用户名: 密码: 验证码:
轻质复合构件车体便携式加工设备研制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着科学技术的迅猛发展,新型特种车辆不仅需要优良的防护性能,也需要尽可能轻的车体重量,满足现代作战高机动性的要求。因此,需要努力进行装甲防护单元轻量化的研究。研究表明,工程陶瓷/玻璃钢轻质复合构件具有非常广阔的应用前景。但由于传统工艺的制约,在轻质复合构件车体成型过程中,无法准确预留一些装配特征,尤其是大量连接孔,需要根据装配现场的要求进行二次加工。因此,需要研制一种专用便携式加工设备来满足现场加工的需求。
     根据装配现场需求对便携式加工设备进行总体结构设计,综合考虑整机重量和结构刚度的影响,确定真空吸盘底座、支架、滑块和连接块等零部件的结构尺寸和材料,选择动力设备,研制样机。
     为了确保真空吸盘底座能够可靠吸附在工件上,需要对密封结构进行接触分析。利用Pro/E建立密封结构的三维几何模型,导入ANSYS中分析橡胶密封圈与工件的接触情况,重点讨论了橡胶硬度对接触的影响。
     考虑ANSYS Workbench在整机分析方面的优势,利用其对便携式加工设备进行整机模态分析,再利用模态测试仪器对整机进行模态试验,比较有限元仿真与试验测试的模态结果。结果表明电机工作频率与整机固有频率相差较大,不容易发生共振。因此,设备结构设计和电机选型合理,整机动态特性较好。
     为了验证所研制的便携式加工设备能够满足轻质复合构件的加工需求,需要用其进行加工试验。选择设备转速、定压进给压力和金刚石套料钻壁厚作为试验因素,进行三因素三水平的正交试验,分析各因素与加工时间的关系,得出最佳工艺参数,并通过方差分析,明确各因素对加工时间的影响程度。为了进一步提高孔加工质量,研制了预应力施加装置,并从加工试验和有限元分析两方面说明该装置使用效果明显。
With the rapid development of science and technology, new special vehicles should not only have excellent protective performance, but also light body weight, in order to meet the requirements of high mobility of modern warfare. Therefore, it is necessary to do some research on reducing the weight of protective unit. Research shows that engineering ceramics/GFRP light composite structure has a very broad application prospect. Because of the constraints of traditional technology, some assembly features can not be accurately set aside in the process of body shaping, especially a large number of connective holes, which should be drilled according to the requirements of assembly. So a dedicated portable processing equipment should be developed to meet the processing needs.
     The overall structure design of the portable processing equipment should meet the requirements of assembly site. The structure dimensions and materials of some parts, such as suction cup base, support, slide and connective block, should be determined by considering the impact of total weight and structural stiffness. A prototype will be developed after selecting a motor.
     In order to ensure that the suction cup base can be adsorbed on the workpiece, contact analysis is needed to sealing structure.3D geometric model of sealing structure, which is created in Pro/E, is imported into ANSYS to analyze the contact performance between rubber seal and workpiece, especially discussing the impact of rubber hardness on the contact.
     Because of the advantage of machine analysis, ANSYS Workbench is used to analyze the machine modal of the portable processing equipment. And then, modal testing equipment is used to test the machine modal. Comparison is carried out between finite element analysis and testing results. The results show that the frequencies of the motor are very different from the machine natural frequencies, so it is not easy to set up resonance. Therefore, the structure design and motor selection of the portable processing equipment are reasonable. Dynamic characteristics of the equipment are good.
     In order to verify that the portable processing equipment can meet the processing needs of light composite structure, processing experiment is needed. Selecting speed, feed pressure and wall thickness of diamond trepanning drill as experimental factors, three factors and three level orthogonal experiment is carried out in order to analyze the relationship between factors and processing time and obtain optimal processing parameters. And then, analysis of variance (ANOVA) is used to show the significance of the factors. A pre-stressing equipment is developed to further improve the quality of drilling. The results of processing experiment and finite element analysis show that the pre-stressing equipment plays an important role on improving the quality of holes.
引文
[1]张自强,赵宝荣,张锐生等.装甲防护技术基础[M].北京:兵器工业出版社,2000.
    [2]郑慕侨,冯崇植,蓝祖佑.坦克装甲车辆[M].北京:北京理工大学出版社,2003.
    [3]姚东.轻质复合构件专用加工设备的设计研究[D].南京:南京理工大学,2009.
    [4]张国青,黄辉,徐西鹏.钎焊单层金刚石薄壁钻头钻削工程陶瓷的研究[J].矿冶工程,2008,28(3):110-113.
    [5]穆惠民,袁海荣,穆泽华.玻璃钢机械加工[M].北京:化学工业出版社,2007.
    [6]程寓,李少华,胡小秋,袁军堂.轻质复合构件的孔加工技术研究[J].南京理工大学学报,2007,31(1):39-41.
    [7]郑雷.高性能轻质材料及其复合构件的加工技术研究[D].南京:南京理工大学,2007.
    [8]李超,刘建超.复合材料装甲技术的发展及应用[J].化工新型材料,2004,32(6):46-48.
    [9]李少华.陶瓷复合构件的加工技术研究[D].南京:南京理工大学,2006.
    [10]张所邦,周玉龙.金刚石薄壁钻技术的发展与展望[J].探矿工程,2003,增刊:187-189.
    [11]刘华昌.高性能工程陶瓷孔加工的金刚石套钻磨损特性研究[D].南京:南京理工大学,2007.
    [12]吴宗泽.机械结构设计准则与实例[M].北京:机械工业出版社,2006.
    [13]王宝超.便携式关节型三坐标测量仪的研制[D].北京:机械科学研究总院,2007.
    [14]Hongbo Shan, Shuxia Li. Function principle structure model for conceptual design[C].2009 IEEE 10th International Conference on Computer-Aided Industrial Design & Conceptual Design(CAID&CD 2009),2009,1150-1153.
    [15]Ruihua Li, Shimin Wei, Qizheng Liao, Zhensong Ni. Structure Design and Simulation Analysis of the Double Meshing Gear Motor[C].2009 International Asia Conference on Informatics in Control, Automation, and Robotics(CAR 2009),2009,175-179.
    [16]董选普,李继强.铸造工艺学[M].北京:化学工业出版社,2009.
    [17]潘复生,张丁非等.铝合金及应用[M].北京:化学工业出版社,2006.
    [18]Thompson S., Cockcroft S. L., Wells M. A.. Advanced light metals casting development:solidification of aluminium alloy A356[J]. Materials Science and Technology,2004,20(2):194-200.
    [19]王良文,王新杰,张建堂,杨国宪.ZJR250型金刚石钻孔机[J].工程机械,2003,8:14-16.
    [20]Motahhari H.R., Hareland G., Nygaard R., Bond B.. Method of optimizing motor and bit performance for maximum ROP[J]. Journal of Canadian Petroleum Technology, 2009,48(6):44-49.
    [21]王勖成.有限单元法[M].北京:清华大学出版社,2003.
    [22]张洪信.有限元基础理论与ANSYS应用[M].北京:机械工业出版社,2006.
    [23]余会凌.真空吸夹具中的非线性有限元分析及应用研究[D].南京:东南大学,2006.
    [24]付平,常德功.密封设计手册[M].北京:化学工业出版社,2009.
    [25]PutmanD.. Seven versatile sealing materials[J]. Machine Design International,2007, 79(3):62-68.
    [26]俞鲁五.介绍一种静密封用密封件——矩形密封圈[J].流体传动与控制,2006,5:44-46.
    [27]谭晶,杨卫明,丁玉梅,李建国等.矩形橡胶密封圈的有限元分析[J].润滑与密封,2007,32(2):36-39.
    [28]Qu Shengguan, Xia Wei, Han Lifa, Xiao Zhiyu, Chen Weiping, Li Yuanyuan. Wear and sealing characteristics of engine valve guide[J]. Chinese Journal of Mechanical Engineering (English Edition),2005,18(3):434-438.
    [29]Hu Jibin, Jiang Chao, Sun Guanghui. Analysis of force characteristic and friction state on the sealing ring used in composite transmission[J]. Journal of Beijing Institute of Technology,2007,16(2):146-150.
    [30]谭晶,杨卫明,丁玉梅等.O形橡胶密封圈密封性能的有限元分析[J].润滑与密封,2006,9:65-69.
    [31]易太连.不可压缩弹性体静态性能分析[J].海军工程大学学报,2002,14(1):76-80.
    [32]Fired I., Johonson A. R.. Nonlinear computation of axisymmetric solid rubber deformation[J]. Computer Methods in Applied Mechanics and Engineering,1998, 67:241-253.
    [33]孙健,迟可伟,冯茂林,张文明.特殊形状橡胶密封圈的性能分析[J].航空动力学报,2007,22(1):30-36.
    [34]孙健,迟可伟,冯茂林,张文明.流体密封橡胶圈密封性能分析[J].润滑与密封,2006,1:102-105.
    [35]张朝晖.ANSYS 11.0结构分析工程应用实例解析[M].北京:机械工业出版社,2008.
    [36]张洪雁,曹寿德,王景鹤.高性能橡胶密封材料[M].北京:化学工业出版社,2007.
    [37]胡海岩.机械振动基础[M].北京:北京航空航天大学出版社,2005.
    [38]黄国权.有限元法基础及ANSYS应用[M].北京:机械工业出版社,2004.
    [39]李兵,何正嘉,陈雪峰.ANSYS Workbench设计、仿真与优化[M].北京:清华大学出版社,2008.
    [40]Zecher, John. Development of an instructional tutorial for teaching finite element analysis using ansys workbench[C].2008 ASEE Annual Conference and Exposition, 2008.
    [41]董凯夫.MK7132A数控卧轴矩台平面磨床的试验模态分析[D].杭州:浙江工业大学,2008.
    [42]李军芳.高速精密压力机动态特性分析[D].南京:南京农业大学,2006.
    [43]李德葆,陆秋海.工程振动试验分析[M].北京:清华大学出版社,2004.
    [44]沈松,应怀樵,雷速华,赵增欣.用锤击法和变时基技术进行黄河铁路桥的模态试验分析[J].振动工程学报,2000,13(3):492-495.
    [45]Wang Wenlin, Cheng Siyuan, Luo Mingjun, Zou Jun. Experimental modal test for structure refinement of an automotive chassis[C].2010 International Conference on Measuring Technology and Mechatronics Automation(ICMTMA 2010),2010,2: 174-177.
    [46]郭丽.高性能轻质装甲材料加工技术的研究[D].南京:南京理工大学,2006.
    [47]孙路华,全燕鸣,钟文旺.碳纤维复合材料高速钻削力的研究[J].纤维复合材料,2005,4:30-32.
    [48]J. Campos Rubio, A.M. Abrao, P.E. Faria, A. Esteves Correia, J. Paulo Davim. Effects of high speed in the drilling of glass fibre reinforced plastic:Evaluation of the delamination factor[J]. International Journal of Machine Tools & Manufacture,2008, 48:715-720.
    [49]李云雁,胡传荣.试验设计与数据处理[M].北京:化学工业出版社,2005.
    [50]J. Paulo Davim, Pedro Reis. Experimental study of drilling glass fiber reinforced plastics (GFRP) manufactured by hand lay-up[J]. Composites Science and Technology,2004,64:289-297.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700