用户名: 密码: 验证码:
1. 颅内动脉瘤手术夹闭与血管内治疗临床对比研究 2. 光动力治疗裸鼠皮下移植的C6胶质瘤对VEGF表达的影响及意义
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:探讨颅内动脉瘤(Intracranial aneurysms,AN)治疗方法的选择、手术和血管内治疗的适应症、安全性及影响预后因素,为动脉瘤性蛛网膜下腔出血患者的临床治疗提供指导性依据。
     方法:回顾性分析了沈阳军区总医院和第三军医大学西南医院自2000年1月至2007年12月收治的1537例颅内动脉瘤病例,男性659例,女性878例,年龄17-84岁,平均年龄60.8岁。术前Hunt-Hess分级0级22例,I级207例,II级437例,III级760例,IV级76例,V级35例。377例有高血压病史,221例有糖尿病病史,17例合并脑梗塞。所有患者入院前均行CT检查,1515急性剧烈头痛患者行CT检查或腰穿证实为蛛网膜下腔出血,其中Fisher I级36例,Fisher II级397例,Fisher III级891例,Fisher IV级213例。本组患者1532例行全脑血管连续造影术,并行三维重建明确动脉瘤与载瘤动脉及其分支空间三维关系。所有患者均经有经验的神经外科医生和神经介入医生阅片,根据动脉瘤形态、部位及患者临床状态,并与患者家属及本人交流共同制定治疗计划。本组889例患者采用显微外科手术治疗处理责任病灶,另外3例同侧串联性多发动脉瘤和1例CT及造影无法判断责任病灶的双侧后交通动脉瘤患者同期采用显微外科夹闭动脉瘤,共夹闭893例动脉瘤。621例行血管内治疗:窄颈动脉瘤采用单纯微弹簧圈栓塞,宽颈动脉瘤采用支架辅助微弹簧圈栓塞、球囊辅助微弹簧圈栓塞、单纯支架成形,其中部分多发动脉瘤病例同期栓塞所有动脉瘤;23例行保守(未)治疗(由于经济、技术、风险等原因)。术后随访改良Rankin评分、再出血率,48例显微外科手术患者和35例血管内治疗患者复查脑血管造影。
     结果:血管内治疗组术后恢复良好(改良Rankin评分0-2分)589例,功能障碍(改良Rankin评分3-5分)22例,死亡10例;显微外科手术组恢复良好(改良Rankin评分0-2分)796例,功能障碍(改良Rankin评分3-5分)61例,死亡32例。随访血管内治疗组患者349例,再出血7例(脑血管造影显示4例栓塞后动脉瘤复发,2例其他部位再发动脉瘤,1例原因不明);随访显微外科手术组患者571例,再出血9例(脑血管造影显示7例术后动脉瘤复发,2例其他部位再发动脉瘤)。48例显微外科手术患者复查脑血管造影(6m~3Y),显示瘤颈残留2例,动脉瘤复发1例;35例血管内治疗患者复查脑血管造影(6m~27m),显示动脉瘤再通4例。27例未治疗患者中11例因再出血死亡(2w~7m)。
     结论:
     1.大部分动脉瘤同时适合显微外科手术和血管内治疗,血管内治疗动脉瘤总体上预后优于显微外科手术,在动脉瘤患者既适合血管内治疗又适合显微外科手术时,应首选血管内治疗;
     2.动脉瘤在手术后随病情的等级升级,功能障碍比率增大,死亡率提高,风险性较大。但在同等级情况下,血管内治疗优越于显微外科手术治疗。当IV、V级动脉瘤出血形成血肿脑疝时,应采用显微外科手术治疗,并尽量缩短发生脑疝距离手术的时间,如根据出血可判断动脉瘤部位可直接探查手术;
     3.动脉瘤在出血3-14d治疗增加死亡率和病残率,因此对于破裂动脉瘤,无论显微外科手术还是血管内治疗,治疗时机应选择在3d以内或14d以后;如需在3-14d治疗,应首选血管内治疗;
     4.动脉瘤随着患者年龄的增长,功能障碍增多,手术风险增大,特别是60岁以上年龄组,应首选血管内治疗;
     5.动脉瘤大小影响治疗方法的选择,在条件具备的条件下大行动脉瘤应首选血管内治疗,风险性小,成功率高。颅内支架治疗微小动脉瘤具有潜在的优势;
     6.动脉瘤在不同部位选择治疗方法存在差异,即在大脑中动脉瘤应采用显微外科手术为佳,其他部位采用血管内治疗为佳,
     7.多发动脉瘤和未破裂应首选血管内治疗;
     8.后循环远端动脉瘤应用液态非粘附材料血管内治疗有独特的优势;
     9.无论显微外科还是血管内治疗,均无法完全避免血管痉挛及缺血性损害的发生,并且发生率与治疗方法无明确相关,应在术后积极进行抗血管痉挛的治疗;应根据患者年龄、临床分级、动脉瘤部位、形态学特点和医院、医生经验等综合因素选择治疗策略,必要时联合两种治疗手段。
     目的
     分析应用国产血卟啉衍生物(Hematoporphyrin Derivative,HpD)的光动力学疗法(Photodynamic Therapy,PDT)对裸鼠皮下C6胶质瘤细胞的杀伤效应,观察血管内皮细胞生长因子(vascular endothelial growth factor , VEGF)的变化情况,探讨血管生成在PDT治疗后在肿瘤复发中可能起的作用,为临床PDT联合抗血管生成治疗脑胶质瘤提供实验基础。
     方法
     大鼠C6胶质瘤细胞常规体外培养后,进行C6胶质瘤的裸鼠皮下移植,于l5d时取出肿瘤制成1×1×lmm3大小的组织块,分别接种于裸小鼠的四个部位(双侧腋窝和腹股沟皮下)。待肿瘤大直径长至7mm左右开始PDT治疗,每小组裸小鼠都以同侧治疗,对侧作为对照。使用Lumacare-051光动力学治疗仪在波长628 nm、照光强度20 mW/cm2、照光时间5 min条件下,给与不同的HpD浓度(5 mg/kg、10 mg/kg、20 mg/kg和30 mg/kg)进行PDT治疗。测定肿瘤体积并计算抑瘤率,然后处死裸鼠行HE染色组织病理观察,TUNEL法检测不同HpD浓度组C6胶质瘤细胞经PDT治疗后的细胞凋亡率,采用Sp法进行免疫组织化学染色检查经PDT治疗后VEGF蛋白含量及变化。
     结果
     1.C6胶质瘤裸鼠皮下移植瘤各治疗组的对侧对照肿瘤体积逐渐增大;经不同浓度PDT治疗的各组肿瘤在第2-3天明显增大,3天后出现瘤区皮下出血,在3-10天治疗组肿瘤无明显增大,10天时与对照组相比抑瘤明显。镜下可见治疗组肿瘤细胞死亡及间质内陈旧性出血。
     2.VEGF蛋白表达结果免疫组化检查裸小鼠皮下移植瘤组织可见呈较弥散的VEGF表达,呈阳性。阳性反应位于瘤细胞胞质,部分位于血管。单纯光照射对照组与加药后对照组VEGF表达无差异。在HpD治疗组VEGF在治疗后1天达到表达的高峰(图1,2),治疗组与各自对照组间差异显著(P<0.01),在3天时表达明显降低与对照组差异不明显。并且HpD 5mg/kg组与10mg/kg、20mg/kg、30mg/kg组只在治疗后1天存在组间差异(P<0.01),而HpD 10mg/kg、20mg/kg、30mg/kg组间VEGF表达差异不明显(P>0.05)。
     3.TUNEL测定细胞凋亡率:HpD 5mg/kg、10mg/kg、20mg/kg与30mg/kg浓度组C6胶质瘤裸鼠皮下移植瘤经PDT后TUNEL染色可见:部分细胞出现细胞缩小、染色质边集呈新月形、分叶状及不规则形、凋亡小体形成、细胞核内棕黄色颗粒等改变,凋亡率为35.5%,52.8%,56.4%,63.2%。只加光敏剂不照光的C6胶质瘤细胞经TUNEL染色后可见细胞形态良好,有极少量凋亡样细胞存在。
     结论
     1、PDT在裸鼠皮下移植瘤模型中对C6胶质瘤细胞有明确杀伤效应;
     2、PDT能够引起C6胶质瘤细胞出现细胞凋亡,并且与HPD的浓度相关。
     3、裸鼠皮下移植瘤模型中对C6胶质瘤经PDT治疗后在24小时后出现VEGF蛋白表达高峰,3天后VEGF蛋白表达减少与对照组无差异。PDT治疗杀伤胶质瘤后的VEGF的表达,可能有肿瘤自我保护的作用,可能是肿瘤复发的关键因素。
Objective: To investigate the factors influenced decision-making in the treatment of intracranial aneurysms, indication of microsurgery and endovascular therapy, security, and the relevant factors to the prognosis for aneurysmal subarachnoid hemorrhage patients within the clinical treatment.
     Methods: We retrospectively analysis 1537 intracranial aneurysm patients of the General Hospital of Shenyang Military and the Southwest Hospital of the Third Military Medical University from January 2000 to December 2007, 659 cases of male, 878 cases of female, aged 17-84 years old , the average age of 60.8 years old. Preoperative Hunt-Hess grade 0 22 cases, grade I 207 cases, 437 cases of grade II and grade III 760 cases, 76 cases of grade IV, V-35 cases. 377 cases have a history of hypertension, 221 patients with a history of diabetes, 17 patients with cerebral infarction. CT scans were performed before patients were admitted to hospital, 1515 patients with acute severe headache or lumbar puncture confirmed subarachnoid hemorrhage, which Fisher grade I-36 cases, Fisher grade II-397 cases, 891 cases of Fisher grade III, Fisher grade IV - 213 cases. The 1532 patients performed routine cerebral vascular angiography, three-dimensional reconstruction clear parallel aneurysm and the parent artery and its branches in 3D space relations. All data were reviewed by experienced neurosurgeons and interventional neuroradiology doctors, the treatment plan was decided according to aneurysm shape, location and clinical status, with patients and their families willings. Of whom 621 patients were treated with endovascular therapy,893 patients were treated with microsurgery,23 patients underwent expectant treatment. Three cases of ipsilateral series of multiple aneurysms and one case of CT and angiography to determine the responsibility of the bilateral lesions of the posterior communicating artery with the same period a microsurgical clipping of aneurysms, and the remaining Surgical Treatment of patients with lesions responsibility. In endovascular treatment group: narrow-necked aneurysms using simple micro-coil embolization, a wide-necked aneurysm stent-assisted coil embolization, balloon-assisted coil embolization alone stent forming part of multiple cases of aneurysm embolization over the same period; 27 conservative routine (non) treatment (due to the economic, technical, risk and other reasons). Follow-up modified Rankin score, rebleeding rate, 48 cases of micro-surgery patients and 35 patients in the treatment of patients with vascular review cerebral angiography.Mortality, morbidity, recurrence rate and rebleeding rate were concerned.
     RESULTS: In patients treated with endovascular therapy, 589 patients received good recovery(modified Rankin score 0-2),22patients received dysfunction (modified Rankin score 3-5),10 patients died. In patients treated with microsurgery, 796 patients received good recovery(Rankin score 0-2),61 patients received bad recovery(Rankin score 3-5),32 patients died. 11 patients died of rebleeding in expectant treatment group. 349 cases of endovascular treatment group were followed-up with 7 cases of rebleeding (Cerebral angiography revealed that four cases of aneurysms after embolization recurrence, two cases to other parts of the aneurysm, one case of unknown cause); 571 cases of patients Microsurgery were followed-up, nine cases of rebleeding (cerebral angiography showed that after seven cases of aneurysm recurrence, two cases to other parts of the aneurysm). Microsurgery 48 cases of patients performed cerebral angiography review (6 m ~ 3Y), revealed that two cases of residual neck, one case of recurrent aneurysms; 35 cases of endovascular treatment group followed up with cerebral angiography (6 m ~ 27m), indicating that further aneurysm - 4 cases.
     Conclusion:
     1. Most of the intracranial aneurysms were suitable to both microsurgery and endovascular therapy. The prognosis is better in Endovascular Therapy than microsurgery. Endovascular therapy should be the first choice in most of intracranial aneurysms.
     2. The prognosis become worse in high grade aneurysms, especially in patients older than 60 years old,endovascular therapy is better than microsurgery in old patients,it should be the first choice. In high grade patients with cerebral hernia,microsurgery should be the first choice, and surgery should be performed as soon as ossible.
     3. The prognosis is worse in patients who were treated 0-14 days after SAH either microsurgery or endovascular therapy, treatment should be performed in 3 days or 14 days later after SAH. When a patient need to be treated in 3-14 days after SAH,endovascular therapy should be the first choice.
     4. Age is a important factor in the choice of treatment methods,the prognosis would be worse in elder patients,endovascular therapy should be the first choice in patients older than 60.
     5. The size of aneurysms also influenced treatment choice,endovascular therapy should be the first choice in giant intracranial aneurysm;intracranial stent has potential superiority in small aneurysms;
     6. The location is also important,middle cerebral aneurysms should be treated with microsurgery,endovascular therapy should be the first choice in other locations.
     7. Multiple aneurysms and unruptured aneurysms should be treated with endovascular therapy;
     8. Onyx has superiority in the treatment of aneurysms located in distal posterior circulation .
     9. Neither microsurgery nor endovascular therapy can avoid vasospasm and ischemic disease,and the occurrence has nothing with the method of treatment,anti-spasm treatment should be performed as soon as possible;
     10. Clinical decision should be made according to aneurysm location, shape, size aneurysm, clinical grade, whether or not the merger aneurysm thrombosis, calcification, narrow, whether involved or branch perforator blood vessels, aneurysms and multiple single and doctors experience a variety of factors to consider Individualized treatment options.
     Objectives: To evaluate the effect of hepatoprophyrin derivative(HpD) mediated photodynamic therapy (PDT) on the expression change of vascular endothelial growth factors(VEGF) in C6 gliomas of nude mice so as to discuss the meaning of neovascularization after PDT and provide the further evidence for the clinical application.
     Methods: The suspension of C6 glioma cells was injected into subcutaneousness of the nude mice, after 15 days the glioma was took out and divided into1×1×lmm3 which was implanted in double armpit and groin subcutaneousness of the nude mice. When the volume of implantation tumor was grown to 5-7 mm, the implantation tumors in one side of the nude mice were begun to PDT(HpD), and all of the contralateral implantation tumors were set up as control groups. C6 glioma cells were irradiated by Lumacare-051 irradiator at 628 nm, 20 mW/cm2 for 5 min afrer being given different concentration of HpD (5, 10, 20 and 30 mg/kg) respectively.The tumor suppressive rate was calculated and HE staining were observed after the nude mice sacrificed. Apoptosis of C6 glioma cells were detected by terminal deoxynucleotidyl transferase (TdT)-mediated dUTP nick-end labeling (TUNEL) assay in differernt groups. VEGF was observed by immunohistostaining.
     Results:
     1. The tumor volume of therapy group was obviously increased in 2-3 days and has a slight change in 3-10 days after PDT. The control group has a stabile increase after PDT. Subcutaneousness hemorrhage could be examined in the therapy group at PDT 3 days.
     2. The expression of VEGF which reached the peak in C6 gliomas in 5 mg/kg group 24 hours after PDT was significantly higher than that in the control group 1,3,7 and 10 days after the treatment and in 5 mg/kg group3,7 and 10 days after PDT(P<0.01).The expression of VEGF which also reached the peak in the other dose groups 24 hours after PDT was insignicantly higher than that 3,7 and 10 days after PDT(P>0.05).
     3. TUNEL detection showed: Some rather typical apoptotic cells(cell shrinkage, Butty granulas in cell nucleus, chromatin margination as luniform、lubiform as well as irregular shape, apoptotic bodies formation and so on) were observed in all grops with a proportionate of 33.5%, 52.8%, 56.4% and 63.2% in different concentration of HpD (5, 10, 20 and 30 mg/kg) group respectively . No obvious morphologic changes of the C6 glioma cells was found in the control group.
     Conclusions:
     1. HpD-PDT has lethal effective on C6 glioma cells, and this effect was correlated with the concentration of HpD.
     2.The peak of VEGF expression is reached 24 hours afeter PDT,the expression of VEGF may have self-protect function and play important point in tumor recurrence.
     3. Anti-neovascularization therapy may enganced the effect of PDT, Anti-neovascularization cooperate with PDT in cure glioma may become a new strategy of anti-glioma therapy.
引文
1. The International Study of Unruptured Intracranial Aneurysm Investigators. Uruptured intracranial aneurysms—risk of rupture and risks of surgical intervention.N Engl J Med 1998;339:1725-33.[Erratum, N Engl J Med 1999;340:744.]
    2. Wiebers DO, Whisnant JP, Huston J III, et al. Unruptured intracranial aneurysms:natural history, clinical outcome,and risks of surgical and endovascular treatment. Lancet 2003;362:103-10.
    3. Endovascular repair of intracranial aneurysms. Medtech Insight. Vol. 7. No.2.February 2005:47-52 (newsletter).
    4. Wijdicks EF, Kallmes DF, Manno EM,Fulgham JR, Piepgras DG. Subarachnoid hemorrhage: neurointensive care and aneurysm repair. Mayo Clin Proc 2005;80: 550-9.
    5. Connolly ES, Solomon RA. Management of unruptured aneurysms. In: Le Roux PD, Winn HR, Newell DW, eds. Management of cerebral aneurysms. Philadelphia: Saunders, 2004:271-85.
    6. Yanaka K, Nagase S, Asakawa H, Matsumaru Y, Koyama A, Nose T. Management of unruptured cerebral aneurysms in patients with polycystic kidney disease. Surg Neurol 2004;62:538-45.
    7. Butler WE, Barker FG II, Crowell RM. Patients with polycystic kidney disease would benefit from routine magnetic resonance angiographic screening for intracerebral aneurysms: a decision analysis. Neurosurgery 1996;38:506-15.
    8. The Magnetic Resonance Angiography in Relatives of Patients with Subarachnoid Hemorrhage Study Group. Risks and benefits of screening for intracranial aneurysms in first-degree relatives of patients with sporadic subarachnoid hemorrhage. N Engl J Med 1999;341:1344-50.
    9. Stapf C, Mohr JP. Aneurysms and subarachnoid hemorrhage—epidemiology. In: Le Roux PD, Winn HR, Newell DW, eds. Management of cerebral aneurysms. hiladelphia: Saunders, 2004:183-7.
    10. The International Study of Unruptured Intracranial Aneurysm Investigators. Unruptured intracranial aneurysms-risk of rupture and risks of surgical intervention[J]. N Engl J Med 1998; 339:1725-33. [Erratum, N Engl J Med 1999;340: 744.]
    11. Greenberg MS. SAH and aneurysms.In: Greenberg MS, ed. Handbook of neurosurgery.5th ed. New York: Thieme Medical,2000:754-803.
    12. Cohen-Gadol AA,Spencer DD.Harvy W.Cushing and cerebtalvascular surgery:part I,aneurysms.J Neurosurg.2004 sep;101(3):547-552.
    13. De Gans,Koen,Nieuwkamp Dennis J,Rinkel Gabriel J.E,et al.Timing fo Aeurysm Srgery in Sbarachnoid Hemorrhage:A systematic Review of the Literature. Neurosurgery, 50(2):336-342.
    14. Le Roux PD, Winn HR. Management of the ruptured aneurysm. In: Le Roux PD, Winn HR, Newell DW, eds. Management of cerebral aneurysms. Philadelphia: Saunders, 2004:303-33.
    15. Thornton J, Bashir Q, Aletich VA, et al. What percentage of surgically clipped intracranial aneurysms have residual necks? [J].Neurosurgery 2000; 46:1294-8.
    16. Molyneux A , Kerr RSC ,Yu L-M,et al.International Subarachnoid Aneurysm Trial(ISAT)of neurosurgical clipping versus endovascular coiling in 2142 patienrs with ruptured intranial aneurysms:a randomized comparison of effects on suevival, dependency, seizures, rebleeding, subgroups, and aneurysm occlusion[J]. Lancet,2005, 366: 809-817.
    17. Raymond J, Guilbert F, Weill A, et al.Long-term angiographic recurrences after selective endovascular treatment of aneurysms with detachable coils[J]. Stroke 2003; 34:1398-403.
    18.魏学忠,梁国标,吴中学,韩雅玲.冠脉支架与电解可脱性微弹簧圈结合治疗颅内巨大动脉瘤.现代康复.2001;vol 5
    19. Moret J, Cognard C, Weill A, Castaings L, Rey A. Reconstruction technic in the treatment of wide-neck intracranial aneurysms:long-term angiographic and clinical results: apropos of 56 cases. J Neuroradiol 997;24:30-44.
    20.吴中学,姜除寒.颅内动脉瘤血管内治疗的新技术和新材料[J].中华神经外科杂志,2004,20;100-104.
    21.吴中学,张静波,李佑祥,等.血管内支架结合弹簧圈栓塞椎基脉动脉梭形动脉瘤[J].中华神经外科杂志, 2002, 18 (3);139-141.
    22. Henkes H ., Reinartz J., Preiss H.,et al.Endovascular treatment of small intracranial aneurysms:Three alternative to coil occlusion.Minim Invas Neurosurg 2006;49:65-69.
    23.张静波,吴中学.支架结合弹簧圈栓塞颅内宽颈动脉瘤[J].国外医学神经病学神经外科学分册,2002,29(1):33-35.
    24. Higashida RT,Lahue BJ,Torbey MT,et al.Treatment of unruptured intracranial aneurysms:a nationwide assessment of effectiveness.AJNR Am J Neuroradio.2007 Jan;28(1):146-151.
    25. Gacs G,Vinuela F,Fox AJ,et al.Peripheral aneurysms of the cerebellar arteries.Review of 16 cases.J Neurosurg,1983,58;63-68.
    26. Andoh T,Itoh T,Yoshimura S,et al.Peripheral aneurysms of the posterior cerebellar artery;anslysis of 15 cases.No Shinkei Geka,1992,20;683-690.
    27. M. Leonardi,L. Simonetti,A.Andreoli.Endovascular treatment of a distal aneurysm of the superior cerebellar artery by intra-aneurysm injection of Glue.Intervent Neuroradiol,2001,7:343-348.
    28. Fox AJ , Detachable caliberated leakballoon with IBCA/NBCA for trent of aneurysm.Am J Neurosurg,1992,13:1452-1453.
    29. Fisher CM, Kistler JP, Davis JM. Relation of cerebral vasospasm to subarachnoid hemorrhage visualized by computerized tomographic scanning. Neurosurgery 1980;6:1-9.
    30. Yalamanchili K,Rosenwasser RH,Thomas JE,et al.Frequency of cerebral vasospasm in patients treated with endovascular occlusion of intracranial aneurysms[J].AJNR Am J Neuroradiol,1998,19(3):553-558.
    31. Greenberg MS. SAH and aneurysms.In: Greenberg MS, ed. Handbook of neurosurgery.5th ed. New York: Thieme Medical,2000:754-803.
    32. Dorhout Mees SM,Rinkel GJ,Feigin VL,et al.Calcium antagonists for aneurismal subarachnoid haemorrhage.Cochrane Database syst Rev.2007 Jul 18;(3):CD000277.
    33. Barker FG II, Ogilvy CS. Efficacy of prophylactic nimodipine for delayed ischemic deficit after subarachnoid hemorrhage: a metaanalysis. J Neurosurg 1996;84:405-14.
    34. Chrissobolis S,Sobey CG.Recent evidence for an involvement of rho-kinase in cerebral vascular disease.Stroke.2006 aug;37(8):2174-2180.
    35. Rabinstein AA, Friedman JA, Nichols DA, et al. Predictors of outcome after endovascular treatment of cerebral vasospasm.AJNR Am J Neuroradiol 2004; 5:1778-82.
    36. Hunt WE, Hess RM. Surgical risk as related to time of intervention in the repair of intracranial aneurysms. J Neurosurg 1968;28:14-20.
    37.梁国标,李志清,魏学忠,等.颅内动脉瘤急性期微弹簧圈栓塞临床分析[J].中华神经外科杂志,2004 ,20(4);334-336.
    38. Bardach NS,Zhao S,Gress DR,et al.Associayion between subarachnoid hemorrhage outcomes and number of cases treat at Califonia hospitals[J]. Stroke , 2002, 33:1851-1856.
    39. Johnston SC,Dudley RA,Gress DR,et al.Surgical and endovascular treatment of unruptured cerebral aneurysms at university hospitals[J]. Neurology , 1999, 52:1799-1805.
    40.魏学忠,梁国标,冯思哲,等.脑动脉瘤夹闭术与栓塞术:竞争还是互补?[J].中华神经外科杂志,2006,22;454-456.
    41. Obwegeser A,Ortler M,Seiwald,et al. Glioblastoma multiformae:an accumulated experience over 10 years. J-Acta- Neurochir. 1995,137:29-33.
    42. Qian Peng,Trond Warloe,Jahn MN,et al.. 5-Aminolevulinic Acid-Based Photodynamic Therapy:Clinical Research and Future Challenges.Cancer. 1997,79(12):2282-309.
    43.胡韶山,王齐,岳武.光动力辅助显微手术治疗脑胶质瘤.中华神经外科杂志. 2004,20(1):30-2.
    44. Stylli SS, Howes M, MacGregor L, Rajendra P, Kaye AH.Photodynamic therapy of brain tumours: evaluation of porphyrin uptake versus clinical outcome. J Clin Neurosci 2004;11:584 - 96.
    45. Woodburn KW,Hill JS,Kaye AH,et al. Evaluation of porphyrin characteristics required for photodynamic therapy. Photochem-Photobiol. 1992,55(5):697-704.
    46. Karagianis G,Hill JS,Kaye AH,et al. Evaluation of porphyrin C analogues for photodynamic therapy of cerebral glioma. Br-J-Cancer. 1996,73(4):514-21.
    47. Xinming Ding,Qinzhi Xu,Fanguang Liu. Hemotoporphyrin monomethyl ether photodynamic damage on Hela cells by means of reactive oxygen species production and cytosolic free calcium concentration elevation. Cancer Letters. 2004,216:43-54.
    48. Spizzirri PG,Hill JS,Kahl SB,et al. Photophysics and intracellular distribution of a boronated porphyrin phototherapeutic agent. Photochem-Photobiol. 1996,64(6),975-83.
    49. Schmidt-Erfurth U , Schlotzer-Schrehard U , Cursiefen C, et al.Influence ofphotodynamic therapy on exp ression of vascular endo thelial grow th factor (VEGF ). VEGF receptor 3, and pigmentep ithelium- derived factor. Invest Oph thalmol VisSci,2003, 44: 447324480.
    50. Rogers AH, M artidis A , Greenberg PB, et al. Op tical coherence tomography findings fo llow ing pho todynam ic therapy of choroidal neovascularization. Am J Oph thalmol, 2002, 134:5662576.
    51. Jurk lies B, A nastassiou G, O rtmans S, et al. Photodynamic therapy using verteporfin in circum scribed choroidalhaemangioma. Br J Oph thalmol, 2003, 87: 84289.
    52. Shields JA , Shields CL , M aterinMA , et al. Changing conceptsin management of circum scribed choroidal hemangioma: the 2003 J. Howard Stokes Lecture, Part 1. Ophthalmic Surg Lasers Imaging, 2004, 35: 3832394.
    53. Gup ta M , Singh AD, Rundle PA , et al. Efficacy of photodynamic therapy in circum scribed choroidal haemangioma. Eye, 2004, 18: 1392142.
    54. Singh AD, Kaiser PK, Sears JE, et al. Photodynam ic therapy of circum scribed choroidal haemangioma. Br J Oph thalmo l, 2004, 88: 141421418.
    55. Michels S, M ichels R, Simader C, et al. Verteporfin therapy for choroidalhemangioma : a long-term follow-up. Retina, 2005,25: 697-703.
    56. Vicuna-Kojchen J , Banin E, A verbukh E, et al. Application of the standard photodynamic treatment protocol fo rsymptomatic circum scribed choroidalhemangioma. Oph thalmo logica, 2006,220: 3512355.
    57.刘兴吉,李玉林,郄福忠等.光活化的金丝桃素对大鼠C6胶质瘤抑制作用及其对VEGF、Flt21和MVD的影响[J].中国实验诊断学2003,Vol7,No16,524-526
    58.林哲;王庆国;曲姗姗等。甲状腺癌中细胞凋亡指数的检测及其意义,中国实验诊断学,January ,2006 ,Vol 10 ,No. 1(42-44)
    59. MacDonald TJ,Taga T,Shimada H,et a1.Preferential susceptibility of brain tumors to the antiangiogenic effects of an alpha(v) integrin antagonist.J Neurosurg.2001 ,48(1):151-157
    60. Henderson BW, Sitnik-Busch TM, Vaughan LA.Potentiation of photodynamic therapy antitumor activity in mice by nitric oxide synthase inhibition is fluence rate dependent.Photochem Photobiol. 1999 Jul;70(1):64-71.
    61. Takeuchi Y, Ichikawa K, Yonezawa S, et al.Intracellular target for photosensitization incancer antiangiogenic photodynamic therapy mediated by polycation liposome.J Control Release. 2004 Jun 18;97(2):231-40.
    62. Takeuchi Y, Kurohane K, Ichikawa K, et al. Polycation liposome enhances the endocytic uptake of photosensitizer into cells in the presence of serum.Bioconjug Chem. 2003 Jul-Aug;14(4):790-6.
    63. Peng Q, Warloe T, Moan J, et al. Antitumor effect of 5 -aminolevulinic acid- mediated photodynamic therapy can be enhanced by the use of a low dose of photofrin in human tumor xenografts[J]. Cancer Res, 2001, 61(15): 5824- 5832.
    64. Birner P,Gatterbauer B,Oberhuber G, et a1.Expression of hypoxia-induced factor-la in obligodendrogliomas. Cancer, 2001, 92(10)165-171
    65. Svaasand LO , Dosimetry for photodynamic therapy of ma-lignant tumors , SPIE Proc , 1993 , 1616 ,32
    66. Korbelik M et al. Potentiation of photodynamic therapy-elicited antitumor response by localized treatment with granulocyte-macrophage colony-stimulating factor. Cancer Res, 1996, 56:5641
    67. MacDonald TJ,Taga T,Shimada H,et a1.Preferential susceptibility of brain tumors to the antiangiogenic effects of an alpha(v) integrin antagonist.J Neurosurg.2001 ,48(1):151-157
    68. Uehaba M,Lnokuchi T,Sano K,et al.Expression of vascular endothelial growth factor by in mouse tumors subjected to photodynamic therapy [J].Eur J Cancer, 2001, 37:2111~2115.
    69. WYLD L , REED MW,BROWN NJ . The influence of hypoxia and p H on aminolaevulinic acid2induced photodynamic t herapy in bladder cancer cells in vit ro[J ] . B r J Cancer ,1998 ,77 (10) :162121627.
    70. KOU KOURAKIS M I , GIATROMANOLAKI A , SKARLATOS J , et al . Hypoxia inducible factor ( HIF-1a and HIF-2a) expression in early esophageal cancer and response to photodynamic t herapy and radiot herapy[ J ] . Cancer Res ,2001 ,61 (5) :1830-1832.
    71. HUANG Z , CHEN Q , SHA KIL A , et al . Hyperoxygenation enhances t he tumor cell killing of photof rin2mediated photodynamic t herapy[J ] . Photochem Photobiol , 2003 ,78 (5) :4962502.
    72. PIRET J P ,LECOCQ C , TOFFOLI S , et al . Hypoxia and CoCl-protect HepG2 cells against serum deprivation2 and t2BHP2induced apoptosis :a possible anti2apoptotic role for HIF21[J ] . Ex p Cel l Res , 2004 ,295 (2) :3402349.
    73. Levy AP ,Levy NS ,Goldberg MA. Post—transcriptional regulation of vascular endothelial growth factor by hypoxia [ J ] . J Biol Chem , 1996 ,271 (5) :2746 - 2753.
    74.于大海,温玉明,孙劲东,等.口腔癌VEGFmRNA表达和血管及淋巴管生成与淋巴道转移关系的研究[ J ].癌症, 2002, 21 (3) : 319-322
    75. Soker S , Takashima S , Miao HQ , et a1. Neuropilin-1 is expressed by endothelial and tumor cells as an isoform-specific receptor for vascular endothelial growth factor [J] . Cell ,1998 , 92 :735
    76. Birner P,Gatterbauer B,Oberhuber G, et a1.Expression of hypoxia-induced factor-la in obligodendrogliomas. Cancer, 2001, 92(10)165-171
    77. Nakagawa H,Matsumiya T,Sakaki H,et al. Expression of vascular endothelial growth factor by photodynamic therapy with mono-I-aspartyl chlorin e6(Npe6) in oral sequamous cell carcinoma[J].Oral Oncol, 2007, 43:544~550.
    78. Sharwani A,Jerjes W,Hopper C,et al.Photodynamic therapy downregulates the invasion promoting factors in human oral cancer[J].Arch Oral Biol,2006,51:1104~1111.
    79. Aviezer D,Cotton S,David M,et al.Porphyrin analogues as novel antagonists of fibroblast growth factor and vascular endothelial growth factor receptor binding that inhibit endothelial cell proliferation, tumor progression,and metastasis[J].Cancer res,2000,60(11):2973~2980.
    80. Kim KJ ,Li B ,Winer J ,et al. Inhibition of Vascular endothelial growth factor induced angiogenesis suppresses tumor growth in vivo. Nature ,1993 ;362 :841
    81. Ichikawa K, Takeuchi Y, Yonezawa S , et al. Antiangiogenic photodynamic therapy ( PDT ) using Visudyne causes effective suppression of tumor growth [ J ] . Cancer Lett ,2004 ,205 (1) :39248.
    82. Chen B,Pogue BW,Goodwin IA,et al.Blood flow dynamics after protodynamic therapy with verteporfin in he RIF-I tumor[J].Radial Res,2003,160:452~459
    83. Ji Z , Yang G, Shahzidi S , et al . Induction of hypoxia - inducible factor - lalpha overexpression by cobalt chloride enhances cellular resistance to photodynamic therapy〔J〕. Cancer Lett , 2006 , Jan 19.
    84. Yee KK, Soo KC , Olivo M. Anti - angiogenic effects of Hypericin -photodynamic therapy in combination with Celebrex in the treatment of human nasopharyngeal carcinoma〔J〕. lnt J Mol Med , 2005 , 16 (6) :993 - 1002.
    85. Ferrario A , Fisher AM, Rucker N , et al . Celecoxib and NS - 398 enhance photodynamic therapy by increasing vitro apoptosis and decreasing in vivo inflammatory and angiogenic factor〔J〕. Cancer Res , 2005 ,65 (20) : 9473 - 9478.
    86. Jiang F , Zhang ZG, Katakowski M, et al . Angiogenesis induced by photodynamic therapy in normal rat brains〔J〕. Photochem Photobiol , 2004 , 79 (6) : 494 - 498.
    87. Aristotle Bamias and Meletios A. Dimopoulos Angiogenesis in human cancer: implications in cancer therapy[J]. Eu J Int Med, 2003,14: 459~469.
    88. Gorski DH, Beckett MA,Jaskowiak NT, et al. Blockage of the vascular endothelial growth factor stress response increases the antitumor effects of ionizing radiation[J].Cancer Res, 1999, 59 (14): 3374-3378.
    89. Kozin SV, Boucher Y, Hicklin DJ, et al.Vascular Endothelial Growth Factor Receptor-2-blocking Antibody Potentiates Radiation-induced Long-Term Control of Human Tumor Xenografts[J].Cancer Res, 2001, 61(1): 39-44.
    1. Longstreth WT, Nelson LM, Koepsell TD, van Belle G.Subarachnoid hemorrhage and hormonal factors in women.A population-based case-control study. Ann Intern Med 1994; 121: 168–73.
    2. Ruigrok YM, Buskens E, Rinkel GJE. Attributable risk of common and rare determinants of subarachnoid hemorrhage. Stroke 2001; 32: 1173–75.
    3. Ronkainen A, Hernesniemi J, Puranen M, et al. Familial intracranial aneurysms. Lancet 1997; 349: 380–84.
    4. Bromberg JEC, Rinkel GJE, Algra A, et al. Subarachnoid haemorrhage in first and second degree relatives of patients with subarachnoid haemorrhage. BMJ 1995; 311: 288–89.
    5. Schievink WI, Michels VV, Piepgras DG. Neurovascular manifestations of heritable connective tissue disorders: a review.Stroke 1994; 25: 889–903.
    6. Skirgaudas M, Awad IA, Kim J, Rothbart D, Criscuolo G.Expression of angiogenesis factors and selected vascular wall matrix proteins in intracranial saccular aneurysms. Neurosurgery 1996; 39: 537–45.
    7. Stehbens WE. Pathology of the cerebral blood vessels. St Louis:Mosby, 1972.
    8. Montes GS, Krisztan RM, Shigihara KM, Tokoro R, Mourao PA,Junqueira LC. Histochemical and morphological characterization of reticular fibers. Histochemistry 1980; 65: 131–41.
    9. Mayne R. Vascular connective tissue: normal biology and derangement in human diseases. In: Vitto J, Peredja A, eds.Connective tissue disease, molecular pathology of the extracellular matrix. New York: Marcel Dekker 1987, 163–83.
    10. Dobrin PB. Mechanics of normal and diseased blood vessels.Ann Vasc Surg 1988; 2: 283–94.
    11. Sekhar LN, Heros RC. Origin, growth, and rupture of saccular aneurysms: a review. Neurosurgery 1981; 8: 248–60.
    12. Stehbens WE. Histopathology of cerebral aneurysms. Arch Neurol 1963; 8: 272–85.
    13. Fujimoto K.‘Medial defects’in the prenatal human cerebral arteries: an electron microscopic study. Stroke 1996; 27: 706–08.
    14. Ostergaard JR, Reske-Nielsen E, Oxlund H. Histological and morphometric observations on the reticular fibers in the arterial beds of patients with ruptured intracranial saccular aneurysms. Neurosurgery 1987; 20: 554–58.
    15. Gaetani P, Baena R, Tartara F, et al. Metalloproteases and intracranial vascular lesions. Neurol Res 1999; 21: 385–90.
    16. Hop JW, Rinkel GJE, Algra A, van Gijn J. Case fatality rates and functional outcome after subarachnoid haemorrhage: a systematic review. Stroke 1997; 28: 660–64.
    17. Wiebers DO, Whisnant JP, Huston J III, et al. Unruptured intracranial aneurysms: natural history, clinical outcome, and risks of surgical and endovascular treatment. Lancet 2003;362:103-10.
    18. Connolly ES, Solomon RA. Management of unruptured aneurysms. In: Le Roux PD, Winn HR, Newell DW, eds.Management of cerebral aneurysms. Philadelphia: Saunders, 2004:271-85.
    19. Schievink WI. Intracranial aneurysms. N Engl J Med 1997;336:28-40. [Erratum, N Engl J Med 1997;336:1267.]
    20. Johnston SC, Selvin S, Gress DR. The burden, trends, and demographics of mortality from subarachnoid hemorrhage. Neurology 1998;50:1413-8.
    21. Greenberg MS. SAH and aneurysms. In: Greenberg MS, ed. Handbook of neurosurgery. 5th ed. New York: Thieme Medical, 2000:754-803.
    22. Wijdicks EF, Kallmes DF, Manno EM, Fulgham JR, Piepgras DG. Subarachnoid hemorrhage: neurointensive care and aneurysm repair. Mayo Clin Proc 2005;80: 550-9.
    23. Le Roux PD, Winn HR. Management of the ruptured aneurysm. In: Le Roux PD, Winn HR, Newell DW, eds. Management of cerebral aneurysms. Philadelphia: Saunders, 2004:303-33.
    24. Rosenwasser RH, Armonda RA,Thomas JE, Benitez RP, Gannon PM, Harrop J. Therapeutic modalities for the management of cerebral vasospasm: timing of endovascular options. Neurosurgery 1999; 44:975-9.
    25. David CA, Vishteh AG, Spetzler RF, Lemole M, Lawton MT, Partovi S. Late angiographic follow-up review of surgically treated aneurysms. J Neurosurg 1999;91: 396-401.
    26. Murayama Y, Nien YL, Duckwiler G, et al. Guglielmi detachable coil embolization ofcerebral aneurysms: 11 years’experience. J Neurosurg 2003;98:959-66.
    27. Brisman JL, Song JK, Niimi Y, Berenstein A. Treatment options for widenecked intracranial aneurysms using a self-expandable hydrophilic coil and a selfexpandable stent combination. AJNR Am J Neuroradiol 2005;26:1237-40.
    28. Raymond J, Guilbert F, Weill A, et al. Long-term angiographic recurrences after selective endovascular treatment of aneurysms with detachable coils. Stroke 2003; 34:1398-403.
    29.吴中学,姜除寒.颅内动脉瘤血管内治疗的新技术和新材料[J].中华神经外科杂志,2004,20;100-104.
    30. Molyneux A , Kerr RSC ,Yu L-M,et al.International Subarachnoid Aneurysm Trial(ISAT)of neurosurgical clipping versus endovascular coiling in 2142 patienrs with ruptured intranial aneurysms:a randomized comparison of effects on suevival, dependency, seizures, rebleeding, subgroups, and aneurysm occlusion[J]. Lancet,2005, 366: 809-817.
    31. Derdeyn CP, Barr JD, Berenstein A, et al. The International Subarachnoid Aneurysm Trial (ISAT): a position statement from the Executive Committee of the American Society of Interventional and Therapeutic Neuroradiology and the American Society of Neuroradiology. AJNR Am J Neuroradiol 2003;24:1404-8.
    32. Barker FG II, Amin-Hanjani S, Butler WE, Ogilvy CS, Carter BS. In-hospital mortality and morbidity after surgical treatment of unruptured intracranial aneurysms in the United States, 1996-2000: the effect of hospital and surgeon volume. Neurosurgery 2003;52:995-1007.
    1. Senger DR , Galli SJ , Dvorak AM , et al . Tumor cells secrete a vascular permeability factor t hat promotes accumulation of ascites fluid [J ] . Science , 1983 , 219 (4587) : 983 - 985.
    2. Ferrara N , Henzel WJ . Pituitary follicular cells secrete a novel heap-Rin-binding growth factor specific for vascular endot helial cells [ J ] .Biochem Biophys Res Comm , 1989 , 161 (2) :851 - 858.
    3. Iljin K, Karkkanen MJ , Lawrence EC , et al. VEGFR3 gene st ructure , regulatory region ,and sequence polymer-phisms[J ] . FASEB J ,2001 ,15 (6) :1028
    4. Houck KA , Leung DW , Rowland AM ,et a1. Dual regulation of vascular endothelial growth factor bioavailabilityby genetic and proteolytic mechanisms [J ] . J Biol Chem ,1992 , 267 : 26031
    5. Zeng H, Dvorak HF, Mukhopadhyay D. Vascular permeability factor(VPF)/vascular endothelial growth factor(VEGF) receptor-1 down-modulates VPF/VEGF receptor-2-mediated endothelial cell proliferation, but not migration, through phosphatidylinositol 3-kinase-dependent pathways[J]. J Biol Chem, 2001 ,276(29):26969-26979.
    6. Brekken R A, O verholser JP, Stastny VA, e t al. Selective inhibition of vascular endothelial growth factor(VEGF) receptor 2(KDR/Flk-I)activity by a monoclonal anti-VEGF antibody blocks tumor growth in mice[J]. Cancer Res, 2000, 60(18): 5117-S 124
    7. Gille H, Kowalski J, Li B, et al. Analysis of biological effects and signaling properties of Flt-1(VEGFR-1): A reassessment using novel receptor-specific vascular endothelial growth factor mutants. J Biol Chem, 2001;276: 32222-32230.
    8. Dunk C, Grohman M, et al. Vascular endothelial growth factor receptor-1 modulates vascular endothelial growth factor-mediated angiogenesis via nitric oxide. Am J Pathol, 2001;159:993一1008.
    9. Soker S , Takashima S , Miao HQ , et a1. Neuropilin-1 is expressed by endothelial and tumor cells as an isoform-specific receptor for vascular endothelial growth factor [J] .Cell ,1998 , 92 :735
    10. Birner P,Gatterbauer B,Oberhuber G, et a1.Expression of hypoxia-induced factor-la in obligodendrogliomas. Cancer, 2001, 92(10)165-171
    11. Zagzag D,Zhong H,Joanne M,et al. Expression of hypoxia-induced factor-la in brain tumors.Cancer,2000,88(1):2606-2617
    12. Sonderguard KL,,Hilton DA,Penney M,et al. Expression of hypoxia-induced factor-la in tumors of patients with glioblastoma.Neuropathol Appl Neurobio1, 2002, 28(3):210-217
    13. Yuan L , Moyon D , Pardanaud L , et a1. Abnormal lymphatic vessel development in neuropilin 2 mutant mice[J ] .Development ,2002 , 129 :4797
    14. Jung YD, Nakano K, Liu W, et al. Extracellular signal-regulated kinase activation is required for up-regulation of vascular endothelial growth factor by serum starvation in human colon carcinoma cells[J).Cancer Res, 1999, 59 (19):4804-4807.
    15. Narazaki M , Tosato G. Ligand-induced internalization selects use of common receptor neuropilin-1 by VEGF165 and semaphorin3A[J ] .Blood , 2006 ,107 (10) :3892 - 3901.
    16. Schaper W ,Buschmann I. VEGF and therapeutic opportunities in cardiovascular diseases[J ] . Curr Opin Biotechnol ,1999 ,10 (6) :541
    17. Josko J,Gwozdz B ,Jedrzejowska-Szypulka H ,et al. Vascular endothelial growth factor (VEGF) and its effect on angiogenesis. Med Sci Monit. 2000 Sep-Oct; 6(5): 104 7- 52.
    18. Pronin IN, Holodny AI, Petraikin AV MRI of high-grade glial tumors: correlation between the degree of contrast enhancement and the volume of surrounding edema.Neuroradiology. 1997 May;39(5):348一50.
    19. Monsky WL, Fukumura D, Gohongi T,et al. Augmentation of transvascular transport of macromolecules and nanoparticles in tumors using vascular endothelial growth factor.Cancer Res. 1999 Aug 15;59(16):4129-35.
    20. Machein MR, Kullmer J, Ronicke V, et al. Differential downregulation of vascular endothelial growth factor by dexamethasone in normoxic and hypoxic rat glioma cells. Neuropathol Appl Neurobio1.1999 Apr;25(2):104-12.
    21. St Croix B, Rago C, Velculescu V, et al. Genes expressed in human tumorendothelium[J].Science, 2000, 289 (5482):1197-1202.
    22. Wachsberger P, Burd R, Dicker AP. Tumor Response to工onizing Radiation Combined with Antiangiogenesis or Vascular Targeting Agents[J].Cli Can Res, 2003, 9 (6):1957-1971.
    23. Kevi1 Cq Payne DK, Mire E, et al. Vascular permeability factor/vascular endothelial cell growth factor-mediated permeability occurs through disorganization of endothelial functional proteins. J Biol Chem. 1998 Jun 12;273(24):15099-103.
    24. Antonetti DA, Barber AJ, Hollinger LA, et al. Vascular endothelial growth factor induces rapid phosphorylation of tight junction proteins occludin and zonula occluden 1 .A potential mechanism for vascular permeability in diabetic retinopathy and tumors. J Biol Chem. 1999 Aug 13;274(33):23463一7.
    25. Valtola R, Salven P, Heikkila P, et al. VEGFR-3 and its ligand VEGF-C are associated with angioenesis in breast cancer[ J ]. Am J Pathol, 1999, 154 (5) : 138121390.
    26. Prevo R, Banerji S, Ferguson DJ, et al. Mouse LYVE21 is an endocytie recep tor for hyaluronan in lymphatic endothelium [ J ]. J Biol Chem, 2001, 276 (22) : 19420219430.
    27. Wigle JT, HarveyN, DetmarM, et al. An essential role for Proxl in the induction of the lymphatic cell phenotype [ J ]. EMBO J,2002, 21 (7) : 150521513.
    28. Breiteneder Geleff S, Soleiman A, Kowalski H, et al. Angiosarcomas exp ressmixed endothelial phenotypes of blood and lymphatic capillaries: podoplanin as a specific marker for lymphatic endothelium[ J ]. Am J Pathol, 1999, 154 (2) : 3852394.
    29. SkobeM, Hawighorst T, Jackson D G, et al. Induction of tumor lymphangiogenesis by VEGF-C promotes breast cancer metastasis [ J ]. NatMed, 2001, 7 (2) : 1922198.
    30. Stacker S A, Caesar C, Baldwin M E, et al. VEGF2D p romotes the metastatic spread of tumor cells via the lymphatics [ J ]. Nat Med, 2001, 7 (2) : 1862191.
    31. Mandriota S J, Jussila L, Jeltsch M, et al. Vascular endothelial growth factor-C mediated lymphangiogenesis tumour metastasis [ J ]. EMBO J, 2001, 20 (4) : 6722682.
    32. Jeltsch M, Kiaipainen A, Joulcv V, et al. Hy0pcrplasia of lymphatic vessels in VEGF - C transgenic mice[ J ]. Science, 1997, 276 (5317): 1423 - 1425.
    33. Folkman J.Tumor angiogenesis: therapeutic implications.New Engl J Med.1971, 285(21):1182-1186
    34. Nissen NN,Polverini PJ,Koch AE.Vascular endothelial growth factor mediates angiogenic activity during the proliferative phase of wound healing.Am J Patho1,1998,152(S):1445-1452
    35. Saleh M, Stacker SA, Wilks AF, et al. Inhibition of growth of C6 glioma cells in vivo by expression of antisense vascular endothelial growth factor sequence .Cancer Res,1996,56(2):393一401
    36. Millauer B, Longhi MP, Plate KH, et al. Dominant一negative inhibition of FLK-1 suppresses the growth of many tumor types in vivo. Cancer Res,1996,56(7): 1615一1620
    37. Kim KJ,Li B, Winer J, et al. Inhibition of vascular endothelial growth Factor induced angiogenesis suppresses tumor growth in vivo Nature.1993, 362 (6424):841一844
    38. Borgstam P, Hillan KJ, Sruramarao P, et al .Complete inhibition of angiogenesis and growth of microtumors by anti-vascular endothelial growth factor neutralizing antibody :novel concepts of angiostatic therapy .Cancer Res,1996,56(17):4032一4039
    39. Wilson JF. Angiogenesis therapy moves beyond cancer. Ann Intern Med. 2004,Jul, 20, 141(2): 165-8
    40. Rubenstein JL,Kim J,Ozawa T, et a1. Anti-VEGF antibody treatment of glioblastoma prolongs surival but results in increased vascular cooption. Neoplasia, 2000, 2:306-314
    41. Hicklin DJ, Ellis LM. Role of the Vascular Endothelial Growth Factor Pathway in Tumor Growth and Angiogenesis[J].J Clin Oncol, 2005 23 (5):1011一1027.
    42. Gasparini G, Longo R, Fanelli M, et al. Comhination of Antiangiogenic Therapy With Other Anticancer Therapies:Results, Challenges, and Open Questions [J}.J Cl in Oncol, 2005, 23 (6):1295-1311.
    43. Gupta VK, Jaskowak NT, Beckett MA, et al. Vascular endothelial growth factor enhances endothelial cell survival and tumor radioresistance[J]. Cancer J 2002, 8 (1):47-54.
    44. Wachsberger P, Burd R, Dicker AP. Tumor Response to Ionizing Radiation Combined with Antiangiogenesis or Vascular Targeting Agents[J].Cli Can Res, 2003, 9 (6):1957-1971.
    45. Jacoby SL, Dicker AP, Mi l ler S, et al. Cyclooxygenase (COX)-2-dependent effects of the inhibitor SC236 when combined with ionizing radiation in mammary tumor cells derived from HER-2/neu mice[J].Mol Cancer Ther, 2004, 3 (4):417-424.
    46. Gorski DH, Beckett MA,Jaskowiak NT, et al. Blockage of the vascular endothelial growth factor stress response increases the antitumor effects of ionizing radiation[J].Cancer Res, 1999, 59 (14): 3374-3378.
    47. Kozin SV, Boucher Y, Hicklin DJ, et al.Vascular Endothelial Growth Factor Receptor-2-blocking Antibody Potentiates Radiation-induced Long-Term Control of Human Tumor Xenografts[J].Cancer Res, 2001, 61(1): 39-44.
    48. Williams KJ,Telfer BA, Brave S, et al. ZD6474, a Potent Inhibitor of Vascular Endothelial Growth Factor Signaling, Combined With Radiotherapy [J].Cl i Can Res, 2004, 10 (24):8587-8593.
    1. T.M. Sitnik, J.A. Hampton and B.W. Henderson, Reduction of tumour oxygenation during and after photodynamic therapy in vivo: effects of fluence rate, Br J Cancer 77 (1998), pp. 1386–1394.
    2. L.I. Grossweiner, J.H. Hill and R.V. Lobraico, Photodynamic therapy of head and neck squamous cell carcinoma: optical dosimetry and clinical trial, Photochem Photobiol 46 (1987), pp. 911–917.
    3. D.W. Leung, G. Cachianes, W.J. Kuang, D.V. Goeddel and N. Ferrara, Vascular endothelial growth factor is a secreted angiogenic mitogen, Science 246 (1989), pp. 1306–1309.
    4. K.P. Claffey, L.F. Brown and L.F. del Aguila et al., Expression of vascular permeability factor/vascular endothelial growth factor by melanoma cells increases tumor growth, angiogenesis, and experimental metastasis, Cancer Res 56 (1996), pp. 172–181.
    5. H.I. Pass, Photodynamic therapy in oncology: mechanisms and clinical use, J Natl Cancer Inst 85 (1993), pp. 443–456.
    6. C.Hopper, The role of photodynamic therapy in the management of oral cancer and precancer, Eur J Cancer B 32b (1996), pp. 71–72.
    7. Peng Q, Warloe T, Moan J, et al. Antitumor effect of 5 -aminolevulinic acid- mediated photodynamic therapy can be enhanced by the use of a low dose of photofrin in human tumor xenografts[J]. Cancer Res, 2001, 61(15): 5824- 5832.
    8. T. Kaneko, H. Chiba, T. Yasuda and K. Kusama, Detection of photodynamic therapy-induced early apoptosis in human salivary gland tumor cells in vitro and in a mouse tumor model, Oral Oncol 40 (2004), pp. 787–792
    9. Manadas, Arsélio P. Carvalho, Carlos B. Duarte. Intracellular signaling mechanisms in photodynamic therapy Biochimica et Biophysica Acta (BBA) - Reviews on Cancer, Volume 1704, Issue 2, 20 September 2004, Pages 59-86
    10. T.M. Sitnik, J.A. Hampton and B.W. Henderson, Reduction of tumour oxygenation during and after photodynamic therapy in vivo: effects of fluence rate, Br J Cancer 77 (1998), pp. 1386–1394.
    11. ougherty T. J., Gomer C. J., Henderson B. W., Jori G., Kessel D., Korbelik M., Moan J., Peng Q. Photodynamic therapy. J. Natl. Cancer Inst., 90: 889-905, 1998.
    12. Oleinick N. L., Evans H. E. The photobiology of photodynamic therapy: cellular targets and mechanisms. Radiat. Res., 150: S146-S156, 1998.
    13. Fingar V. H., Wieman T. J., Haydon P. S. The effects of thrombocytopenia on vessel stasis and micromolecular leakage after photodynamic therapy using Photofrin. Photochem. Photobiol., 66: 513-517, 1997.
    14. van Geel I. P. J., Oppelaar H., Rijken P. F. J. W., Bernsen H. J. J. A., Hagemeier N. E. M., van der Kogel A. L., Hodgkiss R. J., Stewart F. A. Vascular perfusion and hypoxic areas in RIF-1 tumours after photodynamic therapy. Br. J. Cancer, 73: 288-293, 1996.
    15. Sitnik T. M., Hampton J. A., Henderson B. W. Reduction of tumor oxygenation during and after photodynamic therapy in-vivo: effects of fluence rate. Br. J. Cancer, 77: 1386-1394, 1998.
    16. Ratcliffe P. J., O’Rourke J. F., Maxwell P. H., Pugh C. W. Oxygen sensing, hypoxia-inducible factor-1 and the regulation of mammalian gene expression. J. Exp. Biol., 201: 1153-1162, 1998
    17. Uehaba M,Lnokuchi T,Sano K,et al.Expression of vascular endothelial growth factor by in mouse tumors subjected to photodynamic therapy [J].Eur J Cancer, 2001, 37:2111~2115.
    18. Nakagawa H, Matsumiya T, Sakaki H, et al. Expression of vascular endothelial growth factor by photodynamic therapy with mono-L-aspartyl chlorin e6 (NPe6) in oral squamous cell carcinoma. Oral Oncol. 2007 Jul;43(6):544-50. Epub 2007 Jan 25
    19. G.L. Semenza, HIF-1: using two hands to flip the angiogenic switch, Cancer Metastasis Rev. 19 (2000), pp. 59–65.
    20. A. Ferrario, K.F. von Tiehl, N. Rucker, M.A. Schwarz, P.S. Gill and C.J. Gomer, Antiangiogenic treatment enhances photodynamic therapy responsiveness in a mouse mammary carcinoma, Cancer Res 60 (2000), pp. 4066–4069.
    21. G.L. Semenza, HIF-1: using two hands to flip the angiogenic switch, Cancer MetastasisRev. 19 (2000), pp. 59–65.
    22. K. Grosios, J. Wood, R. Esser, A. Raychaudhuri, J.Dawson, Angiogenesis inhibition by the novel VEGF receptor tyrosine kinase inhibitor, PTK787/ZK222584, causes significant anti-arthritic effects in models of rheumatoid arthritis, Inflamm. Res. 53 (2004) 133–142.
    23. Aviezer D,Cotton S,David M,et al.Porphyrin analogues as novel antagonists of fibroblast growth factor and vascular endothelial growth factor receptor binding that inhibit endothelial cell proliferation, tumor progression,and metastasis[J].Cancer res,2000,60(11):2973~2980.
    24. Aristotle Bamias and Meletios A. Dimopoulos Angiogenesis in human cancer: implications in cancer therapy[J]. Eu J Int Med, 2003,14: 459~469.
    25. Ichikawa K, Takeuchi Y, Yonezawa S , et al. Antiangiogenic photodynamic therapy ( PDT ) using Visudyne causes effective suppression of tumor growth [ J ] . Cancer Lett ,2004 ,205 (1) :39248.
    26. Chen B,Pogue BW,Goodwin IA,et al.Blood flow dynamics after protodynamic therapy with verteporfin in he RIF-I tumor[J].Radial Res,2003,160:452~459.
    27. Gorski DH, Beckett MA,Jaskowiak NT, et al. Blockage of the vascular endothelial growth factor stress response increases the antitumor effects of ionizing radiation[J].Cancer Res, 1999, 59 (14): 3374-3378.
    28. Kozin SV, Boucher Y, Hicklin DJ, et al.Vascular Endothelial Growth Factor Receptor-2-blocking Antibody Potentiates Radiation-induced Long-Term Control of Human Tumor Xenografts[J].Cancer Res, 2001, 61(1): 39-44.
    29. Williams KJ,Telfer BA, Brave S, et al. ZD6474, a Potent Inhibitor of Vascular Endothelial Growth Factor Signaling, Combined With Radiotherapy [J].Cl i Can Res, 2004, 10 (24):8587-8593.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700