research in Chinese Universities 2001,17,134-142. (e) Lu, F.; Sun, X.; Li, R.; Liang, D.; Zhu, P.; Zhang, X.; Choi, C.-F.; Ng, D. K. P.; Fukuda, T.; Kobayashi, N.; Jiang, J. New J. Chem.2004,28,1116-1122. (f) Sun, X.; Li, R.; Wang, D.; Dou, J.; Zhu, P.; Lu, F.; Ma, C; Choi, C.-F.; Cheng, D. Y. Y.; Ng, D. K. P.; Kobayashi, N.; Jiang, J. Eur. J. Inorg. Chem.2004,3806-3813. (g) Lu, F.; Zhang, L; Cui, J.; Yan, Z. Synthesis and Reactivity in Inorganic Metal-Organic and Nano-Metal Chemistry 2005,35,463-467. (h) Wang, R.; Li, R.; Li, Y.; Zhang, X.; Zhu, P.; Lo, P.-C.; Ng, D. K. P.; Pan, N.; Ma, C.; Kobayashi, N.; Jiang, J. Chem. Eur. J.2006,12,1475-1485. (i) Lu, F.; Cui, J.; Yang, Q. Inorg. Chim. Acta.2007,360,2751-2757. (j) Zhang, X.; Muranaka, A.; Lv, W.; Zhang, Y.; Bian, Y.; Jiang, J.; Kobayashi, N. Chem. Eur. J.2008,14,4667-4674.
    [6]Chabach, D.; Tahiri, M.; De Cian, A.; Fischer, J.; Weiss, R.; El Malouli Bibout, M. J. Am. Chem. Soc.1995,117,8548-8556.
    [7](a) Lachkar, M.; De Cian, A.; Fischer, J.; Weiss, R. New J. Chem.1988,12,729-731. (b) Tran-Thi, T.-H.; Mattioli, T. A.; Chabach, D.; De Cian, A.; Weiss, R. J. Phys. Chem.1994, 98,8279-8288.
    [8]Kadish, K. M.; Moninot, G.; Hu, Y.; Dubois, D.; Ibnlfassi, A.; Barbe, J.-M.; Guilard, R. J. Am. Chem. Soc.1993,115,8153-8166.
    [9]Guilard, R.; Barbe, J.-M.; Ibnlfassi, A.; Zrineh, A.; Adamian, V. A.; Kadish, K. M. Inorg. Chem.1995,34,1472-1481.
    [10]Tadashi, M.; Kenji, W.; Susumu, K. J. Am. Chem. Soc.1999,121,11425-11431.
    [11]Masato, U.; Atsushi, Y.; Takeshi, Y.; Yasuo, S.; Fumio, A. Chemical Society of Japan Bulletin 1999,72,1351-1364
    [12]Toru, A.; Akio, T.; Katsoml, K.; Hironao, A.; Takahiro, H.; Norikazu, N. J. Chem. Soc. Perkin Trans.2.2000,1381-1390.
    [13]Choma, C. T.; Kaestle, K.; Akerfeldt, K. S.; Kim, R. M.; Groves, J. T.; DeGrado, W. F. Tetrahedron Lett.1994,35,6191-6194.
    [14]Gibson, S. L.; Nguyen, M. L.; Havens, J. J.; Barbarin, A.; Hilf, R. Biochemistry and
    Biophysics Research Communication 1999,265,315-321.
    [15](a) Ni, C.; Wang, J.; Jia, M.; Qin, Z. Chinese Journal of Inorganic Chemistry 1997,13, 115-118. (b) Luo, G.; Li, L.; Lian, P.; Guo, G. Chinese Journal of Inorganic Chemistry 2000,16,843-846. (c) Peng, X.; Huang, J.; Ji, L. Synth. React. Inorg. Met.-Org. Chem. 2000,30,791-802. (d) Zhao, X.; Ruan, W.; Zhang, Y.; Han, H.; Zhu, Z. Chem. J. Chinese U.2003,24,1419-1423. (e) Dong, R. Chemical Reagents 2004,26,321-322. (f) Wang, S.; Ruan, W.; Luo, D.; Zhu, Z. Acta. Chim. Sinica.2004,62,2165-2170. (g) Liu, H.; Tian, J.; Ying, X. Chinese J. Struct. Chem.2005,24,263-268.
    [16]Stites, J. G.; McCarty, C. N.; Quill, L. L. J. Am. Chem. Soc.1948,70,3142-3143.
    [17](a) Kasuga, K.; Kawashima, M.; Asano, K.; Sugimori, T.; Abe, K.; Kikkawa, T.; Fujiwara, T. Chem. Lett.1996,867-868. (b) Rager, C.; Schmid, G.; Hanack, M. Chem. Eur. J.1999,5,280-288.
    [18](a) Cook, M. J.; Dunn, A. J.; Howe, S. D.; Thomson, A. J. J. Chem. Soc. Perkin Trans. I 1988,2453-2458. (b) Rihter, B. D.; Kenney, M. E.; Ford, W. E.; Rodgers, M. A. J. J. Am. Chem. Soc.1990,112,8064-8070.
    [19]Little, R.G. Journal of Heterocyclic Chemistry 1978,15,203-208.
    [20]Williams, A.; Ibrahim, I. T. Chem. Rev.1981,81,589-636.
    [21](a) Guyon, F.; Pondaven, A.; Guenot, P.; L'Her, M. Inorg. Chem.1994,33,4787-4793. (b) Cadiou, C; Pondaven, A.; L'Her, M.; Jehan, P.; Guenot, P. J. Org. Chem.1999,64, 9046-9050.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700