用户名: 密码: 验证码:
立式同轴离心磨机磨矿理论与试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
磨矿是选矿、冶金、化工及建材等行业的重要作业,其设备磨机也是生产中的主要设备。磨矿作业对整个国民经济影响很大,目前我国每年有100亿吨以上矿料需要粉碎,全国每年的发电量有5%以上消耗于磨矿,全国每年有100万吨以上钢材消耗于磨矿,因此,磨矿作业的增效降耗具有十分重要的意义。基于这个目的,昆明理工大学开发研制了一种新型的粉磨设备—立式同轴离心磨机。立式同轴离心磨机是一种离心式磨机,主要由筒体、机架、传动机构、给料机构、导向机构和排料机构组成,其工作原理可以简单描述为:物料在高速旋转的筒体带动下作离心运动,并在筒体内导向板的作用下改变运动轨迹,发生冲击、挤压和磨剥作用而被磨碎。
     本论文以新型的立式同轴离心磨机为研究对象,采用理论分析、数值模拟和试验相结合的方法对立式同轴离心磨机的磨矿理论进行了一些基础性的研究。研究内容主要涉及以下六个方面:
     本文对立式同轴离心磨机的结构特征和工作原理进行了详细分析,研究认为,立式同轴离心磨机具有以下几个方面的主要优点:磨机单位容积生产能力高,磨机不需要使用衬板,磨机可用于介质磨和自磨,磨机可用于粗磨和超细磨以及产品粒度均匀。磨机内物料主要受来自研磨介质和自身的冲击力、挤压力和剪切力的联合作用而粉碎。筒体内物料所受的离心力的计算式为:C=(?),通过计算发现,在设计的转速范围内,磨机旋转产生的离心加速度为重力加速度的15-45倍。筒体内的两相流的速度和压力分布基本符合强制涡的速度和压力分布规律,即在磨机筒体的同一横截面上,离中心越远的地方速度和压力越大,离中心越近的地方速度和压力则越小。
     立式同轴离心磨机内流场的受力和运动状态非常复杂。对磨机内介质的受力状况和运动状态进行了分析,推导出了钢球冲击运动过程的轨迹方程为:y-y0=(?)(χ0-χ)。从运动轨迹方程可以看出,冲击运动轨迹仅与导向板在磨机筒体内的位置有关,而与其它因素无关。推导出了钢球冲击到筒壁瞬间的合速度v求解公式为:v=(?),磨机中钢球冲击到筒体上的冲击速度v与磨机转速n及筒体半径R成正比例关系。通过调节磨机筒体内导向板的角度α就可以调节法向分速度vn和切向分速度v,的大小,从而调节冲击力和剪切力的大小推导出了钢球对物料的冲击力F求解公式为:F=(?),磨机钢球介质对物料所产生的冲击力F与钢球质量m、磨机转速n和筒体半径R都呈线性增加的关系,与导向板角度α的余弦值成正比例关系。推导出了钢球在单位时间内的冲击频率K求解公式为:钢球在单位时间内的冲击频率K与磨机转速n及导向板的位置参数α、β有关,而与筒体半径R无关,提高磨机转速能增加钢球在单位时间内对物料的冲击频率,从而提高粉磨效率。
     利用CFD软件对立式同轴离心磨机流场进行数值模拟,可以看出流场的速度梯度变化,即离筒体中心越远的流体速度越大,离筒体中心越近的流体速度则越小。压强变化较大的区域位于导向板附近的区域,在导向板的前后两端压强较大,是主要的研磨区域;在导向板与筒体之间的夹层压强较小,研磨效果较差。进一步研究发现,磨机粉磨的主要区域是远离筒体中心靠近筒壁的环形带,其中导向板前后两端附近区域为冲击粉碎的主要区域,其它区域为压力与磨剥粉碎的主要区域。
     磨机的转速、给矿量和浓度是磨矿过程的主要操作参数,对磨矿结果有直接影响。用硫铁矿作原料进行立式同轴离心磨机自磨参数试验研究,结果表明:磨机转速和给矿量对磨矿效果有很大的影响。在相同的磨机转速下,产品的平均粒度随着给矿量的减少而减小,但随着给矿量逐步减少,平均粒度的减小幅度有所变缓。随着磨机转速的提高,磨机的处理能力迅速提高,同时产品平均粒度迅速减小,证实了提高磨机转速能大大促进磨矿效率的提高。磨矿浓度对磨矿效果有一定的影响。当磨矿浓度为55%时,产品粒度较大,磨矿效果相对较差,而磨矿浓度在60%-70%之间的产品粒度则比较接近,当磨矿浓度为70%时,矿浆的粘度较大,会造成排料不畅。因此,将磨矿浓度选择为60%-65%是比较合适的。在进行与普通球磨机磨矿对比试验后发现,立式同轴离心磨机每吨矿耗电与球磨机基本相当,但立式同轴离心磨机的单位容积生产率为球磨机的4.57倍,说明这种新型磨机在增加磨矿效率方面具有较大的优势。
     用钒钛磁铁矿尾矿作原料进行介质磨矿的参数试验研究,结果表明:当给矿量不变时,磨矿产品的细度随着转速的提高而减小,转速越高,越有利于细磨。当磨机转速一定时,磨矿产品的细度随着给矿量的增加而增大,且变化梯度逐步增大。
     磨矿动力学反映了磨矿的快慢程度。本文通过在不同的磨机转速下对立式同轴离心磨机的磨矿动力学进行试验研究,研究发现:通过推导可以得到磨矿产品粒度分布的磨矿动力学方程通式:Ri(t)=Ri(0)exp[-k(d)tn(d)],由该磨矿动力学方程通式,通过曲线拟合求参数的方法,可以得出不同磨机转速时的立式同轴离心磨机的磨矿动力学方程,从而可以求出任意时刻、任一粒级的磨矿产品分布率。当磨机转速相同时,磨矿速率随磨矿时间的增加而减小,并且磨矿速率的减小在较短的时间内更加明显,时间越长,减小的趋势越缓慢,尤其是当转速较高的时候,物料将在很短的时间内被磨得很细。当磨矿时间相同时,磨矿速率随磨机转速的提高而迅速增大,转速越高,这种趋势越明显。
Grinding is an important operation in the industries of mineral processing, metallurgy, chemical engineering and building materials and so on, which greatly affects the entire national economy, because over 10 billion tons of ores need to be comminuted annually in China, over 5 percent of eletricity power of the whole country and 1 million tons of steel are consumed in the grinding stage annually. Therefore, improving efficiency and reducing consumption in the grinding operation is of great significance. For this purpose, Kunming University of Science and Technology developed a new type of grinding equipment-Vertical Coaxial Centrifugal Mill (VCCM). VCCM is a kind of centrifugal mill, and is mainly made up of drum, frame, driving device, feed device, oriented device and discharge device. The operating principle of VCCM can describe as:the materiel makes the centrifugal movement drived by the high speed rotation drum, then its movement track is changed by the oriented plate in the drum, thus the materiel is ground by the combined action of impact, extrusion and shear.
     Some basic researches on the grinding theory of the VCCM are made in this Ph.D dissertation by the methods such as theoretical analysis, numerical simulation and laboratory experiment. The main contents are as follows:
     Detailed analysis of structural characteristics and operating principle of VCCM shows that VCCM has several main advantages:high production capacity of unit volume, almost no liner consumption, extensive using in either conventional grinding or autogenous grinding, either for coarse grinding or ultrafine grinding and uniform size of product, etc.. In VCCM, Material is comminuted by the joint role of impact force, extrusion force and shear stress from the grinding media and other materials. The calculation formula of centrifugal force of the materiel in the drum is C(?). The centrifugal acceleration made by drum rotation are 15-45 times than the gravity acceleration when the mill speed is inside the pale of design. The speed and pressure distributions of two-phase flow in the drum almost accord with the distribution law of speed and pressure of forced eddy, namely, in the same cross section of the drum, the farther away from the center, the larger the speed and pressure are, vice versa.
     The state of the force and movement of the flowfield in VCCM is very complex. After analyzing the state of the force and movement of the medium in VCCM, the trajectory equation of the impact movement of the steel ball is concluded:y-y0=(?)(x0-x). From the above equation, it can be founded that the impact trajectory is.only related to the position of the oriented plate in the mill drum. The formula used to calculate the whole speed of impact movement is obtained as:v=(?) The speed v, which is the steel ball impacting to the drum wall, is in a direct ratio with the rotating speed n and the drum radius R. The normal speed vn and the tangential speed v, can be regulated by regulating the angle a of the oriented plate in the mill, consequently, the impact stress and shear stress can be regulated. The formula used to calculate the impact stress F of the steel ball to the materials is concluded: F=(?). The impact stress F of the steel ball to the materials has the linear increasing relationship with the mass of steel ball m, the drum speed n and its radius R, and the cosine value of angle a of the oriented plate. The formula used to calculate the impact frequency K of steel ball in unit time is also concluded K is associated with the speed n and the position parameters a andβof the oriented plate, and is in no relationship with radius R. As a result, increasing the drum speed can increase of the impact frequency of steel ball to the materials in unit time, thereby the grinding efficiency is improved.
     The numerical simulation of the flowfield in VCCM by the software CFD shows that the changing principle of velocity gradient of the flowfield, namely, the farther the fluid is from the the center of the drum, the higher speed it has. The region where the pressure changes largely locates in the vicinity of the oriented plate, especially in the two ends of the oriented plate, which is the main grinding region. The pressure, however, is small in the region between the plate and drum, thus the grinding efficiency is low. Further study shows that the main grinding region is closed, to the liner of drum, in which the vicinity region at both ends of the oriented plate is the main region of impact comminution and other region is the main region of abrasion comminution.
     Mill speed, throughput and grinding concentration are the main operating parameters of grinding process, which have a direct effect on the results. Autogenous grinding parameter tests of VCCM with pyrite ore show that mill speed and throughput have great influence on the grinding performance. When the mill speed is constant, the average size of the production is reduced with the decreasing of throughput, but with gradual reducing of the throughput, the decreasing degree of the average size becomes gentle. With increasing of the mill speed, the capacity rises rapidly, while the average size of products quickly decreases, which confirms that increasing of the mill speed can greatly improve the grinding efficiency. Grinding concentration has a certain impact on the grinding performance. The grinding performance is relatively poor due to the coarse products when the grinding concentration is 55%. However, it changes gently when the grinding concentration is improved between 60% and 70%. When the grinding concentration is 70%, the pulp viscosity is too larger to discharge smoothly. Therefore, the appropriate grinding concentration is from 60% to 65%. The results of comparative tests show that the eletricity power consumptions per ton ore of the VCCM and the conventional ball mill (CBM) are almost same, but the production capacities of unit cubage of VCCM are 4.57 times than CBM, hence the VCCM will play an important role in increasing the grinding efficiency.
     The conventional grinding parameter tests are conducted using Vanadium-titanium magnetite tailings, and the results obtained show that the fineness of product decreases with the increaing of mill speed when the throughput is invariable, and the higher the speed, the higher efficiency of fine grinding obtain. When the mill speed is constant, the fineness of product increases with the increasing of throughput, and the changing gradient gradually increases.
     Grinding kinetics can reflect the grinding velocity. Experimental investigations on grinding kinetics of VCCM under the different mill speed reveal that the general grinding kinetics equation of product size distribution can be demonstrated as:Ri(t)= Ri(0)exp[-k(d)tn(d)]. The grinding kinetics equation of VCCM under different mill speed can also be demonstrated from the general equation through the curve fit method, thus the distribution rate of grinding products in any time and any size can be calculated. When the mill speed is constant, the grinding velocity decreases with the increasing of grinding time, and the decreasing trend is obvious in a short period of time. The longer the time, the gentler the decreasing trend, especially under a high mill speed, the materials will be ground to very fine in a very short period of time. When the grinding time is constant, the grinding velocity increases rapidly with increasing of the mill speed, and the higher the mill speed, the more obvious the trend is.
引文
[1]王立平.中心传动球磨机的研制及应用.矿山机械,1993(7):35-38
    [2]赵昱东.高效节能磨矿设备综述.矿山机械,1999(10):18-20
    [3]王东明,邹声勇.高效节能锥形球磨机.矿山机械,1995(10):29-30
    [4]叶贤东.超临速磨矿理论研究.昆明:昆明理工大学博士学位论文,2002:27-28;30-32
    [5]Stehr N. Recent developments in stirred ball milling. Int. J. Miner. Process, 1988(22):431-444
    [6]H.Karbstein, F.Muller and R.Polke. Scale-up for grinding in stirred ball mills. Aufbereitungs-Technik,1996,37(10):469-479
    [7]H.Bel Fadhel, C.Frances, A.Mamourian, Investigations on ultra-fine grinding of titanium dioxide in a stirred media mill, Powder Technology 105 (1999) 362-373
    [8]Arno Kwade, Wet comminution in stirred media mills - research and its practical Application, Powder Technology 105 (1999) 14-20
    [9]J.Yue, B.Klein, Influence of rheology on the performance of horizontal stirred mills, Minerals Engineering 17 (2004) 1169-1177
    [10]Frank Stenger, Stefan Mende, Jorg Schwedes, et al., The influence of suspension properties on the grinding behavior of alumina particles in the submicron size range in stirred media mills, Powder Technology 156 (2005) 103-110
    [11]Yanmin Wang, Eric Forssberg, Production of carbonate and silica nano-particles in stirred bead milling, Int. J. Miner. Process.81 (2006) 1-14
    [12]Andri Vital, Simone Zurcher, Rainer Dittmann, et al., Ultrafine comminution of dental glass in a stirred media mill, Chemical Engineering Science 63 (2008) 484-494
    [13]C.C.Pilevneli, S.Kizgut, I.Toroglu, et al., Open and closed circuit dry grinding of cement mill rejects in a pilot scale vertical stirred mill, Powder Technology 139 (2004) 165-174
    [14]Alex Jankovic, Steve Sinclair, The shape of product size distributions in stirred mills, Minerals Engineering 19 (2006) 1528-1536
    [15]张国旺,黄圣生,李自强等.大型超细搅拌磨机的研制和应用.中国粉体技术,2006(4):48-51
    [16]张国旺,黄圣生,李自强等.立式螺旋搅拌磨机的研制及其在黄金矿山中的应用.黄金,2003,24(2):32-34
    [17]邱益,李秀明,徐宏彤等.CGM60-B锥摆式搅拌磨的设计与研究.郑州大学学报(工学版),2006,27(3):68-70
    [18]吴东印.一种新型超细粉碎设备—双筒式超细搅拌磨.中国粉体工业,2005(4):46-49
    [19]袁领群.两种新型搅拌磨的研究与应用实践.中国非金属矿工业导刊,2002(6):23-24
    [20]R.Y. Yang, C.T. Jayasundara, A.B. Yu, D. Curry. DEM simulation of the flow of grinding media in IsaMill. Minerals Engineering 19 (2006) 984-994
    [21]Toshio Inoue, Katsunori Okaya, Grinding mechanism of centrifugal mills-a simulation study based on the discrete element method, Int. J. Miner. Process.44-45 (1996) 425-435
    [22]P.Q.Nesbit, M.H.Moys, Load behaviour in the Hicom nutating mill, Minerals Engineering,10 (1998) 979-988
    [23]Toshio Inoue, Katsunori Okaya, Shuji Owada, et al., Development of a centrifugal mill - a chain of simulation, equipment design and model validation, Powder Technology 105 (1999) 342-350
    [24]David I.Hoyer, The discrete element method for fine grinding scale-up in Hicom mills, Powder Technology 105 (1999) 250-256
    [25]Hiroshi Mio, Junya Kano, Fumio Saito, Effects of rotational direction and rotation-to-revolution speed ratio in planetary ball milling, Materials Science and Engineering A332 (2002) 75-80
    [26]R.Hogg, A.J.Dynys, H.Cho, Fine grinding of aggregated powders, Powder Technology 122 (2002) 122-128
    [27]D.Eskin, H.Kalman, Problems of optimal particle acceleration on straight linear blades of centrifugal rotor-impact mills, Powder Technology 123 (2002) 75-82
    [28]M.E.Rabanal, A.Varez, B.Levenfeld, Magnetic properties of Mg-ferrite after milling process, Journal of Materials Processing Technology 143-144 (2003) 470-474
    [29]K.-E.Kurrer, E.Gock, V.Vogt, et al., Centrifugal tube mill for finest grinding, Int. J. Miner. Process.74S (2004) S75-S83
    [30]杨忠高.磨矿设备的发展.矿山机械,1987(2):27-34
    [31]K.R.Suttill. Mineral Processing Congress Highlights Innovative Technology. E & MJ.1988,181(9):72-74
    [32]俞良中.旋流态离心自磨机粉碎机理及主要参数设计研究.矿冶工程,1997(6):26-30
    [33]俞良中.立轴锥盘离心磨机的开发与研究.有色金属(选矿部分),1997(2):24-33
    [34]俞良中.立轴锥盘离心磨机主机设计.有色金属(选矿部分),1998(1):29-32
    [35]黄圣生.料层破碎新工艺研究.有色金属(选矿部分),1985,5
    [36]黄圣生.崛起中的高压辊磨机.国外金属矿选矿,1988,10,46-51
    [37]张国旺.破碎粉磨设备的现状及发展.粉体技术,1998,4(3):37-42
    [38]K.Schonert, O.Jung. Rating of Vertical Roller Mills on the Basis of Grindablity Tests. AURBEREITUNGS-TECHNIK,2002,43(8):45-501
    [39]包玮,王学敏,张永龙HFCG辊压机及挤压粉磨技术的进展与实践.中国水泥,2003(1):49-53
    [40]孙春宝等.Szego磨的工作原理及其特点.矿山机械,1998(7):18-20
    [41]李瑞涛,谢理.立式行星磨系统动力学分析.金属矿山,2000(9):37-38
    [42]李瑞涛,方湄.基于虚拟样机的立式行星磨仿真的研究.矿山机械,2001(1):25-26
    [43]龚姚腾,刘世勋.行星式球磨机机理及磨碎试验研究.南方冶金学院学报,1993(12):294-301
    [44]张克仁,汪学思TCMJ-1型超细球磨机的研制与应用.煤炭科学技术,1997(8):43-45
    [45]陈世柱,黎文献.行星式高能球磨机工作原理研究.矿冶工 程,1997(12):62-65
    [46]郑水林.超细粉碎原理、工艺设备及应用.北京:中国建材工业出版社,1993:203-215
    [47]W.Beenken, E.Gock, K.-E.Kurrer, The outer mechanics of the eccentric vibration mill, Int. J. Miner. Process.44-45 (1996) 437-446
    [48]顾玲.振动磨及其隔振设计.南方冶金学院学报,1993(9):214-219
    [49]王树林,李隆秀.振动磨的发展与现状.矿山机械,1989(1):2-5
    [50]陈炳辰.磨矿分级进展(上).金属矿山,1999(11):12-17
    [51]皱声勇.G型振动磨机动力学分析.矿山机械,1989(8):30-32
    [52]张晓钟,王秀莲.用于加工超细粉的MGZ型振动磨机的设计原则.西安建筑科技大学学报(自然科学版),2002(2):156-159
    [53]王群力,马建敏.大型超细粉磨设备的开发研究.矿山机械,2001(7):25-26
    [54]张伟,王凤珠.利用立式振动磨制备超细粉的研究.功能材料,1997,28(5):511-513
    [55]K.Schonert.Aufbeitungs-Technik,1991,32(9):487-494
    [56]K.E.Kurrer,et al旋转腔振动磨机—传统管式振动磨机的进一步发展Proceedings of the Ⅹ Ⅵ IMPC,1988:221-230
    [57]E.戈克等.一种新型磨机—偏心振动磨在工业的应用.国外金属矿选矿1999(1):2-5
    [58]郑水林.超细粉碎原理、工艺设备及应用.北京:中国建材工业出版社1993:234-235
    [59]王世宏,郝迎俊,尹喜祥等.新型胶体磨的研制与应用’.化工机械,2000,27(3):155-156
    [60]赵承河.一段二闭路磨矿工艺在万庄金矿的应用实践.黄金2003(2):43-45
    [61]罗晓华.武山铜矿磨矿工艺生产实践与研究探讨.有色金属(选矿部分),2003(5):25-28
    [62]刘立新,陈广华,周闯.五龙金矿选矿厂磨矿工艺改造实践.有色矿冶,2004(6):15-16
    [63]李祖忠,张宏艺,何晓明等.齐大山选矿厂二次磨矿工艺优化研究矿业工程,2007(4):22-24
    [641刘天洋,黄洪伟,韩成鹏等.铁矿石助磨剂及其作用机理的探讨.北京 石油化工学院学报,2007(1):36-39
    [65]段希祥.选择性磨矿的应用研究.云南冶金,1990(3):21-24
    [66]张国范,冯其明,陈启元等.铝土矿选择性磨矿中磨矿介质的研究.中南大学学报(自然科学版),2004(4):552-556
    [67]田祎兰,韩跃新,杨小生等.用助磨剂强化铝土矿选择性磨矿研究.金属矿山,2006(3):42-45
    [68]朱继生,张治元.微阶段化磨矿技术研究与应用.金属矿山,2003(11):27-29
    [69]段希祥,周平,潘新潮.球磨机精确化装补球方法.有色金属,2004(3):75-78
    [70]潘新潮,段希祥,范勇.精确化装补球制度在金平镍矿磨矿中的应用.有色金属(选矿部分),2003(5):37-40
    [71].王春,马丽珍.精确化装补球方法在大红山铜矿选矿厂的应用研究.云南冶金,2005(1):16-20
    [72]杜茂华,周平,段希祥.精确化装补球方法的应用效果研究.有色金属(选矿部分),2007(2):39-44
    [73]高利坤,陈云,周平.云南某铁矿磨矿工艺试验研究.矿冶工程,2007(3):45-48
    [74]肖庆飞,李桂海,石贵明等.精确化装补球法在狮子山铜矿的应用.金属矿山,2007(12):68-71
    [75]段希祥.碎矿与磨矿.北京:冶金工业出版社,2006:126-127
    [76]Gaudin.A.M., Principles of Mineral Dressing.Mc Graw-Hill Book Company. Inc. New York,1939
    [77]Charles, R.J.,1957, Energy-size reduction relationship in comminution, Trans. AIME 208,80-88
    [78]Weit, H., Schwedes, J., Scale-up of power consumption in agitated ball mills, Chem. Eng. Technol.,10,1987:398-404
    [79]Hoyer, D.I.,1992, Power consumption in centrifugal and nutating mills, Miner. Eng.5,671-684
    [80]刘建远.关于粉碎的能耗与能量效率.国外金属矿选矿,1993(9):24-32
    [81]段希祥.细磨及超细磨下的功耗规律研究.有色金属(选矿部分),1993(1):33-39
    [82]M.Becker,A.Kwade, J.Schwedes, Stress intensity in stirred media mills and its effect on specific energy requirement, International Journal of Mineral Processing,61 (2001):189-208
    [83]Heechan Cho, Hoon Lee, Yeongwoo Lee, Some breakage characteristics of ultra-fine wet grinding with a centrifugal mill, International Journal of Mineral Processing,78 (2006) 250-261
    [84]Sandra Breitung-Faes, Arno Kwade, Nano particle production in high-power-density mills, Chemical Engineering Research and Design 86(2008):390-394
    [85]陈炳辰.磨矿原理.北京:冶金工业出版社,1989
    [86]S.Tangsripongkul, Breakage mechanisms in autogenous grinding, PhD Thesis, The Pennsylvania State University,1993
    [87]朱美玲,颜景平.离心冲击式超细粉碎机粉碎机理研究.电子工业专用设备,1993(2):16-20
    [88]J.Theuerkauf, J.Schwedes, Theoretical and experimental investigation on particle and fluid motion in stirred media mills, Powder Technology 105 (1999) 406-412
    [89]曹慧琴,秦志英,王惠等.雷蒙磨的磨碎机理研究.现代制造工程,2003(8):14-16
    [90]H.-H.Stender, A.Kwade, J.Schwedes, Stress energy distribution in different stirred media mill geometries, Int. J. Miner. Process.74S (2004) S103-S117
    [91]J.Yue, B.Klein, Particle breakage kinetics in horizontal stirred mills, Minerals Engineering 18 (2005) 325-331
    [92]R.Hogg, Breakage mechanisms and mill performance in ultrafine grinding, Powder Technology 105(1999):135-140
    [93]R.Hogg, S.Hu, S.W.Musselman, Breakage mechanisms in stirred media milling, Proceedings, World Congress on Particle Technology, Vol. 3, Brighton,1998
    [94]Arno Kwade, Determination of the most important grinding mechanism in stirred media mills by calculating stress intensity and stress number, Powder Technology 105(1999):382-388
    [95]L.Blecher, J.Schwedes, Energy distribution and particle trajectories in a grinding chamber of a stirred ball mill, Int. J. Miner. process.44-45 (1996) 617-627
    [96]W.S. Choi, H.Y. Chung, B.R. Yoon, et al., Applications of grinding kinetics analysis to fine grinding characteristics of some inorganic materials using a composite grinding media by planetary ball mill, Powder Technology,115(2001)209-214
    [97]H. Ipek, Y. Ucbas, M. Yekeler, et al., Dry grinding kinetics of binary mixtures of ceramic raw materials by Bond milling, Ceramics International 31 (2005) 1065-1071
    [98]V. Bozkurt, I. Ozgur, Dry grinding kinetics of colemanite, Powder Technology 176 (2007) 88-92
    [99]Ecevit Bilgili, JuanYepes, Brian Scarlett, Formulation of a non-linear framework for population balance modeling ofbatch grinding: Beyond first-order kinetics, Chemical Engineering Science 61 (2006) 33-44
    [100]张更超,应富强.超细粉碎技术现状及发展趋势.煤矿机械,2003(5):35-37
    [101]陈剑锋,肖飞凤.球磨机的发展方向综述.中国矿业,2006(8):94-97
    [102]文书明,张文彬,陶泽光.超临速磨机.中国发明专利,1999
    [103]文书明,龙泽毅,胡天喜.立式同轴离心磨机.中国发明专利,2008
    [104]佟庆理.两相流动理论基础.北京:冶金工业出版社,1982:204-215
    [105]文书明.微流边界层理论及其应用.北京:冶金工业出版社,2002:88-92
    [106]吴望一.流体力学.北京:北京大学出版社,1982:246-260
    [107]韩占忠,王敬,兰小平FLUENT流体工程仿真计算实例与应用.北京:北京理工大学出版社,2004
    [108]王瑞金,张凯,王刚Fluent技术基础与应用实例.北京:清华大学出版社,2007:46-47
    [109]张国旺.超细搅拌磨机的流场模拟和应用研究.长沙:中南大学博士学位论文,2005:40-41
    [110]Blecher L, Kwade A, Schwedes J, Motion and stress intensity of grinding beads in a stirred media mill. Part 1:Energy density distribution and motion of single grinding beads, Power Technology,1996(86):59-68
    [111]吴介之,马晖扬,周明德.涡动力学引论.北京:高等教育出版社,1993:201-205
    [112]童秉纲,尹协远,朱克勤.涡运动理论.合肥:中国科学技术大学出版社,1994:88-92
    [113]T.Allen, Particle Size Measurement, Chapman & Hall, New York, 1997

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700