用户名: 密码: 验证码:
铼-188标记分子探针的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一部分~(188)Re标记胰岛素样生长因子-1类似物(IGF-1A)的实验研究一、~(188)Re-IGF-1A的制备
     目的研究标记率高且稳定的~(188)Re标记胰岛素样生长因子-1类似物(insulin-like growth factor 1 analogue, IGF-1A)的方法学。方法1.采用直接标记法标记经修饰的IGF-1A,改变标记条件:Tween80的用量从2~10μL、SnCl_2.2H_2O浓度变化从0.75~25mg/mL、IGF-1A的用量从20~100μg、淋洗液的体积从10~500μL;分别在不同时间点测定标记率。2.标记物中加入生理盐水或人血清后不同时间点测定其标记率。结果1.最佳~(188)Re标记方法为:将100μLSnCl_2.2H_2O(10mg/mL)加入50μL IGF-1A(2mg/mL);300μL Na_3PO_.4和10μL0.1%Tween80混匀后加入50μL ~(188)ReO_4~-新鲜洗脱液;在IGF-1A体系中加入洗脱液体系,混匀,室温下反应30min;加入500μL NaH_2PO_4将pH值调节到7.0左右,标记完成。最高标记率为(94.07±0.32)%,胶体含量为(5.50±1.50)%。2.室温下放置6h标记率为(85.50±1.21)%,加入人血清放置24h后标记率为(76.57±9.96)%。结论用直接标记法进行~(188)Re标记IGF-1A,标记率高且稳定性良好。
     二、~(188)Re-IGF-1A与胰腺癌细胞结合及细胞杀伤效应实验
     目的研究~(188)Re-IGF-1A与胰腺癌细胞的特异性结合及其对胰腺癌细胞的杀伤效果。方法1.测定~(188)Re-IGF-1A与胰腺癌Patu8988细胞的结合率。2.用MTT实验检测给药后细胞增殖情况,将1×10~4/孔细胞接种于96孔板上,细胞分为对照组、IGF-1A组(1、5、10、20μg)、~(188)ReO_4~-组(0.37、1.85、3.70、7.40MBq)和~(188)Re-IGF-1A组(0.37、0.74、1.85MBq),另设空白调零组。3.~(188)ReO_4~-组和~(188)Re-IGF-1A组接种后,分别在给药后1~7d,每天采用MTT比色法测定其OD值,IGF-1A组分别在给药后1~6d,每天采用MTT比色法测定其OD值。根据各组OD值,计算生存率和抑制率。4.将细胞接种于培养瓶中,分~(188)ReO_4~-组和~(188)Re-IGF-1A组(1.85、3.70、7.40MBq),在给药后3d用流式细胞仪检测细胞凋亡率。结果1.~(188)Re-IGF-1A与5×10~6个/50μL胰腺癌细胞的最高总结合率为(24.13±2.03)%,特异性结合为12.68%。2.加入不同剂量~(188)Re-IGF-1A后,在1~3d内,随时间增加而抑制率增高,第3d时0.37、0.74、1.85MBq组抑制率分别为(64.48±4.18)%、(66.89±1.39)%和(89.71±1.27)%;第6天时,1.85MBq组抑制率达到(93.20±1.93)%。3.加入与~(188)Re-IGF-1A同量的IGF-1A或相同放射性活度的~(188)ReO_4~-后,~(188)Re-IGF-1A对细胞的抑制率在各时间点均高于单独用~(188)ReO_4~-,两者差异有统计学意义(P<0.05);与IGF-1A组比较,第1d差异无统计学意义,在第2~6d,~(188)Re-IGF-1A对细胞的抑制率在各时间点均高于单独用IGF-1A,两者差异有统计学意义。4.给药1.85、3.70、7.40MBq3d后,~(188)ReO_4~-组和~(188)Re-IGF-1A组细胞漂浮率分别为(16.58±3.57)%、(24.58±6.50)%、(34.12±7.39)%和(16.56±0.95)%、(33.39±5.93)%、(43.76±1.38)%,漂浮细胞的凋亡率分别为(9.27±1.80)%、(16.00±1.15)%、(15.47±0.65)%和(12.70±2.27)%、(17.80±1.51)%、(23.23±1.22)%。结论~(188)Re-IGF-1A能与胰腺癌Patu8988细胞特异性结合,并对胰腺癌细胞生长有明显的抑制作用,可诱导细胞凋亡。
     三、~(188)Re-IGF-1A在荷瘤裸鼠体内分布、显像和吸收剂量估算
     目的研究~(188)Re-IGF-1A在荷人胰腺癌裸鼠体内的分布、显像和剂量估算。方法1.建立荷人胰腺癌Patu8988裸鼠模型。2.将66只荷人胰腺癌裸鼠随机分2组,~(188)Re-IGF-1A组36只,~(188)ReO_4~-组30只。采取瘤内注射给药方式,注射~(188)Re-IGF-1A或~(188)ReO_4~- 0.03mL,同时取0.05mL~(188)ReO_4~-洗脱液做标准源。在瘤内注射后即刻行SPECT平面显像,通过裸鼠全身与标准源的ROI计数比值,换算每个荷瘤裸鼠总注射剂量。3.~(188)Re-IGF-1A组于注射后15min、1、4h、1、3、5d显像并处死裸鼠。~(188)ReO_4~-组于注射后15min、1、2、4、24h显像并处死裸鼠。解剖后取所需组织称量并测量其60s的放射性计数,计算各组织的每克组织百分注射剂量率(%ID/g),并计算肿瘤与血、心、脑、甲状腺、肝、脾、肺、肾、胃、肠、胰、骨、肌肉的比值(T/NT)。4.根据各组织不同时间点的平均%ID/g,通过放射性药物内照射剂量计算软件计算出吸收剂量(mGy/MBq)。结果1.瘤内注射~(188)Re-IGF-1A后肿瘤、肾脏、肝脏、脾脏内放射性较高,注射后15min肿瘤摄取为(39.30±17.98)%,肾脏摄取为(19.77±10.75)%,肝脏摄取为(2.03±2.28)%,脾脏摄取为(1.04±0.92)%。瘤内注射后1、4h、1、3、5d肿瘤内摄取分别为(35.03±23.37)%、(41.22±23.88)%、(10.59±9.39)%、(5.32±1.53)%、(5.30±2.28)%;肿瘤部位放射性积聚量4h内差异无统计学意义(P>0.05),且随时间延长,肿瘤与其它脏器的T/NT呈上升趋势,肿瘤与肾脏的T/NT在5d时达到5.64±7.50。肿瘤/肌肉在5d时达到2610.65±1534.02。2.瘤内注射~(188)ReO_4~-后,在体内开始主要分布于甲状腺、胃、肿瘤、血液。胃内放射性高峰出现在1h,为(23.14±12.08)%,甲状腺放射性高峰出现在2h,为(100.27±19.67)%,随时间延长,肿瘤部位计数迅速下降。肿瘤部位在24h摄取为(0.09±0.03)%,与肾脏差异无统计学意义(P=0.27)。3.在瘤内注射后各时间点,~(188)Re-IGF-1A组肿瘤及肾脏内摄取比~(188)ReO_4~-组高,两者有统计学差异(P<0.01)。两组肿瘤内摄取比值在24h达到117.67倍。4.瘤内注射~(188)Re-IGF-1A后,SPECT平面显像见瘤内浓聚,5d时仅见肿瘤部位显影。5.肿瘤内吸收剂量为5165.8mGy/MBq。结论瘤内注射~(188)Re-IGF-1A后,在肿瘤部位积聚较高,可望作为胰腺癌经动脉灌注治疗的药物,并能在体外观察其分布。
     第二部分~(188)Re标记反基因肽核酸(AGPNA)的实验研究
     一、k-ras-AGPNA抑制k-ras基因表达实验
     目的探索自主设计的与胰腺癌k-ras点突变基因特异性结合的反基因肽核酸(antigene peptide nucleic acid, AGPNA)的生物活性。方法1.设计并合成与胰腺癌k-ras点突变基因特异性结合的k-ras-AGPNA。2.应用RT-PCR检测转染k-ras-AGPNA前后胰腺癌Patu8988细胞k-ras癌基因的mRNA表达水平,分对照组、k-ras-AGPNA组、脂质体转染k-ras-反基因寡核苷酸(antigene oligonucleotides, AGON)组、脂质体转染k-ras-反义寡核苷酸(antisense oligonucleotides, ASON)组。3.应用流式细胞仪测定转染k-ras-AGPNA前后胰腺癌Patu8988细胞的k-ras蛋白表达水平。结果1.转染1nmol/mL k-ras-AGPNA组和k-ras-AGON组的细胞的k-ras突变基因mRNA的灰度比分别为(1.00±0.39)和(1.22±0.31),比对照组(1.86±0.07)低,差异有显著统计学意义(P<0.01)。k-ras-AGPNA、k-ras-AGON和k-ras-ASON组内不同剂量之间差异无统计学意义(P>0.05)。2.转染1nmol/mL k-ras-AGPNA、k-ras-AGON和k-ras-ASON组的细胞其k-ras蛋白表达分别为(15.05±5.07)%、(10.20±2.63)%、(8.80±4.31)%,比对照组(24.38±5.40)%低,差异有显著统计学意义(P<0.01)。k-ras-AGPNA、k-ras-AGON和k-ras-ASON组内不同剂量之间差异无统计学意义(P>0.05)。结论自主设计并合成的k-ras-AGPNA能抑制k-ras基因在mRNA和蛋白水平的表达。
     二、~(188)Re-k-ras-AGPNA的制备及其胰腺癌细胞内化实验研究
     目的制备~(188)Re-k-ras-AGPNA并研究其与胰腺癌Patu8988细胞结合的特性。方法1.用~(188)Re直接标记经修饰的k-ras-AGPNA。2.预实验中其他标记条件不变,将SnCl2.2H2O浓度改为20mg/mL,k-ras-AGPNA的用量改为20μL(40μg)后分别进行实验。3.在标记后不同时间点15、30min、1、2、4、6h测定标记率。4.测定标记物在人血清和生理盐水中5min~24h不同时间点的标记率。5.胰腺癌Patu8988细胞摄取~(188)Re-k-ras-AGPNA的内化实验。结果1.~(188)Re-k-ras-AGPNA的标记率最高为(89.61±0.91)%,放射性胶体含量为(9.40±0.55)%。2.~(188)Re-k-ras-AGPNA放置血清中24h后标记率为(89.14±0.63)%,放置生理盐水中1h后标记率为(79.12±5.26)%。3.~(188)Re-k-ras-AGPNA转染胰腺癌Patu8988细胞,最高细胞结合率为(38.16±2.17)%,最高核内化率为(22.41±0.86)%。结论~(188)Re直接标记k-ras-AGPNA方法简便、标记率较高,能与胰腺癌细胞结合并转染入细胞核。
     三、~(188)Re-k-ras-AGPNA诱导细胞凋亡和荷瘤裸鼠体内分布实验
     目的研究~(188)Re-k-ras-AGPNA的诱导凋亡效应和在荷人胰腺癌裸鼠体内的分布、显像和剂量估算。方法1.胰腺癌Patu8988细胞给予~(188)Re-k-ras-AGPNA和~(188)ReO_4~- 3~5d后,用流式细胞仪检测细胞凋亡率。2.将28只荷人胰腺癌裸鼠分7组,每组4只。采取瘤内注射给药方式,注射~(188)Re-k-ras-AGPNA 0.03mL。3.注射后15min、1、4h、1、3、5、7d显像并处死裸鼠,解剖后取所需组织称量并测量其60s的放射性计数,计算各组织的%ID/g和肿瘤与其他组织的比值(T/NT),并根据各组织不同时间点的平均%ID/g计算出吸收剂量(mGy/MBq)。结果1.给药3、4、5d后,~(188)ReO_4~-组和~(188)Re-k-ras-AGPNA组细胞漂浮率分别为(5.68±0.82)%、(8.14±0.12)%、(11.87±0.17)%和(5.99±3.59)%、(25.66±8.51)%、(29.59±4.92)%,漂浮细胞的凋亡率分别为(3.88±2.10)%、(8.75±3.11)%、(16.87±5.85)%和(5.28±1.12)%、(26.30±7.45)%、(27.90±10.38)%。2.瘤内注射~(188)Re-k-ras-AGPNA后肿瘤、肾脏、肺、甲状腺、肝脏内放射性较高,注射后15min肿瘤摄取为(53.23±16.64)%,肾脏摄取为(12.60±1.53)%,肺内摄取为(2.32±1.35)%,甲状腺摄取为(1.95±1.22)%,肝脏摄取为(1.78±0.63)%。瘤内注射后1、4h、1、3、5、7d肿瘤内摄取分别为(37.47±21.31)%、(34.84±6.46)%、(35.96±7.80)%、(17.43±5.46)%、(11.09±3.52)%、(15.46±4.93)%;肿瘤部位放射性积聚量24h内差异无统计学意义(P>0.05),且随时间延长,肿瘤与肾脏的T/NT呈上升趋势,在7d时达到11.08±9.22。肿瘤/肌肉在3d时达到870.86±1079.02。3.瘤内注射~(188)Re-k-ras-AGPNA后,SPECT平面显像见瘤内浓聚,7d时仅见肿瘤部位显影。4.肿瘤内吸收剂量为15569mGy/MBq。结论瘤内注射~(188)Re-k-ras-AGPNA后,肿瘤部位摄取高、清除缓慢,肿瘤吸收剂量高,可望作为胰腺癌治疗的药物。
     第三部分~(188)Re-锡硫胶体介入治疗荷VX2肝癌兔的体内生物分布研究
     目的研究~(188)Re-锡硫胶体(tin sulfur colloid,TSC)的制备及其经肝动脉灌注给药后在兔VX2肝肿瘤模型体内的生物学分布特征,探讨其作为放射性介入治疗剂的可行性。方法1.改变标记条件制备~(188)Re-TSC和~(188)Re-聚合白蛋白(Macroaggregated albumin, MAA),检测标记物在人血清中的稳定性,测定~(188)Re-TSC的颗粒大小。2.建立32只VX2肝肿瘤模型,均经CT或DSA证实,1例行病理学检查。3.31只荷瘤兔分~(188)Re-TSC(n=12)、~(188)Re-MAA(n=15)和~(188)ReO4-(n=4)3组,将放射性药物经肝动脉注射入肿瘤内,分别在注射后15min、1h和24h分别进行SPECT平面显像,画感兴趣区进行肿瘤/肝脏计数的半定量分析。4.在注射后1h和24h处死模型兔后取感兴趣脏器进行称量、计数,计算各脏器的每克组织百分注射剂量。5.根据灌注~(188)Re-TSC后肿瘤内%ID/g进行吸收剂量估算。结果1.~(188)Re-TSC和~(188)Re-MAA标记率最高分别为(99.94±0.04)%和(99.95±0.03)%,在人血清中放置72h后分别为(95.77±0.54)%和(92.13±1.21)%。~(188)Re-TSC的颗粒大小分布为10.83±6.60μm (D10)、44.91±14.46μm (D50)和235.29±126.61μm (D90)。2.在平面显像中,62.96%(17/27)模型兔的肿瘤显像清晰,肿瘤/肝脏感兴趣区放射性计数的比值为2.15±0.80。3.~(188)Re-TSC组中肿瘤摄取在1h和24h分别为(24.32±11.93)%和(21.88±18.29)%,肿瘤与肝脏的放射性比值在1h和24h分别为70.89±19.58和17.42±13.96。4.~(188)Re-MAA组中肿瘤摄取在1h和24h分别为(38.78±30.23)%和(15.98±26.64)%,肿瘤与肝脏的比值在1h和24h分别为39.71±25.06和8.13±4.61。5.灌注~(188)Re-TSC后肿瘤内24h的放射吸收剂量为0.24 Gy/MBq。结论~(188)Re-TSC可望成为有临床应用前景的放射介入治疗药物。
PartⅠradiosynthesis and biological experiment of ~(188)Re-IGF-1A
     Background The insulin-like growth factor-1 receptor (IGF-1R) is a cellular receptor found to be overexpressed in many tumor cell lines from different anatomical sites. It can be used as molecular targets by which radiolabeled insulin-like growth factor 1 analogue (IGF-1A) can localize cancers for peptide receptor radiation therapy.
     1. Investigations of labeling insulin-like growth factor 1 analogue with ~(188)Re
     Objective To establish a useful method for labeling IGF-1A with ~(188)Re. Methods Direct labeling method was adopted to label IGF-1A. Several labeling conditions were tested. The volume of Tween80 was changed from 2 to 10μL; the concentration of SnCl_2.2H_2O was changed from 0.75 to 25mg/mL; the amount of IGF-1A was changed from 20 to 100μg and the volume of ~(188)Re perrhenate was changed from 10 to 500μL. The labeling efficiency was analyzed from 15min to 8h after labeling. The in vitro stabilities of ~(188)Re-IGF-1A was analyzed in human serum or sodium chloride medium, and the labeling efficiency was determined from 2 to 24h after adding the medium. Results The optimum labeling condition was 100μL stannous chloride (10mg/mL) dissolved in sodium gluconate, 50μL IGF-1A (2mg/mL), 300μL Na3PO4, 10μL 0.1% Tween80, 50μL ~(188)Re perrhenate added and the incubation time was 30 min at room temperature, then added 500μL NaH_2PO_4 to adjust the pH about 7.0. The labeling efficiency of ~(188)Re-IGF-1A could reach (94.07±0.32)% and the amount of radiocolloid was (5.50±1.50)%. It was (85.50±1.21)% after incubation for 6h at room temperature, and was (76.57±9.96)% after incubation for 24h with human serum. Conclusion This method of labeling IGF-1A with ~(188)Re using SnCl_2.2H_2O is stable and high labeling efficiency can be obtained.
     2. Experimental study of ~(188)Re-IGF-1A on cell combination and proliferation inhibition effect to pancreatic carcinoma cell
     Objective To investigate cell combination and proliferation inhibition effect of ~(188)Re-IGF-1A to Patu8988 human pancreatic carcinoma cell. Methods (1)The combinative efficiency of ~(188)Re-IGF-1A with Patu8988 cell was determined. (2)Patu8988 cell were seeded onto 96-well plate and divided into blank control group, IGF-1A group (1, 5, 10, 20μg), ~(188)ReO4- group (0.37, 1.85, 3.70, 7.40MBq) and ~(188)Re-IGF-1A group (0.37, 0.74, 1.85MBq). (3)The proliferation inhibition effect of ~(188)Re-IGF-1A group and ~(188)ReO4- group on cell growth was detected every day by MTT test from 1d to 7d after administration. The proliferation inhibition effect of IGF-1A group was detected every day from 1d to 6d, and inhibition rates were calculated. (4) At 3d after treatment with ~(188)ReO4- and ~(188)Re-IGF-1A (1.85, 3.70, 7.40 MBq), the cell’s apoptosis was detected by flow cytometry. Results (1)The total combinative efficiency of ~(188)Re-IGF-1A with Patu8988 cell was (24.13±2.03)%, and the special combinative efficiency was 12.68%. (2) Inhibition rates of Patu8988 cell with ~(188)Re-IGF-1A group (0.37, 0.74, 1.85MBq) were (64.48±4.18)%,(66.89±1.39)% and (89.71±1.27)% after 3d, and the inhibition rates was higher when the radioactive dose higher. After 6d, inhibition rate of Patu8988 cell with ~(188)Re-IGF-1A group (1.85MBq) was (93.20±1.93)%. (3) Inhibition rates of Patu8988 cell with ~(188)Re-IGF-1A group were always higher than ~(188)ReO4- group and IGF-1A group. The difference was significant (P < 0.05). (4) At 3d after treated with ~(188)ReO4- and ~(188)Re-IGF-1A, float cell ratio were (16.58±3.57)%, (24.58±6.50)%, (34.12±7.39)% and (16.56±0.95)%, (33.39±5.93)%, (43.76±1.38)%, respectively. Float cell’s apoptosis ratio of Patu8988 cell with ~(188)ReO4- and ~(188)Re-IGF-1A group were (9.27±1.80)%, (16.00±1.15)%, (15.47±0.65)% and (12.70±2.27)%, (17.80±1.51)%, (23.23±1.22)%, respectively. Conclusion Proliferation of human pancreatic carcinoma cell Patu8988 can be inhibited and apoptosis can be promoted with ~(188)Re-IGF-1A.
     3. Biodistribution characteristics and dosimetry measurement of ~(188)Re-IGF-1A in nude mice bearing the Patu8988 human pancreatic cancer xenografts
     Objective To investigate the biodistribution characteristics and measure dosimetry of ~(188)Re-IGF-1A in nude mice bearing human pancreatic cancer xenografts. Methods (1)66 nude mice model bearing human pancreatic carcinoma cell Patu8988 xenografts were established and devided into the ~(188)Re-IGF-1A group (n=36) and the ~(188)ReO4- control group (n=30). (2)In the ~(188)Re-IGF-1A group, at 15min, 1, 4, 24, 72, and 120h after intratumor injection with ~(188)Re-IGF-1A, the mice were killed and the organs of interest were excised, weighted and counted on a gamma counter. The organ uptake was calculated as a percentage of the injected dose per gram of wet tissue (%ID/g) and the ratios of tumor to normal tissue (T/NT) were calculated. (3) In the ~(188)ReO_4~- control group, organs of interest were excised and counted. %ID/g and T/NT were calculated at 15min, 1, 2, 4 and 24h after intratumor injection. (4) Scintigraphy imaging for each nude mouse was performed at 15min after intratumor injection with radiopharmaceuticals,in which serial planar scintigraphy imaging were performed for 6 nude mice at 15min, 1, 4, 24, 72, and 120h after intratumor injection with ~(188)Re-IGF-1A. (5) Radiation dosimetry in organs of interest were estimated on the basis of the mean %ID/g. Results (1) ~(188)Re-IGF-1A was major distributed in tumors and the largest uptake of tumors was (41.22±23.88)% at 4h after injection. The uptake of tumor were (10.59±9.39)% and (5.30±2.28)% at 24h and 120h after injection, respectively. (2)~(188)ReO_4~- was major distributed in thyroid glands, stomachs, tumors and blood in nude mice after injection at first. Then uptake of tumor decreased rapidly, but slowly in stomachs and thyroid glands. The uptake of tumor were (0.09±0.03)% at 24h after injection. (3) The tumor in nude mice could be seen clearly in scintigraphy images until 120h after intratumoral injection with ~(188)Re-IGF-1A. Conclusion ~(188)Re-IGF-1A was major distributed in tumors after intratumor injection in nude mice bearing human pancreatic cancer xenografts, and we propose that ~(188)Re-IGF-1A may be a potential tumor transarterial radionuclide therapeutic agent used in clinic.
     PartⅡradiosynthesis and biological experiment of ~(188)Re-k-ras-AGPNA
     Background We hypothesized that antigene peptide nucleic acid (AGPNA) hybridization probes targeted k-ras 12 point mutation oncogene, with an IGF-1A peptide loop on the C-terminus and ~(188)Re chelator peptide on the N-terminus, could hybridize with k-ras 12 point mutation oncogene and decrease the multiplication of pancreatic cancer cell Patu8988.
     1. Experiment of k-ras-AGPNA on depress the k-ras gene expression in human pancreatic cancer cell Patu8988
     Objective To investigate the effect of AGPNA on depress the k-ras gene expression and the k-ras protein expression of human pancreatic cancer cell Patu8988. Methods (1)AGPNA hybridizing k-ras 12 point mutation DNA was designed and synthesized. (2)Before and after transfected AGPNA, the expression level of k-ras mRNA in human pancreatic cancer cell Patu8988 were detected by reverse transcription- polymerase chain reaction (RT-PCR). (3)The expression ratio of k-ras protein in cell were detected by flow cytometry. Results (1)After transfected 1nmol/mL AGPNA and antigene oligonucleotides (AGON), the k-ras mRNA gray scale ratio were (1.00±0.39) and (1.22±0.31). Its was lower than (1.86±0.07) of the control group, and the difference was significant (P<0.01). Among the difference dose of AGPNA, AGON, and antisense oligonucleotides (ASON) group, the difference of the expression level of k-ras mRNA was not significant (P>0.05). (2)After transfected 1nmol/mL AGPNA, AGON, and ASON, the expression ratios of k-ras protein were (15.05±5.07)%, (10.20±2.63)%, and (8.80±4.31)%. Its was lower than (24.38±5.40)% of the control group, and the difference was significant (P<0.01). Compared with the difference dose of AGPNA, AGON, and ASON group, the difference of the expression ratios of k-ras protein was no significant (P>0.05). Conclusion AGPNA can depress the k-ras gene expression on the mRNA level and depress the k-ras protein expression of human pancreatic cancer cell Patu8988.
     2. Radiosynthesis of ~(188)Re labeled k-ras-AGPNA for binding with pancreatic carcinoma cell
     Objective To establish a method for labeling k-ras-AGPNA with ~(188)Re, and investigate its binding with pancreatic cancer cell Patu8988. Methods The directly labeling method was adopted, and several labeling conditions were tested, such as the concentration of SnCl2.2H2O and the amount of k-ras-AGPNA. The labeling efficiency was determined from 15min to 6h after labeling. The in vitro stability of ~(188)Re-k-ras-AGPNA was analyzed by using human serum or sodium chloride as medium, and the labeling efficiency was determined from 2 to 24h after labeling. The total binding efficiency of ~(188)Re-k-ras-AGPNA with pancreatic cancer cell Patu8988 and the bound of ~(188)Re-k-ras- AGPNA on the cellular nucleus were determined at various time points. Results The optimum labeling conditions were 100μL stannous chloride (20mg/mL) dissolved in sodium gluconate, and 20μL k-ras-AGPNA (2mg/mL), 100μL ~(188)Re perrhenate, the pH about 7.0, and incubated 30 min at room temperature. The labeling efficiency of ~(188)Re-k-ras-AGPNA could reach (89.61±0.91)% and the amount of radiocolloid was (9.40±0.55)%. The labeling efficiency was (89.14±0.63)% after incubated for 24h in human serum. The highest total binding efficiency of ~(188)Re-k-ras-AGPNA with Patu8988 cell was (38.16±2.17)%, and the highest binding efficiency on the nucleus was increased to (22.41±0.86)% at the 24th hour. Tumor in nude mice could be seen clearly in scintigraphy images until 7d after injection. Conclusion This method of labeling k-ras-AGPNA with ~(188)Re is stable and high labeling efficiecy can be obtained. ~(188)Re-k-ras-AGPNA can bind with the pancreatic cancer cell Patu8988 and penetrated into the Patu8988 cellular nucleus.
     3. Inducing apoptosis effect on Patu-8988 cell and biodistribution characteristics of the ~(188)Re-k-ras-AGPNA in nude mice bearing xenografts
     Objective To investigate the inducing apoptosis effect on Patu8988 cell and biodistribution characteristics, determine the dosimetry in nude mice bearing xenografts of ~(188)Re-k-ras-AGPNA. Methods (1) At 3d to 5d after treatment with Patu8988 cell in culture flask with 925KBq ~(188)ReO_4~- or ~(188)Re-k-ras-AGPNA, the cell’s apoptosis was detected everyday by flow cytometry. (2) 28 nude mice model bearing human pancreatic carcinoma cell Patu8988 xenografts were established. At 15min, 1, 4, 24, 72, 120 and 148h after intratumor injection with ~(188)Re-k-ras-AGPNA, the mice were killed and organs of interest were excised, weighted and counted on a gamma counter. The organ uptake was calculated as a percentage of the injected dose per gram of wet tissue (%ID/g) and the ratios of tumor to normal tissue (T/NT) were calculated. (3) Scintigraphy imaging was performed for each nude mice at 15min after intratumor injection with radiopharmaceuticals, in which serial planar scintigraphy imaging were performed for 6 nude mice at 15min, 1, 4, 24, 72, 120 and 148h after intratumor injection with ~(188)Re-k-ras-AGPNA. (4) According the mean %ID/g of organs in different time point, the absorbed dose of organs were calculated. Results (1)At 3d to 5d after treated with ~(188)ReO_4~- and ~(188)Re-k-ras-AGPNA, float cell ratio were (5.68±0.82)%, (8.14±0.12)%, (11.87±0.17)% and (5.99±3.59)%, (25.66±8.51)%, (29.59±4.92)%, respectively. Float cell’s apoptosis ratios of ~(188)ReO_4~- and ~(188)Re-k-ras- AGPNA group were (3.88±2.10)%, (8.75±3.11)%, (16.87±5.85)%, and (5.28±1.12)%, (26.30±7.45)%, (27.90±10.38)%, respectively. (2) ~(188)Re-k-ras-AGPNA was major distributed in tumors and the largest uptake of tumors was (53.23±16.64)% at 15min after injection. The uptake of tumor were (35.96±7.80)% and (15.46±4.93)% at 24h and 148h after injection, respectively. (3) Tumor in nude mice could be seen clearly in scintigraphy images until 148h after intratumoral injection with ~(188)Re-k-ras-AGPNA. (4) The absorbed dose of tumor was 15569mGy/MBq. Conclusion ~(188)Re-k-ras-AGPNA was major distributed in tumors after intratumor injection in nude mice bearing human pancreatic cancer xenografts, and we propose that ~(188)Re-k-ras-AGPNA may be a potential tumor transarterial radionuclide therapeutic agent used in clinic.
     PartⅢThe biodistribution characteristics of ~(188)Re-tin sulfur colloid after transhepatic arterial embolization in rabbits bearing VX2 liver tumor
     Objective To investigate the method for labeling tin sulfur colliod (TSC) with rhenium-188 and its biodistribution after transhepatic arterial embolization in rabbits bearing VX2 liver tumor. Methods The direct method was adopted to label TSC or macroaggregated albumin(MAA) with ~(188)Re-perrhenate, and labeling efficiency was determined at the different time point. The in vitro stabilities of ~(188)Re-TSC and ~(188)Re-MAA were analyzed by in the medium of sodium chloride or human serum (v:v=1:10), and the labeling efficiency was determined by Xinhua 1# paper chromatography (PC) analysis from 30min to 72h after added to medium. Particle size of ~(188)Re-TSC was measured (n=32) by laser scatterance/diffraction method used a Mastersizer 2000. 31 rabbits bearing VX2 liver tumor were performed transcatherter hepatic arterial injection of ~(188)Re-TSC (n=12), ~(188)Re-MAA (n=15), and Na~(188)ReO_4~- solution (n=4), respectively. Planar scans with IRIX3 SPECT (PHILIPS, Holander) were obtained at 1 and 24h after administration. The biodistribution characteristics of ~(188)Re-TSC, ~(188)Re-MAA, and ~(188)Re-perrhenate in rabbits at 1 and 24h after administration were evaluated. Organs were excised, washed with saline, weighed, and counted on a gamma counter. The organ uptake was calculated as a percentage of the injected dose per gram of wet tissue (%ID/g). Tumor retention was calculated and compared between ~(188)Re-TSC and ~(188)Re-MAA. Results The labeling efficiencies of ~(188)Re-TSC and ~(188)Re-MAA were reached (99.94±0.04)% and (99.95±0.03)%, and radiopharmaceuticals were stable for 72h in human serum. The particle size of ~(188)Re-TSC was 10.83±6.60μm (D10), 44.91±14.46μm (D50), and 235.29±126.61μm (D90), respectively. In 17 of the 27 rabbits, TAE was performed successfully. The radioactive ratio of tumor/liver in ROI of SPECT images was 2.15±0.80 and the tumor can be seen clearly in planar imaging. Tumor uptake of ~(188)Re-TSC at 1h and 24h were (24.32±11.93)% and (21.88±18.29)%, and the radioactive ratio of tumor/liver were 70.89±19.58 and 17.42±13.96, respectively. Tumor uptake of ~(188)Re-MAA at 1h and 24h were (38.78±30.23)% and (15.98±26.64)%, and the radioactive ratio of tumor/liver were 39.71±25.06 and 8.13±4.61, respectively. The retention ratio of 24h to 1h of ~(188)Re-TSC in tumor was 89.95%, and it was 41.22% of ~(188)Re-MAA. Conclusion ~(188)Re-TSC may be a potential radiopharmaceutical for the therapy of tumors.
引文
1. Ray A, Norden B. Peptide nucleic acid (PNA): its medical and biotechnical applications and promise for the future. FASEB J, 2000, 14: 1041-1060.
    2.雷小勇,张洹.从反义技术到反基因技术:基因治疗的新突破.医学与哲学, 2001, 22(9): 10-12.
    3.盛世乐,黄钢.肿瘤反基因放射治疗的研究进展.中华核医学杂志, 2004, 24(6): 377-378.
    4. Boffa LC, Scarfi’S, Mariani MR, et al. Dihydrotestosterone as a selective cellular/nuclear localization vector for anti-gene peptide nucleic acid in prostatic carcinoma cells. Cancer Research, 2000, 60: 2258-2262.
    5. Leamon CP, Low PS. Delivery of macromolecules into living cells: a method that exploits folate receptor endocytosis. Proc Natl Acad Sci, 1991, 88: 5572-5576.
    6. Lohse J, Dahl O, Nielsen PE. Double duplex invasion by peptide nucleic acid: a general principle for sequence-specific targeting of double-stranded DNA. PNAS, 1999, 96(21): 11804-11808.
    7. Tonelli R, Purgato S, Camerin C, et al. Antigene peptide nucleic acid specificallyinhibits MYCN expression in human neuroblastoma cells leading to cell growth inhibition and apoptosis. Mol Cancer Ther, 2005, 4(5): 779-786.
    8. Tackett AJ, Corey DR, Raney KD. Non-watson-crick interactions between PNA and DNA inhibit the ATPase activity of bacteriophage T4 Dda helicase. Nucleic Acids Research, 2002, 30(4): 950-957.
    9. Tian X, Chakrabarti A, Amirkhanov NV, et al. External imaging of CCND1,MYC,and KRAS oncogene mRNAs with tumor-targeted radionuclide-PNA- peptide chimeras[J]. Ann NY Acad Sci, 2005, 1059: 106-144.
    10. Reubi JC, Mache HR, Krenning EP. Candidates for peptide receptor radiotherapy todany and in the future. J Nucl Med, 2005,46(S1): 67S-75S.
    11.顾慰萍,朱霖主编,中国放射性药物发展战略研究,原子能出版社,北京,2006.8.
    12.章斌,吴翼伟,范我,等.用188Re直接标记octreotide.中华核医学杂志, 2003, 23(1): 55-56.
    13.Kumar A, Srivastava DN, Chau TTM, et al. Inoperable hepatocellular carcinoma: transarterial 188Re-HDD-labeled iodized oil for treatment– prospective multicenter clinical trial. Radiology, 2007, 243(2): 509-519.
    14.杨晓春.联合转染反义寡核苷酸治疗胰腺癌和MRI动态观测的实验研究.博士学位论文,苏州大学, 2006.
    1.Reubi JC, Mache HR, Krenning EP. Candidates for peptide receptor radiotherapy todany and in the future. J Nucl Med, 2005,46(S1): 67S-75S.
    2.Jong MD, Krenning E. New advances in peptide receptor radionuclide therapy. J Nucl Med, 2002, 43(5): 617-620.
    3.李雪莲,李锦玉.胰岛素样生长因子-1受体与肿瘤的研究进展.国外医学妇幼保健分册.2005,16(6): 435-437.
    4.Jones JI, Clemmons DR. Insulin-like growth factors and their binding proteins: biological actions. Endocrine Reviews, 1995, 16(1): 3-34.
    5.Jenkins PJ, Bustin SA. Evidence for a link between IGF-1 and cancer. Euro J Endocrinology, 2004, 151: S17-S22.
    6.Ouban A, Muraca P, Yeatman T, et al. Expression and distribution of insulin-like growth factor-1 receptor in human carcinomas. Human Pathology, 2003, 34(8): 803-808.
    7.Bergmann U, Funatomi H, Yokoyama M, et al. Insulin-like growth factor 1 overexpression in human pancreatic cancer: evidence for autocrine and paracrine roles. Cancer Research, 1995, 55: 2007-2011.
    8.Tanno S, Tanno S, Mitsuuchi Y, et al. AKT activation up-regulates insulin-like growth factor I receptor expression and promotes invasiveness of human pancreatic cancer cells. Cancer Research, 2001, 61(Jan): 589-593.
    9.Krajcik RA, Borofsky ND, Massardo S, et al. Insulin-like growth factor-I (IGF-I), IGF-binding proteins, and breast cancer. Cancer Epidemiology, Biomarkers & Prevention, 2002, 11(Dec): 1566-1573.
    10.Ibrahim YH, Yee D. Insulin-like growth factor-I and breast cancer therapy. Clin Cancer Res, 2005, 11(suppl): 944s-950s.
    11.Sandhu MS, Dunger DB, Giovannucci EL. Insulin, insulin-like growth factor-I (IGF-1), IGF binding proteins, their biologic interactions, and colorectal cancer. J Natl Cancer Inst, 2002, 94(13): 972-980.
    12.Wu Y, Yakar S, Zhao L, et al. Circulating insulin-like growth factor-I levels regulatecolon cancer growth and metastasis. Cancer Research, 2002, 62(Feb): 1030-1035.
    13.Hellawell GO, Turner GDH, Davies DR, et al. Expression of the type 1 insulin-like growth factor receptor is up-regulated in primary prostate cancer and commonly persists in metastatic disease. Cancer Research, 2002, 62(May): 2942-2950.
    14.Peruzzi F, Prisco M, Dews M, et al. Multiple signaling pathways of the insulin-like growth factor 1 receptor in protection from apoptosis. Molecular and Cellular Biology, 1999, 19(10): 7203-7215.
    15.Khandwala HM, Mccutcheon IE, Flyvbjerg A, et al. The effects of insulin-like growth factors on tumorigenesis and neoplastic growth. Endocrine Review, 2000, 21(3): 215-244.
    16.Stoeltzing O, Liu W, Reinmuth N, et al. Regulation of hypoxia-inducible facter-1, vascular endothelial growth factor, and angiogenesis by an insulin-like growth factor-Ⅰreceptor autocrine loop in human pancreatic cancer. American Journal of Pathology, 2003, 163: 1001-1011.
    17.Burtrum D, Zhu Z, Lu D, et al. A fully human monoclonal antibody to the insulin-like growth factor I receptor blocks ligand-dependent signaling and inhibits human tumor growth in vivo. Cancer Research, 2003, 63(Dec): 8912-8921.
    18.Wang Y, Hailey J, Williams D, et al. Inhibition of insulin-like growth factor-1 receptor (IGF-1R) signaling and tumor cell growth by a fully human neutralizing anti-IGF-1R antibody. Mol Cancer Ther, 2005, 4(8): 1214-1221.
    19.Maloney EK, Mclaughlin JL, Dagdigian NE, et al. An anti-insulin-like growth factor I receptor antibody that is a potent inhibitor of cancer cell proliferation. Cancer Research. 2003, 63(Aug): 5073-5083.
    20.潘耀振,孙诚谊,王玉芝,等.脂质体介导的IGF-1R反义寡核苷酸抗胰腺癌的实验研究.中华核医学杂志, 2005, 25(4): 212-215.
    21.Geddes S, Holst P, Grotzinger J, et al. Structure-function studies of an IGF-1 analogue that can be chemically cleaved to a two-chain mini-IGF-1. Protein Engineering, 2001, 14(1): 61-65.
    22.Blum G, Gazit A, Levitzki A. Substrate competitive inhibitors of IGF-1 receptor kinase.Biochemistry, 2000, 39(51): 15705-15712.
    23.Pietrzkowski Z, Wernicke D, Porcu P, et al. Inhibition of cellular proliferation by peptide analogues of insulin-like growth factor 1. Cancer Res, 1992, 52:6447-6451.
    24.Chakrabarti A, Aruva MR, Sajankila SP, et al. Synthesis of novel peptide nucleic acid-peptide chimera for non-invasive imaging of cancer. Nucleosides, Nucleotides, and Nucleic Acids, 2005, 24(5-7), 409-414.
    25.Tian X, Chakrabarti A, Amirkhanov NV, et al. External imaging of CCND1,MYC,and KRAS oncogene mRNAs with tumor-targeted radionuclide-PNA- peptide chimeras[J]. Ann NY Acad Sci, 2005, 1059: 106-144.
    26.Thakur ML, Marcus CS, Saeed S, et al. 99mTc-labeled vasoactive intestinal peptide analog for rapid localization of tumors in humans. J Nucl Med, 2000, 41(1): 107-110.
    27.Tian X, Aruva MR, Qin W, et al. External imaging of CCND1 cancer gene activity in experimental human breast cancer xenografts with 99mTc-peptide-peptide nucleic acid-peptide chimeras. J Nucl Med, 2004, 45(12): 2070-2082.
    28.杨晓春.联合转染反义寡核苷酸治疗胰腺癌和MRI动态观测的实验研究.博士学位论文,苏州大学, 2006.
    29.章斌,吴翼伟,范我,等.188Re/99Tcm-IGF-1类似物的制备及与胰腺癌细胞结合实验研究.中华核医学杂志,2007,27(6):338-342.
    30.Liu S, Hsieh WY, Kim YS, et al. Effect of coligands on biodistribution characteristics of ternary ligand 99mTc complexes of a HYNIC-conjugated cyclic RGFfK dimer. Bioconjugate Chem, 2005, 16(6): 1580-1588.
    31.范光磊.放射性核素标记胰腺癌靶向药物的初步实验研究.硕士学位论文,苏州大学, 2008.
    32.邓胜明. 188Re-IGF-1A治疗胰腺癌的细胞实验及荷瘤裸鼠体内分布研究.硕士学位论文,苏州大学, 2008.
    33.孙亮,李士骏.放射性药物内照射剂量计算软件(I)-源器官衰变数的计算.辐射研究与辐射工艺学报, 2002, 20(3): 204-208.
    1.张学宏,高玉堂.胰腺癌的流行病学.胰腺病学, 2005, 5(3): 180-183.
    2. Yang GY, Wagner TD, Fuss M, et al. Multimodality approaches for pancreatic cancer. CA Cancer J Clin 2005, 352-367.
    3. Lowenfels AB, Maisonneuve P. Epidemiology and prevention of pancreatic cancer. Jpn J Clin Oncol, 2004, 34(5): 238-244.
    4. Howard A Reber. Pancreatic cancer-pathogenesis, diagnosis, and treatment.世界图书出版西安公司,西安,1999.
    5.詹文华.胰腺癌基因诊断及研究的最近进展.国外医学.外科学分册, 1995, 1: 4-7.
    6.杨尹默,黄筵庭,刘强. ras基因与胰腺肿瘤.中华医学杂志, 1994, 74(6): 386-388.
    7.黄筵庭,杨尹默,刘强.胰腺癌组织中K-ras基因点突变的研究.中华医学杂志, 1994, 74(2): 77-79.
    8.于观贞.胰腺癌的分子变化基础及分子诊断.国外医学.生理病理科学与临床分册, 2003, 23(1): 64-66.
    9.Guerrero S, Casanova I, Farre L, et al. K-ras coden 12 mutation induces higher level of resistance to apoptosis and predisposition to anchorage-independent growth than coden
    13 mutation or proto-oncogene overexpression. Cancer Research, 2000, 60(Dec): 6750-6756.
    10.Song MM, Nio Y, Dong M, et al. Ki-ras point mutations and p53 expression in human pancreatic cancer: a comparative study among Chinese, Japanese, and Western patients. Cancer Epidemiol Biomarkers Prev, 2000, 9: 279-284.
    11.苏震东. K-ras基因突变在胰腺癌中的作用研究进展.国外医学消化系疾病分册, 2005, 25(1): 48-51.
    12.雷小勇,张洹.从反义技术到反基因技术:基因治疗的新突破.医学与哲学, 2001, 22(9): 10-12.
    13.盛世乐,黄钢.肿瘤反基因放射治疗的研究进展.中华核医学杂志, 2004, 24(6): 377-378.
    14.Ratilainen T, Lincoin P, Norden B. A simple model for gene targeting. Biophysical Journal, 2001, 81: 2876-2885.
    15.龚镭,诸玲,胥明.胰腺癌基因治疗的现状与前景.胰腺病学, 2005, 5(1): 56-57.
    16.陈熹,王永向,纪宗正,等. K-ras基因点突变的反义寡脱氧核苷酸对人胰腺癌靶基因表达的抑制作用.西安交通大学学报(医学版), 2003, 24(2): 147-149.
    17.Rapozzi V, Burm BEA, Cogoi S, et al. Antiproliferative effect in chronic myeloid leukaemia cells by antisense peptide nucleic acids. Nucleic Acids Research, 2002, 30(17): 3712-3721.
    18.王红艳.肽核酸的性质和应用.国外医学分子生物学分册, 2000, 22(5): 268-272.
    19.张艳,何凤田.肽核酸的特性及作用.生理科学进展, 2002, 33(1): 59-60.
    20.Hashimoto K, Ishimori Y. Preliminary evaluation of electrochemical PNA array for detection of single base mismatch mutations. Lab on a Chip, 2001, 1: 61-63.
    21.Pellestor F, Paulasova P, Macek M, et al. The use of peptide nucleic acids for in situ identification of human chromosomes. J Histochemistry and Cytochemistry, 2005, 53(3): 395-400.
    22.Detection of rare mutant K-ras DNA in a single–tube reaction using peptide nucleic acid as both PCR clamp and sensor probe. Nucleic Acids Research, 2006, 34(2): e12.
    23.周玲艳,秦华明,谢振文.肽核酸与基因治疗.广东药学院学报2003, 19(1): 64-66.
    24.赵旭海,李志高.肽核酸性质及应用前景.实用肿瘤学杂志, 2003, 17(4): 321-323.
    25.Pellestor F, Paulasova P. The peptide nucleic acids, efficient tools for molecular diagnosis. International Journal of Molecular Medicine, 2004, 13: 521-525.
    26.王传玺,韩金祥,鲁艳芹.肽核酸在分子生物学方面的应用研究进展.中国生化药物杂志. 2004, 25(5): 320-322.
    27.Zhang X, Ishihara T, Corey DR. Strand invasion by mixed base PNAs and a PNA-peptide chimera. Nucleic Acid Research, 2000, 28(17): 3332-3338.
    28.Miller KJ, Das SK. Antisense oligonucleotides: strategies for delivery. PSTT, 1998, 1(9): 377-386.
    29.金义光,乔颖欣.肽核酸的细胞传递.国外医学药学分册, 2003, 30(5): 261-264.
    30.Boffa LC, Scarfi’S, Mariani MR, et al. Dihydrotestosterone as a selective cellular/nuclear localization vector for anti-gene peptide nucleic acid in prostatic carcinoma cells. Cancer Research, 2000, 60: 2258-2262.
    31.Tian X, Aruva MR, Qin W, et al. External imaging of CCND1 cancer gene activity in experimental human breast cancer xenografts with 99mTc-peptide-peptide nucleic acid-peptide chimeras. J Nucl Med, 2004, 45(12): 2070-2082.
    32.Tian X, Chakrabarti A, Amirkhanov NV, et al. External imaging of CCND1,MYC,and KRAS oncogene mRNAs with tumor-targeted radionuclide-PNA- peptide chimeras. Ann NY Acad Sci, 2005, 1059: 106-144.
    33.Rao PS, Tian X, Qin W, et al. 99mTc-peptide-peptide nucleic acid probes for imaging oncogene mRNAs in tumors. Nucl Med Commun, 2003, 24(8): 857-863.
    34.杨波,何杨,吴翼伟,等. K-ras突变基因的克隆及逆转录病毒pEGZ/MCS HA载体的构建.苏州大学学报, 2004, 24(2): 144-146.
    35.吴翼伟,杨波,何杨. K-ras突变多肽诱导胰腺癌免疫治疗的实验研究.医学临床研究, 2005, 22(5): 581-584.
    36.何杨,杨波,阮长耿.树突细胞负载K-ras突变多肽诱导抗胰腺癌免疫反应.癌症, 2005, 24(5): 559-562.
    37.任玥欣,李兆申,许国铭,等. P21ras在胰腺疾病组织中的表达及其意义.第二军医大学学报, 2002, 23(5): 491-493.
    38.冯刚,李胜富,李幼平,等.反义肽核酸对树突状细胞CD86表达的抑制作用.华西医科大学学报, 2002, 33(2): 192-195.
    39.Cutrona G, Carpaneto EM, Ponzanelli A, et al. Inhibition of the translocated c-myc in burkitt’s lymphoma by a PNA complementary to the Eμenhancer. Cancer Research, 2003, 63(Oct): 6144-6148.
    40.Ross PJ, George M, Cunningham D, et al. Inhibition of Kirsten-ras expression in human colorectal cancer using rationally selected Kirsten-ras antisense oligonucleotides. Molecular Cancer Therapeutics, 2001, 1: 29-41.
    41.高再荣,张凯军,张永学. MAG3和DTPA用于99Tcm标记survivin ASON的对比研究.中华核医学杂志, 2004, 24(4): 238-241.
    42.沈晶,王荣福,张春丽,等.放射性碘标记反义寡核苷酸在荷人淋巴瘤裸鼠中的分布及显像研究.北京大学学报医学版, 2002, 36(6): 655-659.
    43.He Y, Panyutin IG, Karavanov A, et al. Sequence-specific DNA strand cleavage by 111In-labeled peptide nucleic acids. Eur J Nucl Med Mol Imaging, 2004, 31(6): 837-845.
    44.Lewis MR, Jia F, Gallazzi F, et al. Radiometal-labeled peptide-PNA conjugates for targeting bcl-2 expression: preparation, characterization, and in vitro mRNA binding. Bioconjugate Chem, 2002, 13(6): 1176-1180.
    45.谢娟,刘方欣,王颖,等. 99Tcm-EC-ASODN反义探针的合成和标记.核技术, 2005, 28(6): 449-453.
    46.郑建国,谭天秩,梁正路,等.脂质体介导的99Tcm标记c-myc mRNA反义寡核苷酸的初步研究同位素, 2001, 14(2): 87-91.
    47.郑建国,谭天秩,匡安仁,等.脂质体介导的99Tcm-反义寡聚核苷酸在荷瘤裸鼠体内分布及显像研究.中华核医学杂志, 2001, 21(6): 349-350.
    48.谢娟,郭坤亮,李少林.叶酸受体介导99mTc标记c-erbB2癌基因反义寡核苷酸的乳腺癌细胞摄取率.贵州医药, 2005, 29(1): 13-15.
    49.张春,谭天秩,匡安仁,等. 99Tcm-VIP-ASODN对结肠腺癌HT29细胞的反义抑制研究.中华核医学杂志,2003, 23(3): 148-151.
    50.Mardirossian G, Lei K, Rusckowski M, et al. In vivo hybridization of technetium-99m-labeled peptide nucleic acid (PNA). J Nucl Med, 1997, 38(6): 907-913.
    51.Tian X, Aruva MR, Qin W, et al. Noninvasive molecular imaging of MYC mRNA expression in human breast cancer xenografts with a [99mTc]peptide-peptide nucleic acid-peptide chimera. Bioconjug Chem, 2005, 16(1): 70-79.
    52.Rao PS, Tian X, Qin W, et al. 99mTc-peptide-peptide nucleic acid probes for imaging oncogene mRNAs in tumors. Nucl Med Commun, 2003, 24(8): 857-863.
    53.Lohse J, Dahl O, Nielsen PE. Double duplex invasion by peptide nucleic acid: a generalprinciple for sequence-specific targeting of double-stranded DNA. PNAS, 1999, 96(21): 11804-11808.
    54.McGuffie EM, Pacheco D, Carbone GMR, et al. Antigene and antiproliferative effects of a c-myc-targeting phosphorothioate triple helix-forming oligonucleotide in human leukemia cells. Cancer Research, 2000, 60(Jul): 3790-3799.
    55.程时武,侯英萍,张晓慧,等. 188Re-PDGFR-βmRNA AODN的制备及其生物分布.中华核医学杂志, 2005, 25(5): 308-310.
    56.Tonelli R, Purgato S, Camerin C, et al. Antigene peptide nucleic acid specifically inhibits MYCN expression in human neuroblastoma cells leading to cell growth inhibition and apoptosis. Mol Cancer Ther, 2005, 4(5): 779-786.
    57.欧晓红,谭天秩,李云春,等. 131I-VIP-ASON在荷结肠腺癌裸鼠体内的抑瘤作用.中华核医学杂志,2004, 24(6): 333-335.
    58.郑骏年,孙晓青,陈家存,等. 125I标记Ki67多肽核酸影响肾癌细胞增殖及凋亡的实验研究.中华核医学杂志, 2004, 24(3): 139-141.
    59.罗先富,章斌,马泓冰,等.125I标记抗人CD40mAb5H6在荷人卵巢癌(HO8910) BALB/c裸鼠体内分布及放射免疫显像.中国免疫学杂志,2008,24(6): 533-537.
    1.Paeng J C, Jeong J M, Yoon C J, et al. Lipiodol solution of 188Re-HDD as a new therapeutic agent for transhepatic arterial embolization in liver cancer: preclinical study in a rabbit liver cancer model. J Nucl Med, 2003, 44: 2033-2038.
    2.Ruyck K D, Lambert B, Bacher K, et al. Biologic dosimetry of 188Re-HDD/lipiodol versus 131I-lipiodol therapy in patients with hepatocellular carcinoma. J Nucl Med, 2004, 45(4): 612-618.
    3.Lambert B, Bacher K, Defreyne L, et al. 188Re-HDD/lipiodol therapy for hepatocellular carcinoma: a phase I clinical trial. J Nucl Med, 2005, 46(1): 60-66.
    4.Kumar A, Srivastava DN, Chau TTM, et al. Inoperable hepatocellular carcinoma: transarterial 188Re-HDD-labeled iodized oil for treatment– prospective multicenter clinical trial. Radiology, 2007, 243(2): 509-519.
    5.Liepe K, Kotzerke J. Advantage of 188Re-radiopharmaceuticals in hepatocellular cancer and liver metastases. J Nucl Med, 2005, 46: 1407.
    6.Jeong J M, Lee Y J, Kim Y J, et al. Preparation of rhenium-188-tin colloid as a radiation synovectomy agent and comparison with rhenium-188-sulfur colloid. Appl Radiat Isot, 2000, 52: 851-855.
    7.Lee E B, Shin K C, Lee Y J, et al. 188Re-tin-colloid as a new therapeutic agent for rheumatoid arthritis. Nucl Med Commun, 2003, 24: 689-696.
    8.Wunderlich G, Drews A, Kotzerke J. A kit for labeling of [188Re] human serum albumin microspheres for therapeutic use in nuclear medicine. Appl Radiat Isot, 2005, 62: 915-918.
    9.Ures M C, Savio E, Malanga A, et al. Physico-chemical characterisation and biological evaluation of 188-Rhenium colloids for radiosynovectomy. BMC Nucl Med, 2002, 2: 1-9.
    1.张学宏,高玉堂.胰腺癌的流行病学.胰腺病学, 2005, 5(3): 180-183.
    2. Yang GY, Wagner TD, Fuss M, et al. Multimodality approaches for pancreatic cancer. CA Cancer J Clin 2005, 352-367.
    3. Lowenfels AB, Maisonneuve P. Epidemiology and prevention of pancreatic cancer. Jpn J Clin Oncol, 2004, 34(5): 238-244.
    4. Howard A Reber. Pancreatic cancer-pathogenesis, diagnosis, and treatment.世界图书出版西安公司,西安,1999.
    5.詹文华.胰腺癌基因诊断及研究的最近进展.国外医学.外科学分册, 1995, 1: 4-7.
    6.杨尹默,黄筵庭,刘强. ras基因与胰腺肿瘤.中华医学杂志, 1994, 74(6): 386-388.
    7.黄筵庭,杨尹默,刘强.胰腺癌组织中K-ras基因点突变的研究.中华医学杂志, 1994, 74(2): 77-79.
    8.于观贞.胰腺癌的分子变化基础及分子诊断.国外医学.生理病理科学与临床分册, 2003, 23(1): 64-66.
    9.Guerrero S, Casanova I, Farre L, et al. K-ras coden 12 mutation induces higher level of resistance to apoptosis and predisposition to anchorage-independent growth than coden
    13 mutation or proto-oncogene overexpression. Cancer Research, 2000, 60(Dec): 6750-6756.
    10.Song MM, Nio Y, Dong M, et al. Ki-ras point mutations and p53 expression in human pancreatic cancer: a comparative study among Chinese, Japanese, and Western patients. Cancer Epidemiol Biomarkers Prev, 2000, 9: 279-284.
    11.苏震东. K-ras基因突变在胰腺癌中的作用研究进展.国外医学消化系疾病分册, 2005, 25(1): 48-51.
    12.雷小勇,张洹.从反义技术到反基因技术:基因治疗的新突破.医学与哲学, 2001, 22(9): 10-12.
    13.盛世乐,黄钢.肿瘤反基因放射治疗的研究进展.中华核医学杂志, 2004, 24(6): 377-378.
    14.Ratilainen T, Lincoin P, Norden B. A simple model for gene targeting. Biophysical Journal, 2001, 81: 2876-2885.
    15.龚镭,诸玲,胥明.胰腺癌基因治疗的现状与前景.胰腺病学, 2005, 5(1): 56-57.
    16.陈熹,王永向,纪宗正,等. K-ras基因点突变的反义寡脱氧核苷酸对人胰腺癌靶基因表达的抑制作用.西安交通大学学报(医学版), 2003, 24(2): 147-149.
    17.Rapozzi V, Burm BEA, Cogoi S, et al. Antiproliferative effect in chronic myeloid leukaemia cells by antisense peptide nucleic acids. Nucleic Acids Research, 2002, 30(17): 3712-3721.
    18.王红艳.肽核酸的性质和应用.国外医学分子生物学分册, 2000, 22(5): 268-272.
    19.张艳,何凤田.肽核酸的特性及作用.生理科学进展, 2002, 33(1): 59-60.
    20.Hashimoto K, Ishimori Y. Preliminary evaluation of electrochemical PNA array for detection of single base mismatch mutations. Lab on a Chip, 2001, 1: 61-63.
    21.Pellestor F, Paulasova P, Macek M, et al. The use of peptide nucleic acids for in situ identification of human chromosomes. J Histochemistry and Cytochemistry, 2005, 53(3): 395-400.
    22.Detection of rare mutant K-ras DNA in a single–tube reaction using peptide nucleic acid as both PCR clamp and sensor probe. Nucleic Acids Research, 2006, 34(2): e12.
    23.周玲艳,秦华明,谢振文.肽核酸与基因治疗.广东药学院学报2003, 19(1): 64-66.
    24.赵旭海,李志高.肽核酸性质及应用前景.实用肿瘤学杂志, 2003, 17(4): 321-323.
    25.Pellestor F, Paulasova P. The peptide nucleic acids, efficient tools for molecular diagnosis. International Journal of Molecular Medicine, 2004, 13: 521-525.
    26.王传玺,韩金祥,鲁艳芹.肽核酸在分子生物学方面的应用研究进展.中国生化药物杂志. 2004, 25(5): 320-322.
    27.Zhang X, Ishihara T, Corey DR. Strand invasion by mixed base PNAs and a PNA-peptide chimera. Nucleic Acid Research, 2000, 28(17): 3332-3338.
    28.Miller KJ, Das SK. Antisense oligonucleotides: strategies for delivery. PSTT, 1998, 1(9): 377-386.
    29.金义光,乔颖欣.肽核酸的细胞传递.国外医学药学分册, 2003, 30(5): 261-264.
    30.Boffa LC, Scarfi’S, Mariani MR, et al. Dihydrotestosterone as a selective cellular/nuclear localization vector for anti-gene peptide nucleic acid in prostatic carcinoma cells. Cancer Research, 2000, 60: 2258-2262.
    31.Tian X, Aruva MR, Qin W, et al. External imaging of CCND1 cancer gene activity in experimental human breast cancer xenografts with 99mTc-peptide-peptide nucleic acid-peptide chimeras. J Nucl Med, 2004, 45(12): 2070-2082.
    32.Tian X, Chakrabarti A, Amirkhanov NV, et al. External imaging of CCND1,MYC,and KRAS oncogene mRNAs with tumor-targeted radionuclide-PNA- peptide chimeras[J]. Ann NY Acad Sci, 2005, 1059: 106-144.
    33.Rao PS, Tian X, Qin W, et al. 99mTc-peptide-peptide nucleic acid probes for imaging oncogene mRNAs in tumors. Nucl Med Commun, 2003, 24(8): 857-863.
    1.Ferro-Flores G, Arteaga de Murphy C. Pharmacokinetics and dosimetry of 188 Re-pharmaceuticals. Adv Drug Deliv Rev. 2008 Sep;60(12):1389-401.
    2.Torres-García E, Ferro-Flores G, Arteaga de Murphy C, et al. Biokinetics and dosimetry of 188Re-anti-CD20 in patients with non-Hodgkin's lymphoma: preliminary experience. Arch Med Res. 2008 Jan;39(1):100-9.
    3.De Decker M, Bacher K, Thierens H, et al. In vitro and in vivo evaluation of direct rhenium-188-labeled anti-CD52 monoclonal antibody alemtuzumab for radioimmunotherapy of B-cell chronic lymphocytic leukemia. Nucl Med Biol, 2008 Jul; 35(5): 599-604.
    4.Dadachova E, Revskaya E, Sesay MA, et al. Pre-clinical evaluation and efficacy studies of a melanin-binding IgM antibody labeled with 188Re against experimental human metastatic melanoma in nude mice. Cancer Biol Ther. 2008 Jul;7(7):1116-27.
    5.丁勇,田嘉禾,杨志,等. 188Re-CL58多次小剂量RIT初探.同位素, 2004, 17(3): 139-142.
    6.丁勇,田嘉禾,杨武威,等. 188Re-CL58、131I-chTNT放射免疫治疗的临床研究.中国肿瘤临床, 2004, 31(1): 8-11.
    7.陈维真,张勇,卢汉平,等. 188Re-7E11C5.3抑制前列腺癌细胞增殖.中国病理生理杂志, 2007, 23(10): 2051-2053.
    8.张勇,许杰华,陈维真,等. 188Re-7E11C5.3在前列腺癌裸鼠模型中的放射免疫治疗研究.核技术, 2008, 31(8): 616-618.
    9.邢春根,刘增礼,钱建新,等. 188Re-抗CEA单克隆抗体与白细胞介素12基因抗结肠癌协同效应.中华核医学杂志, 2005, 25(6): 362-364.
    10.王国慧,刘长征,梁昌盛,等. 188Re-BAC5对鼻咽癌细胞影响的实验研究.核技术, 2003, 26(5): 375-379.
    11.李贵平,张一帆,汪勇先,等. 188Re-Herceptin免疫导向治疗乳腺癌的实验研究.南方医科大学学报, 2006, 26(10): 1455-1457.
    12.曹金全,汪勇先,于俊峰,等.磁性纳米微粒的188Re标记.同位素, 2004, 17(2): 84-89.
    13.冯彦林,谭家驹,梁生,等. [188Re(CO)3(H2O)3]+间接标记免疫磁性纳米微粒的实验研究.国际放射医学核医学杂志, 2007, 31(4): 211-214.
    14.李贵平,汪勇先,张春富,等. 188Re标记免疫靶向磁性纳米微粒及其生物学分布.中华核医学杂志, 2006, 26(4): 231-235.
    15.章斌,吴翼伟,范我,等.用188Re直接标记octreotide.中华核医学杂志, 2003, 23(1): 55-56.
    16.章斌,吴翼伟,范我,等. 188Re/99Tcm-IGF-1类似物的制备及与胰腺癌细胞结合实验研究.中华核医学杂志,2007,27(6):338-342.
    17.宋进华,刘璐,王自正,等. 188Re标记小剂量奥曲肽方法学及其在小鼠体内分布的研究.中华实验外科杂志, 2005, 22(4): 416-418.
    18.宋进华,王自正,周云,等. 188Re-奥曲肽在荷瘤裸鼠体内分布的实验研究.国际放射医学核医学杂志, 2006, 30(1): 14-16.
    19.谢赣丰,李前伟,刘广元. 188Re-RGD-4CK的制备及其示踪动力学研究.现代生物医学进展, 2008, 8(3): 414-416.
    20.Müller C, Schubiger PA, Schibli R. Isostructural folate conjugates radiolabeled with the matched pair 99mTc/188Re: a potential strategy for diagnosis and therapy of folate receptor-positive tumors. Nucl Med Biol. 2007 Aug;34(6):595-601.
    21.唐林,于俊峰,夏姣云,等.羰基铼[188Re]标记含RGD多肽.同位素, 2006, 19(1): 17-21.
    22.夏姣云,汪勇先,于俊峰,等.三羰基铼[188Re]的放射化学合成.核化学与放射化学, 2005, 27(2): 87-90.
    23.夏姣云,汪勇先,李世强,等.铼羰基化合物的制备及其在小鼠体内的生物分布.核化学与放射化学, 2006, 28(1): 31-37.
    24.张晓慧,徐海峰,程时武. 188Re-血管抑素的制备及其在小鼠体内分布.第四军医大学学报, 2005, 26(12): 1140-1142.
    25.陈跃,熊青峰,何菱,等. 188Re-DTPA-DG的制备及其在荷瘤裸鼠体内的分布.同位素, 2007, 20(1): 33-35.
    26.熊青峰,陈跃,何菱,等. 188Re-DTPA-DG致MCF-7乳腺癌细胞凋亡实验研究.中华核医学杂志, 2006, 26(3): 145-148.
    27.熊青峰,陈跃,何菱,等. 188Re标记DTPA-DG对肺癌A549细胞增殖的影响.肿瘤防治研究, 2007, 34(10): 747-750.
    28.程时武,侯英萍,张晓慧,等. 188Re-PDGFR-βmRNA AODN的制备及其生物分布.中华核医学杂志, 2005, 25(5): 308-310.
    29.Liu G, Dou S, He J, et al. Radiolabeling of MAG3-morpholino oligomers with at high labeling efficiency and specific radioactivity for tumor pretargeting. Appl Radiat Isot, 2006, 64(9): 971-978.
    30.王文进,罗顺忠,何佳恒,等. 188Re-NEPTDD的制备及生物分布研究.核技术, 2005, 28(4): 305-308.
    31.王文进,罗顺忠,何佳恒,等. 188Re-NEMMPTDD的制备及生物分布研究.核化学与放射化学, 2005, 27(1): 57-60.
    32.Bernal P, Raoul JL, Stare J, et al. International atomic energy agency-sponsored multination study of intra-arterial rhenium-188-labeled lipiodol in the treatment of inoperable hepatocellular carcinoma: results with special emphasis on prognostic value of dosimetric study. Semin Nucl Med, 2008, 38: S40-S45.
    33.H?feli UO, Pauer GJ, Unnithan J, et al. Fibrin glue system for adjuvant brachytherapy of brain tumors with 188Re and 186Re-labeled microspheres. Eur J Pharm Biopharm. 2007 Mar;65(3):282-8.
    34.孙晓光,修雁,吴元芳,等.瘤内注射188Re胶体与乙醇和乙酸治疗肝癌的实验研究.中华核医学杂志, 2004, 24(5):
    35.李惠源,吴元芳,董墨. 188Re标记锡硫混悬液对荷人结肠癌裸鼠模型的治疗研究.同位素, 2003, 16(3-4): 200-204.
    36.于延豹,汪勇先,董墨,等.不同颗粒度188Re-硫化铼混悬液的制备及其稳定性研究.同位素, 2004, 17(2): 99-103.
    37.周伟,尹端止,邹嗥,等. 188Re(Sn)-HEDP药盒的质量和稳定性研究.核技术, 2004,27(5): 385-390.
    38.梁九根,蒋宁一,杜建强,等. 188Re-羟乙基二膦酸与帕米膦酸二钠联合治疗乳腺癌骨转移的临床价值.中华肿瘤杂志, 2005, 27(3): 180-182.
    39.蒋树斌,罗顺忠,邓候富,等. 188Re-TCTMP的合成及在小鼠体内的分布核化学与放射化学, 2003, 25(1): 26-30.
    40.Liepe K, Runge R, Kotzerke J. Systemic radionuclide therapy in pain palliation. Am J Hosp Palliat Care. 2005 Nov-Dec;22(6):457-64.
    41.Liepe K, Runge R, Kotzerke J. The benefit of bone-seeking radiopharmaceuticals in the treatment of metastatic bone pain. J Cancer Res Clin Oncol. 2005 Jan;131(1):60-6.
    42.Dadachova E, Nguyen A, Lin EY, et al. Treatment with rhenium-188-perrhenate and iodine-131 of NIS-expressing mammary cancer in a mouse model remarkably inhibited tumor growth. Nucl Med Biol. 2005 Oct;32(7):695-700.
    43.程竞仪,章英剑,施伟,等. 188Re(Ⅴ) -DMSA药盒制备及其质量评估.中华核医学杂志, 26(2): 118-119.
    44.赵燕凌,陈跃. 188Re标记放射性药物研究进展.医学综述, 2006, 12(14): 879-882.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700