用户名: 密码: 验证码:
PI3K/PTEN/AKT/Survivin信号通路和IκB/NFκB信号通路对子宫内膜异位症的调节及意义
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
子宫内膜异位症是生育期女性常见疾病,以具有活性的子宫内膜组织出现在子宫内膜以外部位为特点,是一种雌激素依赖性疾病。以持续加重的盆腔粘连、疼痛、不孕为主要临床表现。目前关于异位子宫内膜来源的学说有多种,包括子宫内膜种植学说、淋巴及静脉播散学说、体腔上皮化生学说、诱导学说、遗传学说、免疫调节学说及血管生成等,但是其发病机制目前尚未完全明了。本研究通过临床标本及细胞培养,在组织及细胞水平研究了PI3K/PTEN/AKT/Survivin信号通路以及IκB/NFκB信号通路在子宫内膜异位症的存在及意义。
     研究目的
     ①研究子宫内膜异位症腺上皮细胞中PI3K/PTEN/AKT信号通路、IκB/NFκB信号通路以及MAPKs/ERK1/2信号通路的活性状态;
     ②研究雌激素对正常及子宫内膜异位症腺上皮细胞生长增殖的作用,以及PI3K/PTEN/AKT信号通路、IκB/NFκB信号通路、MAPKs/ERKl/2信号通路在该作用中的意义;
     ③研究正常内膜及子宫内膜异位症在位及异位内膜中间质细胞对腺上皮细胞中存活/凋亡信号:PI3K/AKT/Survivin信号传导通路以及细胞生长增殖的调节作用;
     ④研究正常及子宫内膜异位症内膜腺上皮细胞对正常子宫内膜间质细胞中基质金属蛋白酶(matrix metalloproteinases, MMPs)表达及活性的诱导作用,以及IκB/NFκB信号通路在该作用中的意义;
     研究方法
     ①子宫内膜异位症在位及异位内膜、正常子宫内膜无菌新鲜组织标本取自手术过程中,被分为两部分,一部分甲醛固定后用于免疫组织化学分析;另一部分立即用于原代细胞的分离培养;
     ②应用免疫组织化学方法检测正常及子宫内膜异位症在位内膜组织标本中PI3K/PTEN/AKT信号通路,IκB/NFκB信号通路状态;
     ③原代细胞分离培养:手术中获取新鲜正常及子宫内膜异位症内膜组织,通过胶原酶消化法分离培养正常子宫内膜及子宫内膜异位症在位、异位内膜间质细胞和腺上皮细胞,并应用免疫细胞化学方法检测细胞中波形蛋白或角蛋白表达与否鉴定细胞来源;
     ④通过应用Western Blot方法检测AKT和ERK1/2磷酸化水平来确定正常及子宫内膜异位症内膜腺上皮细胞中PI3K/PTEN/AKT信号通路和MAPKs/ERK1/2信号通路活性状态;应用凝胶电泳迁移率实验(EMSA)方法检测NFκBDNA-结合能力,从而确定正常及子宫内膜异位症内膜腺上皮细胞中IκB/NFκB信号通路的活性状态;
     ⑤建立多种间质-腺上皮细胞共培养体系:通过将1:1比例的间质细胞和腺上皮细胞直接混合后接种于细胞培养板建立直接共培养体系;通过条件培养基、细胞裂解物以及Millipore transwell系统等方法建立间接共培养体系;通过直接及间接共培养两种方式,建立正常内膜间质-腺上皮细胞共培养体系,子宫内膜异位症在位内膜间质-腺上皮细胞共培养体系,子宫内膜异位症异位内膜间质-腺上皮细胞共培养体系,以及正常内膜间质-子宫内膜异位症在位或异位腺上皮细胞共培养体系,子宫内膜异位症异位间质-正常腺上皮细胞共培养体系;
     ⑥应用免疫组织化学方法检测正常及子宫内膜异位症在位内膜中Survivn蛋白表达及组织定位;应用免疫细胞化学方法以及Western Blot方法检测原代分离培养的正常及子宫内膜异位症在位、异位腺上皮细胞中Survivin的蛋白表达及亚细胞定位;
     ⑦应用Western Blot方法检测细胞中MMP2/MMP9及其组织型抑制物(tissue inhibitor of metalloproteinase, TIMP1/2)的表达及分泌;应用明胶酶谱分析检测细胞培养上清液中MMP2/MMP9的酶活性;
     ⑧应用MTT法检测各种细胞在不同处理条件下的生长增殖情况。
     研究结果
     ①显著性的AKT磷酸化水平增高及其通路抑制性调节分子PTEN表达水平降低存在于子宫内膜异位症在位内膜;
     ②显著性的AKT磷酸化水平增高及其通路抑制性调节分子PTEN表达水平降低、ERK磷酸化水平增强和NFκBDNA-结合能力增强存在于原代分离培养的子宫内膜异位症在位及异位内膜腺上皮细胞;而MMP2/MMP9的表达和分泌明显增强也存在于原代分离培养的子宫内膜异位症在位及异位内膜腺上皮细胞;而正常及子宫内膜异位症间质细胞则仅表现杂较弱水平的MMP2/MMP9表达和分泌;
     ③17β雌二醇可以明显促进正常及子宫内膜异位症在位、异位内膜腺上皮细胞中AKT和ERK1/2磷酸化以及NFκB的DNA-结合能力,同时可以降低细胞中PTEN蛋白及mRNA表达水平,促进细胞生长增殖;特异性PI3K/PTEN/AKT信号通路抑制剂LY294002、MAPKs/ERK1/2信号通路抑制剂U0126以及IκB/NFκB信号通路抑制剂PDTC可以显著性抑制正常及子宫内膜异位症在位、异位内膜腺上皮细胞中AKT和ERK1/2磷酸化,以及NFκB的DNA-结合能力,同时显著性地抑制了细胞的生长增殖;IκB/NFκB信号通路抑制剂PDTC同时也明显抑制了17β雌二醇对PTEN蛋白及mRNA表达的降低作用,而LY294002和U0126没有该作用;PI3K/PTEN/AKT信号通路抑制剂LY294002可以明显抑制正常及子宫内膜异位症在位、异位内膜腺上皮细胞中本底的及雌激素-诱导的NFκB的DNA-结合能力,而相反的,IκB/NFκB信号通路抑制剂PDTC也可以明显抑制细胞中本底的及雌激素-诱导的AKT磷酸化水平;而MAPKs/ERKl/2信号通路抑制剂U0126仅表现出对雌激素诱导的AKT磷酸化及NFκB的DNA-结合能力有较弱的抑制作用;同样,PI3K/PTEN/AKT信号通路抑制剂LY294002以及IκB/NFκB信号通路抑制剂PDTC也仅对雌激素诱导的ERK1/2磷酸化有抑制作用;
     ④本研究发现,凋亡抑制蛋白Survivin表达存在于正常及子宫内膜异位症在位、异位内膜腺上皮细胞,且子宫内膜异位症在位及异位内膜腺上皮细胞常表现出较高水平的Survivin蛋白表达;PI3K/PTEN/AKT信号通路抑制剂LY294002可以明显抑制细胞中Survivin蛋白表达水平;在共培养体系中,产生于正常及子宫内膜异位症在位内膜间质细胞的条件培养基可以分别抑制相应腺上皮细胞中AKT磷酸化水平和Survivin蛋白表达,以及相应腺上皮细胞的生长增殖,而孕激素可以加强该抑制作用;产生于子宫内膜异位症异位内膜间质细胞的条件培养基不仅不可以抑制相应腺上皮细胞中AKT磷酸化水平和Survivin蛋白表达以及相应腺上皮细胞的生长增殖,也不能抑制正常腺上皮细胞中AKT磷酸化水平和Survivin蛋白表达以及细胞生长增殖;同时,本研究证明,在体外,分离培养的腺上皮细胞生长增殖能力强弱为:子宫内膜异位症在位内膜>异位内膜>正常内膜;
     ⑤在共培养体系中,本研究发现来自于子宫内膜异位症在位、异位内膜腺上皮细胞的条件培养基及细胞裂解物可以在正常子宫内膜间质细胞诱导较高水平的MMP2/MMP9表达和分泌;使用IκB/NFκB信号通路抑制剂PDTC阻断子宫内膜异位症腺上皮细胞中NFκB活性后,正常间质细胞内MMP2/MMP9表达和分泌仍可被诱导增强;而正常间质细胞中NFκB活性被阻断后,其细胞内MMP2/MMP9表达和分泌则未能被诱导增强。
     研究结论
     ①显著性增强的PI3K/PTEN/AKT信号通路、IκB/NFκB信号通路以及MAPKs/ERK1/2信号通路活性存在于子宫内膜异位症在位及异位腺上皮细胞;
     ②PTEN蛋白及mRNA表达缺失存在于子宫内膜异位症在位及异位内膜腺上皮细胞;在体外,17β雌二醇可以通过IκB/NFκB信号通路下调原代分离培养的正常内膜及子宫内膜异位症在位及异位内膜腺上皮细胞中PTEN蛋白及mRNA的表达水平;
     ③在体外,17β雌二醇可以通过PI3K/PTEN/AKT信号通路、IκB/NFκB信号通路以及MAPKs/ERK1/2信号通路促进正常内膜及子宫内膜异位症在位及异位内膜腺上皮细胞的生长增殖;
     ④在正常内膜及子宫内膜异位症在位、异位内膜腺上皮细胞中,PI3K/PTEN/AKT信号通路与IκB/NFκB信号通路之间可以相互正相调节,且同时为MAPKs/ERK1/2信号通路的上游调节信号;
     ⑤促细胞增殖性正反馈环:高雌激素水平→高PI3K/PTEN/AKT信号通路活性→高IκB/NFκB信号通路活性→低PTEN表达→高PI3K/PTEN/AKT信号通路活性,存在于子宫内膜异位症在位及异位内膜腺上皮细胞;
     ⑥子宫内膜异位症在位及异位内膜腺上皮细胞中具有较正常腺上皮细胞较高的Survivin表达水平;
     ⑦在正常及子宫内膜异位症在位内膜中,间质细胞可通过PI3K/PTEN/AKT/Survivin信号通路调节腺上皮细胞的生长增殖,而子宫内膜异位症异位内膜间质细胞部分失去了这种生长调节机制;
     ⑧子宫内膜异位症在位及异位内膜腺上皮细胞中具有较正常腺上皮细胞较高的MMP2及MMP9表达和分泌水平;
     ⑨子宫内膜异位症在位及异位腺上皮细胞通过IκB/NFκB信号通路诱导正常内膜间质细胞中MMP2/MMP9的表达及分泌。
     研究意义
     本研究明确了PI3K/PTEN/AKT/Survivin信号通路、IκB/NFκB信号通路以及MAPKs/ERK1/2信号通路在子宫内膜异位症中的部分作用机制,为子宫内膜异位症发生发展机制研究提供了新的思路,为该疾病诊断,评估提供了新的标记物,为该疾病治疗提供了新的靶点。
Endometriosis, a common disease in women of reproductive age, is characterized by the presence of functional endometrium-like glands and stromal tissues in sites outside of the uterine cavity. Endometriosis is an estrogen-dependent chronic disease with chronic pelvic pain and infertility are the main clinical features. Many studies have been reported about this disease; however, the pathogenesis of it is still unclear. In the present research, via tissular and cellular study, we investigated the presence and role of PI3K/PTEN/AKT/Survivin signaling and IκB/NFκB signaling in endometriosis.
     Object
     ①To determine the presences and activities of proliferative signaling pathways:PI3K/PTEN/AKT pathway and IκB/NFκB pathway in endometriotic ectopic and eutopic endometria;
     ②To decide the effect of 17βestrodial on the proliferation of endometriotic epithelial cells, and the role of these pathways in this effect;
     ③To investigate the role of these pathways in the stromal-epithelial cell cross-talk in endometriosis.
     Methods
     ①Normal endometrium and eutopic/ectopic endometrium from patients with endometriosis were obtained during operation. The tissues were divided into two parts:one for formalin fixation and immunohistochemistry, one for primary cell isolation and culture;
     ②Determining the expression and activity of PI3K/PTEN/AKT pathway and IκB/NFκB pathway in normal and endometriotic eutopic endometria using immunohistochemistry analysis;
     ③Cell isolation and primary culture:sterile normal and endometriotic endometria were obtained during operation. Tissues were treated with 0.25% collagenase IA. Normal and endometriotic eutopic and ectopic stromal cells and epithelial cells were isolated and cultured in vitro. Stromal cells and epithelial cells were characterized by immunocytochemistry analysis using vimentin and keratin antibodies;
     ④Determining AKT and ERKl/2 phosphorylation to decide the activities of PI3K/PTEN/AKT pathway and MAPKs/ERK1/2 pathway in normal and endometriotic epithelial cells using Western Blot analysis; determining the DNA-binding activity of NFκB to decide the activity of IκB/NFκB pathway using electrophoretic mobility shift assay (EMSA);
     ⑤Establishing stromal cell-epithelial cell co-culture systems:mixing stromal cells and epithelial cells in a ratio of 1:1 directly to establish contact-co-culture system; using conditioned medium, cell lysates, and Millipore transwell system to establish non-contact-co-culture system; using contact and non-contact co-culture systems to establish normal stromal cell-epithelial cells co-culture system, endometriotic stromal cell-epithelial cell co-culture system, and normal stromal cell-endometriotic epithelial cell co-culture system, endometriotic stromal cell-normal epithelial cell co-culture system;
     ⑥Detecting the expression and location of Survivin, a member of inhibitor of apoptosis (IAP) family, in normal and endometriotic eutopic endometria using immunohistochemistry analysis; determining the expression and subcellular location of Survivin in primarily cultured normal and endometriotic eutopic epithelial cells using immunocytochemistry analysis and Western Blot analysis;
     ⑦Determining the expression and secretion of matrix metalloproteinases 2/9 (MMP2/9) and tissue inhibitors of metalloproteinases 1/2 (TIMP1/2) using Western Blot analysis; detecting the activity of MMP2/9 in cell culture supernatants using gelatinase zymography;
     ⑧Deciding the proliferation of all kinds of cells under different treatments using MTT test.
     Results
     ①Significantly higher AKT phosphorylation and lower PTEN expression were present in endometriotic eutopic endometria;
     ③Significantly higher AKT and ERK1/2 phosphorylation, lower PTEN expression, and higher NFκB DNA-binding activity were present in primarily cultured endometriotic eutopic and ectopic epithelial cells; higher MMP2/9 expression and secretion were also present in primarily cultured endometriotic eutopic and ectopic epithelial cells, while only weak MMP2/9 expression and secretion were present in normal and endometriotic stromal cells;
     ③17βestrodial significantly enhanced AKT and ERK phosphorylation, NFκB DNA-biding activity in normal and endometriotic epithelial cells; also,17βestrodial decreased PTEN protein and mRNA expression and promoted cell proliferation; specific PI3K/PTEN/AKT pathway inhibitor LY294002, specific MAPKs/ERK1/2 pathway inhibitor U0126, and specific IκB/NFκB inhibitor PDTC significantly inhibited the background and estrogen-stimulated AKT and ERK1/2 phosphorylation, NFκB DNA-binding activity in normal and endometriotic epithelial cells; and also decreased the background and estrogen-induced cell proliferation; meanwhile, PDTC significantly abolished the PTEN-decrease by 17βestrodial while LY294002 and U0126 could not; also, LY294002 significantly inhibited the background and estrogen-induced NFκB DNA-binding activity; in converse, IκB/NFκB pathway inhibitor PDTC significantly inhibited the background and estrogen-induced AKT phosphorylation; MAPKs/ERK1/2 pathway inhibitor U0126 could only weakly inhibit estrogen-induced AKT phosphorylation and NFκB DNA-binding activity; also, LY294002 and PDTC could only inhibit estrogen-induced ERK1/2 phosphorylation;
     ④The expression of Survivin existed in normal and endometriotic epithelial cells, and endometriotic epithelial cells showed higher Survivin expression compared with normal epithelial cells; PI3K/PTEN/AKT pathway inhibitor LY294002 could significantly inhibit Survivin protein expression; in the co-culture system, conditioned medium by normal and endometriotic eutopic stromal cells could inhibit AKT phosphorylation, Survivin expression, and cell proliferation in normal and endometriotic eutopic epithelial cells, and progesterone could enhance this inhibition; conditioned medium by endometriotic ectopic stromal cells could not inhibit AKT phosphorylation, Survivin expression, and cell proliferation in normal or endometriotic ectopic epithelial cells; in vitro, the proliferation of epithelial cells from endometriotic eutopic endometria>ectopic endometria>normal endometria;
     ⑤In the co-culture system, conditioned medium and cell lysates from endometriotic eutopic and ectopic epithelial cells could induce higher MMP2/9 expression and secretion in normal stromal cells; and when the activity of IκB/NFκB pathway in epithelial cells was inhibited using PDTC, the MMP2/9 expression and secretion in stromal cells could still be induced; however, when the activity of IκB/NFκB pathway in stromal cells was inhibited using PDTC, the MMP2/9 expression and secretion could not be induced.
     Conclusion
     ①Significantly higher activities of PI3K/PTEN/AKT pathway, IκB/NFκB pathway, and MAPKs/ERK1/2 pathway were present in endometriotic eutopic and ectopic epithelial cells;
     ②Loss of PTEN protein and mRNA expression existed in endometriotic eutopic and ectopic epithelial cells; in vitro,17βestrodial could decrease PTEN protein and mRNA expression in normal and endometriotic eutopic and ectopic epithelial cells via IκB/NFκB pathway;
     ③In vitro,170 estrodial could promote cells proliferation in normal and endometriotic eutopic and ectopic epithelial cells through PI3K/PTEN/AKT pathway, IκB/NFκB pathway, and MAPKs/ERK1/2 pathway;
     ④In normal and endometriotic epithelial cells, PI3K/PTEN/AKTsignaling pathway and IκB/NFκB signaling pathway could be positively regulated by each other, and both of the pathways were upstream regulator of MAPKs/ERKl/2 signaling pathway;
     ⑤Proliferative positive feedback loop:higher estrogen level→higher PI3K/PTEN/AKT pathway activity→higher IκB/NFκB pathway activity→decreased PTEN expression→higher PI3K/PTEN/AKT pathway activity, was present in endometriotic eutopic and ectopic epithelial cells;
     ⑥Higher Survivin expression was present in endometriotic epithelial cells;
     ⑦In normal and endometriotic ectopic endometria, stromal cells could regulated cell proliferation in epithelial cells through PI3K/PTEN/AKT/Survivin pathway, which was lost in endometriotic ectopic endometria;
     ⑧Higher MMP2/9 expression and secretion were present in endmetriotic epithelial cells;
     ⑨Endometriotic eutopic and ectopic epithelial cells induced MMP2/9 expression and secretion in normal stromal cells via IκB/NFκB pathway.
     In the present studies, we described the role of PI3K/PTEN/AKT pathway, IκB/NFκB pathway, and MAPKs/ERKl/2 pathway in endometriosis, which will bring new sight on studying the pathogenesis of this disease, will provide new marker for disease diagnosis and evaluation, and will provide new therapy target for the disease.
引文
1. Giudice LC and Kao LC. endometriosis. Lancet 2004; 364:1789-1799.
    2. Sampson JA. Peritoneal endometriosis due to menstrual dissemination of endometrial tissue into the peritoneal cavity. Am J Obst Gynecol 1927; 14:442-469.
    3. Lucidi RS, Witz CA, Chrisco M, Binkley PA, Shain SA and Schenken RS. A novel in vitro model of the early endometriotic lesion demonstrates that attachment of endometrial cells to mesothelial cells is dependent on the source of endometrial cells. Fertil Steril 2005; 84(1):16-21.
    4. Dmowski WP, Ding J, Shen J, Rana N, Fernandez BB and Braun DP. Apoptosis in endometrial glandular and stromal cells in women with and without endometriosis. Hum Reprod 2001; 16(9):1802-1808.
    5. Beliard A, Noel A and Foidart JM. Reduction of apoptosis and proliferation in endometriosis. Fertil Steril 2004; 82(1):80-85.
    6. Johnson MC, Torres M, Alves A, Bacallao K, Fuentes A, Vega M and Boric MA. Augmented cell survival in eutopic endometrium from women with endometriosis: expression of c-myc, TGF-betal and bax genes. Reprod Biol Endocrinol 2005; 3:45.
    7. Matsuzaki S, Canis M, Vaurs-Barriere C, Boespflug-Tanguy O, Dastugue B and Mage G DNA microarray analysis of gene expression in eutopic endometrium from patients with deep endometriosis using laser capture microdissection. Fertil Steril 2005; 2:1180-1190.
    8. Honda H, Barrueto FF, Gogusev J, Im DD and Morin PJ. Serial analysis of gene expression reveals differential expression between endometriosis and normal endometrium. Possible roles for AXL and SHC1 in the pathogenesis of endometriosis. Reprod Biol Endocrinol 2008; 6:59.
    9. Grund EM, Kagan D, Tran CA, Zeitvogel A, Starzinski-Powitz A, Nataraja S and Palmer SS. Tumor necrosis factor-alpha regulates inflammatory and mesenchymal responses via mitogen-activated protein kinase kinase, p38, and nuclear factor kappaB in human endometriotic epithelial cells. Mol Pharmacol 2008; 73(5):1394-1404.
    10. Tarkowski R, Kotarski J, Polak G and Wojcierowski J. [Expression of the survivin gene in the scar endometriosis and in normal human endometrium] Ginekol Pol 2001;72(12A):1539-1542.
    11. Ueda M, Yamashita Y, Takehara M, Terai Y, Kumagai K, Ueki K, Kanda K, Yamaguchi H, Akise D, Hung YC and et al. Survivin gene expression in endometriosis. J Clin Endocrinol Metab 2002; 87(7):3452-3459.
    12. Goteri G, Lucarini G, Pieramici T, Filosa A, Pugnaloni A, Montik N, Biagini G, Tranquilli AL, Fabris G, Ciavattini A and et al. Endothelial cell survivin is involved in the growth of ovarian endometriotic cysts. Anticancer Res 2005; 25(6B):4313-4318.
    13. Fujino K, Ueda M, Takehara M, Futakuchi H, Kanda K, Yamashita Y, Terai Y and Ueki M. Transcriptional expression of survivin and its splice variants in endometriosis. Mol Hum Reprod 2006; 12(6):383-388.
    14. Ambrosini G, Adida C and Altieri DC. A novel anti-apoptosis gene, survivin, expressed in cancer and lymphoma. Nat Med 1997; 3(8):917-921.
    15. Ambrosini G, Adida C, Sirugo G and Altieri DC.Induction of apoptosis and inhibition of cell proliferation by survivin gene targeting. J Biol Chem 1998; 273(18):11177-11182.
    16. Tamm I, Wang Y, Sausville E, Scudiero DA, Vigna N, Oltersdorf T and Reed JC. IAP-family protein survivin inhibits caspase activity and apoptosis induced by Fas (CD95), Bax, caspases, and anticancer drugs. Cancer Res 1998; 58(23):5315-5320.
    17. Grossman D, McNiff JM, Li F and Altieri DC. Expression of the apoptosis inhibitor, survivin, in nonmelanoma skin cancer and gene targeting in a keratinocyte cell line. Lab Invest 1999; 79(9):1121-1126.
    18. Altieri DC and Marchisio PC. Survivin apoptosis:an interloper between cell death and cell proliferation in cancer. Lab Invest 1999; 79(11):1327-1333.
    19. Adida C, Crotty PL, McGrath J, Berrebi D, Diebold J and Altieri DC. Developmentally regulated expression of the novel cancer anti-apoptosis gene survivin in human and mouse differentiation. Am J Pathol 1998; 152(1):43-49.
    20. Guo M and Hay BA. Cell proliferation and apoptosis. Curr Opin Cell Biol 1999; 11(6):745-752.
    21. Chiodino C, Cesinaro AM, Ottani D, Fantini F, Giannetti A, Trentini GP and Pincelli C. Communication:expression of the novel inhibitor of apoptosis survivin in normal and neoplastic skin. J Invest Dermatol 1999; 113(3):415-418.
    22. Konno R, Yamakawa H, Utsunomiya H, Ito K, Sato S and Yajima A. Expression of survivin and Bcl-2 in the normal human endometrium. Mol Hum Reprod 2000; 6(6):529-534.
    23. O'Connor DS, Schechner JS, Adida C, Mesri M, Rothermel AL, Li F, Nath AK, Pober JS and Altieri DC. Control of apoptosis during angiogenesis by survivin expression in endothelial cells. Am J Pathol 2000; 156(2):393-398.
    24. Tarkowski R, Wojcierowski J, Polak G and Kotarski J. [Expression of the survivin gene in normal and hyperplastic endometrium] Ginekol Pol 2000; 71(9):1226-1229.
    25. Lehner R, Enomoto T, McGregor JA, Shroyer L, Haugen BR, Pugazhenthi U and Shroyer KR. Correlation of survivin mRNA detection with histologic diagnosis in normal endometrium and endometrial carcinoma. Acta Obstet Gynecol Scand 2002; 81(2):162-167.
    26. Takai N, Miyazaki T, Nishida M, Nasu K and Miyakawa I. Survivin expression correlates with clinical stage, histological grade, invasive behavior and survival rate in endometrial carcinoma. Cancer Lett 2002; 184(1):105-116.
    27. Takai N, Ueda T, Nishida M, Nasu K and Miyakawa I. The relationship between oncogene expression and clinical outcome in endometrial carcinoma. Curr Cancer Drug Targets 2004; 4(6):511-520.
    28. Pallares J, Martinez-Guitarte JL, Dolcet X, Llobet D, Rue M, Palacios J, Prat J and Matias-Guiu X. Survivin expression in endometrial carcinoma:a tissue microarray study with correlation with PTEN and STAT-3. Int J Gynecol Pathol 2005; 24(3):247-253.
    29. Donjacour AA and Cunha GR. Stromal regulation of epithelial function. Cancer Treat Res 1991; 53:335-364.
    30. Arnold JT, Kaufman DG, Seppala M and Lessey BA. Endometrial stromal cells regulate epithelial cell growth in vitro:a new co-culture model.Hum Reprod 2001; 16(5):836-845.
    31. Noyes, R.W., Hertig, A.T. and Rock, J. Dating the endometrial biopsy. Fertil Steril 1950; 1:3-25.
    32. Sugawara J, Fukaya T, Murakami T, Yoshida H and Yajima A. Increased secretion of hepatocyte growth factor by eutopic endometrial stromal cells in women with endometriosis. Fertil Steril 1997; 68(3):468-472.
    33. Chen X, Zhang Z, Feng Y, Fadare O, Wang J, Ai Z, Jin H, Gu C and Zheng W. Aberrant survivin expression in endometrial hyperplasia:another mechanism of progestin resistance. Mod Pathol 2009; 22(5):699-708.
    34. Garcia-Velasco JA and Arici A. Apoptosis and the pathogenesis of endometriosis. Semin Reprod Med 2003; 21(2):165-172.
    35. Gebel HM, Braun DP, Tambur A, Frame D, Rana N and Dmowski WP. Spontaneous apoptosis of endometrial tissue is impaired in women with endometriosis. Fertil Steril 1998; 69(6):1042-1047.
    36. Hornung D, Ryan IP, Chao VA, Vigne JL, Schriock ED and Taylor RN. Immunolocalization and regulation of the chemokine RANTES in human endometrial and endometriosis tissues and cells. J Clin Endocrinol Metab 1997; 82(5):1621-1628.
    37. Kao LC, Germeyer A, Tulac S, Lobo S, Yang JP, Taylor RN, Osteen K, Lessey BA and Giudice LC. Expression profiling of endometrium from women with endometriosis reveals candidate genes for disease-based implantation failure and infertility. Endocrinology 2003; 144(7):2870-2881.
    38. Wu Y, Kajdacsy-Balla A, Strawn E, Basir Z, Halverson G, Jailwala P, Wang Y, Wang X, Ghosh S and Guo SW. Transcriptional characterizations of differences between eutopic and ectopic endometrium. Endocrinology 2006; 147(1):232-246.
    1. Sampson J. Peritoneal endometriosis due to menstrual dissemination of endometrial tissue into the peritoneal cavity. Am J Obstet Gynecol 1927; 14:422-469.
    2. Halme J, Hammond MG, Hulka JF, Raj SG, Talbert LM. Retrograde menstruation in healthy women and in patients with endometriosis. Obstet Gynecol 1984; 64:151-154.
    3. Strathy JH, Molgaard CA, Coulam CB, Melton LJ Ⅲ. Endometriosis and infertility:a laparoscopic study of endometriosis among fertile and infertile women. Fertil Steril 1982; 38:667-672.
    4. Goldman, M.B., Cramer, D.W. The epidemiology of endometriosis. Prog Clin Biol Res 1990; 323,15-31.
    5. Giudice LC, Tazuke SI, Swiersz L. Status of current research on endometriosis. J Reprod Med 1998; 43:252-262.
    6. Pepper MS, Montesano R, Mandriota SJ, Orci L, Vassalli JD. Angiogenesis:a paradigm for balanced extracellular proteolysis during cell migration and morphogenesis. Enzyme Protein 1996; 49:138-162.
    7. Kokorine I, Nisolle M, Donnez J, Eeckhout Y, Courtoy PJ, Marbaix E. Expression of interstitial collagenase (matrix metalloproteinase-1) is related to the activity of human endometriotic lesions. Fertil Steril 1997; 68:246-251.
    8. Bruner-Tran KL, Eisenberg E, Yeaman GR, Anderson TA, McBean J, Osteen KG. Steroid and cytokine regulation of matrix metalloproteinase expression in endometriosis and the establishment of experimental endometriosis in nude mice. J Clin Endocrinol Metab 2002; 87:4782-4791.
    9. Chung HW, Lee JY, Hur SE, Park MH, Wen Y, Polan ML, and et al. Matrix metalloproteinase-2, membranous type 1 matrix metalloproteinase, and tissue inhibitor of metalloproteinase-2 expression in ectopic and eutopic endometrium. Fertil Steril 2002; 78:787-795.
    10. Massova I, Kotra LP, Fridman R, Mobashery S. Matrix metalloproteinases: structures, evolution, and diversification. FASEB J 1998; 12 (12):1075-95.
    11.Nagase H, Woessner JF. Matrix metalloproteinases. J Biol Chem 1999; 274 (31):21491-21494.
    12. Van Wart HE, Birkedal-Hansen H. The cysteine switch:a principle of regulation of metalloproteinase activity with potential applicability to the entire matrix metalloproteinase gene family. Proc Natl Acad Sci USA 1990; 87:5578-5582.
    13. Hrabec E, Naduk J, Strek M, Hrabec Z. [Type IV collagenases (MMP2 and MMP9) and their substrates--intracellular proteins, hormones, cytokines, chemokines and their receptors]. Postepy Biochem 2007; 53 (1):37-45.
    14. Freitas S, Meduri G, Le Nestour E, Bausero P, Perrot-Applanat M. Expression of metalloproteinases and their inhibitors in blood vessels in human endometrium. Biol Reprod 1999; 61:1070-1082.
    15. Koks CA, Groothuis PG, Slaats P, Dunselman GA, de Goeij AF, Evers JL. Matrix metalloproteinases and their tissue inhibitors in antegradely shed menstruum and peritoneal fluid. Fertil Steril 2000; 73:604-612.
    16. Matrisian, L.M. The matrix degrading metalloproteinases. Bioessays 1992; 14, 455-463.
    17. Salamonsen, L.A., Woolley, D.E. Matrix metalloproteinases and their tissue inhibitors in endometrial remodelling and menstruation. Reprod. Med Rev 1996; 5,185-203.
    18. Cox KE, Piva M, Sharpe-Timms KL. Differential regulation of matrix metalloproteinase-3 gene expression in endometriotic lesions compared with endometrium. Biol Reprod 2001; 65:1297-1303.
    19. Chung HW, Wen Y, Chun SH, Nezhat C, Woo BH, Lake Polan M. Matrix metalloproteinase-9 and tissue inhibitor of metalloproteinase-3 mRNA expression in ectopic and eutopic endometrium in women with endometriosis: a rationale for endometriotic invasiveness. Fertil Steril 2001; 75:152-159.
    20. Liu XJ, He YL, Peng DX. Expression of metalloproteinase-9 in ectopic endometrium in women with endometriosis. Di Yi Jun Yi Da Xue Xue Bao 2002; 22:467-469.
    21. T. Collette, R. Maheux, J. Mailloux, A. Akoum. Increased expression of matrix metalloproteinase-9 in the eutopic endometrial tissue of women with endometriosis. Human Reproduction 2006; 21(12):3059-3067.
    22. Pan H, Sheng JZ, Tang L, Zhu R, Zhou TH, Huang HF. Increased expression of c-fos protein associated with increased matrix metalloproteinase-9 protein expression in the endometrium of endometriotic patients. Fertil Steril 2008; 90(4):1000-1007.
    23. Skinner JL, Riley SC, Gebbie AE, Glasier AF, Critchley HO. Regulation of matrix metalloproteinase-9 in endometrium during the menstrual cycle and following administration of intrauterine levonorgestrel. Hum Reprod 1999; 14:793-799.
    24. Cornet PB, Galant C, Eeckhout Y, Courtoy PJ, Marbaix E, Henriet P. Regulation of matrix metalloproteinase-9/gelatinase B expression and activation by ovarian steroids and LEFTY-A/endometrial bleeding-associated factor in the human endometrium. J Clin Endocrinol Metab 2005; 90:1001-1011.
    25. Jeziorska M, Nagase H, Salamonsen LA, Woolley DE. Immunolocalization of the matrix metalloproteinases gelatinase B and stromelysin 1 in human endometrium throughout the menstrual cycle. J Reprod Fertil 1996; 107:43-51.
    26. Salamonsen, L.A., Woolley, D.E. Matrix metalloproteinases in normal menstruation. Hum Reprod 1996; 11 (Suppl.2):124-133.
    27. Bischof, P., Meisser, A., Campana, A., Tseng, L. Effects of decidua conditioned medium and insulin-like growth factor binding protein-1 on trophoblastic matrix metalloproteinases and their inhibitors. Placenta 1998; 19: 457-464.
    28. M. Wahab, A.H. Taylor, J.H. Pringle, J. Thompson, Al-Azzawi F. Trimegestone differentially modulates the expression of matrix metalloproteinases in the endometrial stromal cell. Molecular Human Reproduction 2006; 12(3):157-167.
    29. Singer CF, Marbaix E, Lemoine P, Courtoy PJ, Eeckhout Y. Local cytokines induce differential expression of matrix metalloproteinases but not their tissue inhibitors in human endometrial fibroblasts. Eur J Biochem 1999; 359,40-45.
    30. Himelstein BP, Lee EJ, Sato H, Seiki M, Muschel RJ. Transcriptional activation of the matrix metalloproteinase-9 gene in an H-ras and v-myc transformed rat embryo cell line. Oncogene 1997; 14(16):1995-1998.
    31. Castrillo A, Joseph SB, Marathe C, Mangelsdorf DJ, Tontonoz P. Liver X receptor-dependent repression of matrix metalloproteinase-9 expression in macrophages. J Biol Chem 2003; 278(12):10443-10449.
    32. Wenk J, Schuller J, Hinrichs C, Syrovets T, Simmet T, Scharffetter-Kochanek K, and et al.. Overexpression of phospholipid-hydroperoxide glutathione peroxidase in human dermal fibroblasts abrogates UVA irradiation-induced expression of interstitial collagenase/matrix metalloproteinase-1 by suppression of phosphatidylcholine hydroperoxide-mediated NFkappaB activation and interleukin-6 release. J Biol Chem 2004; 279(44):45634-45642.
    33. Maldonado A, He L, Sanders JJ, London SD, Lopes-Virella MF, Huang Y, and et al. Pre-exposure to high glucose augments lipopolysaccharide-stimulated matrix metalloproteinase-1 expression by human U937 histiocytes. J Periodontal Res 2004; 39(6):415-423.
    34. Tanimura Y, Kokuryo T, Yeh TS, Chiu CT, Hsieh LL, Hamaguchi M, and et al. Tumor necrosis factor alpha promotes invasiveness of cholangiocarcinoma cells via its receptor, TNFR2. Cancer Lett 2005; 219(2):205-213.
    35. Popov Y, Patsenker E, Bauer M, Niedobitek E, Schulze-Krebs A, Schuppan D. Halofuginone induces matrix metalloproteinases in rat hepatic stellate cells via activation of p38 and NFkappaB J Biol Chem 2006; 281(22):15090-15098.
    36. Jacobs MD, Harrison SC. Structure of an IkappaBalpha/NF-kappaB complex. Cell 1998; 95 (6):749-758.
    37. Sugawara J, Fukaya T, Murakami T, Yoshida H, Yajima A. Increased secretion of hepatocyte growth factor by eutopic endometrial stromal cells in women with endometriosis. Fertil Steril 1997; 68(3):468-472.
    38. Kleiner DE, Stetler-Stevenson WG. Quantitative zymography:detection of picogram quantities of gelatinases. Anal Biochem 1994; 218:325-329.
    39. Liotta, L. A., Stetler-Stevenson, W. G.. Metalloproteinases and cancer invasion. Semin. Cancer Biol 1990; 1:99-106.
    40. Stetler-Stevenson, W. G..Type IV collagenases in tumor invasion and metastasis. Cancer Metastasis Rev 1990; 9,289-303.
    41. Sharpe-Timms KL, Cox KE. Paracrine regulation of matrix metalloproteinase expression in endometriosis. Ann NY Acad Sci 2002; 955,147-156; discussion 157-148,396-406.
    42. M. Wahab, A.H. Taylor, J.H. Pringle, J. Thompson, F. Al-Azzawi. Trimegestone differentially modulates the expression of matrix metalloproteinases in the endometrial stromal cell Molecular. Human Reproduction 2006; 12(3):157-167.
    43. Goldberg GI, Strongin A, Collier IE, Genrich LT, Manner BL. Interaction of 92-kDa type IV collagenase with the tissue inhibitor of metalloproteinases prevents dimerization, complex formation with interstitial collagenase, and activation of the proenzyme with stromelysin. J Biol Chem 1992; 267:4583-4591.
    44. Hanemaaijer R, Koolwijk P, le Clercq L, de Vree WJ, van Hinsbergh VW. Regulation of matrix metalloproteinase expression in human vein and microvascular endothelial cells. Effects of tumour necrosis factor alpha, interleukin 1 and phorbol ester. Biochem J 1993; 296:803-809 (Pt 3).
    45. Himelstein BP, Lee EJ, Sato H, Seiki M, Muschel RJ. Transcriptional activation of the matrix metalloproteinase-9 gene in an H-ras and v-myc transformed rat embryo cell line. Oncogene 1997; 14(16):1995-1998.
    46. Hashizume K, Takahashi T, Shimizu M, Todoroki J, Shimada A, Hirata M, Sato T, Ito A. Matrix-metalloproteinases-2 and -9 production in bovine endometrial cell culture. J Reprod Dev 2003; 49(1):45-53.
    47. Strutz F, Zeisberg M, Ziyadeh FN, Yang CQ, Kalluri R, Muller GA, Neilson EG. Role of basic fibroblast growth factor-2 in epithelial-mesenchymal transformation. Kidney Int 2002; 61(5):1714-1728.
    48. Okamoto T, Takahashi S, Nakamura E, Nagaya K, Hayashi T, Fujieda K. Transforming growth factor-beta1 induces matrix metalloproteinase-9 expression in human meningeal cells via ERK and Smad pathways. Biochem Biophys Res Commun 2009; 383(4):475-479.
    49. Zhou HY, Pon YL, Wong AS. Synergistic effects of epidermal growth factor and hepatocyte growth factor on human ovarian cancer cell invasion and migration:role of extracellular signal-regulated kinase 1/2 and p38 mitogen-activated protein kinase. Endocrinology 2007; 148(11):5195-5208.
    50. Lee CZ, Xue Z, Hao Q, Yang GY, Young WL. Nitric oxide in vascular endothelial growth factor-induced focal angiogenesis and matrix metalloproteinase-9 activity in the mouse brain. Stroke 2009; 40(8):2879-2881.
    51. Singer CF, Marbaix E, Lemoine P, Courtoy PJ, Eeckhout Y. Local cytokines induce differential expression of matrix metalloproteinases but not their tissue inhibitors in human endometrial fibroblasts. Eur J Biochem 1997; 259(1-2):40-45.
    52.Nuttall RK, Kennedy TG. Epidermal growth factor and basic fibroblast growth factor increase the production of matrix metalloproteinases during in vitro decidualization of rat endometrial stromal cells. Endocrinology 2000; 141(2):629-636.
    53. Hirata M, Sato T, Tsumagari M, Shimada A, Nakano H, Hashizume K, Ito A. Differential regulation of the expression of matrix metalloproteinases and tissue inhibitors of metalloproteinases by cytokines and growth factors in bovine endometrial stromal cells and trophoblast cell line BT-1 in vitro. Biol Reprod 2003; 68(4):1276-1281.
    1. Li J, Yen C, Liaw D, Podsypanina K, Bose S, Wang SI, Puc J, Miliaresis C, Rodgers L, McCombie R, Bigner SH, Giovanella BC, Ittmann M, Tycko B, Hibshoosh H, Wigler MH, Parsons R. PTEN, a putative protein tyrosine phosphatase gene mutated in human brain, breast, and prostate cancer. Science 1997; 275,1943-1947.
    2. Myers MP, Stolarov JP, Eng C, Li J, Wang SI, Wigler MH, Parsons R, Tonks NK. P-TEN, the tumor suppressor from human chromosome 10q23, is a dual-specificity phosphatase. Proc. Natl. Acad. Sci. USA 1997; 94,9052-9057.
    3. Eng C. PTEN:one gene, many syndromes. Hum Muta 2003; 22,183-198.
    4. Guldberg P., thor Straten P, Birck A, Ahrenkiel V, Kirkin AF, Zeuthen J. Disruption of the MMAC1/PTEN gene by deletion or mutation is a frequent event in malignant melanoma. Cancer Res 1997; 57,3660-3663.
    5. Kim S. K, Su LK, Oh Y, Kemp BL, Hong WK, Mao L. Alterations of PTEN/MMAC1, a candidate tumor suppressor gene, and its homologue, PTH2, in small cell lung cancer cell lines. Oncogene 1998; 16,89-93.
    6. Salvesen HB, MacDonald N, Ryan A, Jacobs IJ, Lynch ED, Akslen LA, Das S. PTEN methylation is associated with advanced stage and microsatellite instability in endometrial carcinoma. Int J Cancer 2001; 91(1),22-26.
    7. Lian Z, Di Cristofano A. Class reunion:PTEN joins the nuclear crew. Oncogene 2005; 24,7394-7400.
    8. Chow LML, Baker SJ. PTEN function in normal and neoplastic growth. Cancer Lett 2006; 241,184-96.
    9. Sato N, Tsunoda H, Nishida M, Morishita Y, Takimoto Y, Kubo T, Noguchi M. Loss of heterozygosity on 10q23.3 and mutation of the tumor suppressor gene PTEN in benign endometrial cyst of the ovary:possible sequence progression from benign endometrial cyst to endometrioid carcinoma and clear cell carcinoma of the ovary. Cancer Res 2000; 60,7052-7056.
    10. Sato N, Nishida M, Noguchi M. [An approach to early genetic alterations in precancerous cells] Hum Cell 2000; 13(3),103-108.
    11. Obata K, Morland SJ, Watson RH, Hitchcock A, Chenevix-Trench G, Thomas EJ, Campbell IG. Frequent PTEN/MMAC mutations in endometrioid but not serous or mucinous epithelial ovarian tumors. Cancer Res 1998; 58(10),2095-2097.
    12. Maehama, T., Dixon, J. E. The tumor suppressor, PTEN/MMAC1, dephosphorylates the lipid second messenger, phosphatidylinositol 3,4,5-trisphosphate. J Biol Chem 1998; 273,13375-13378.
    13. Katso R, Okkenhaug K, Ahmadi K, White S, Timms J, Waterfield M. D. Cellular function of phosphoinositide 3-kinases:implications for development, homeostasis, and cancer. Annu Rev Cell Dev Biol 2001; 17,615-675.
    14. Mutter GL, Lin MC, Fitzgerald JT, Kum JB, Eng C. Changes in endometrial PTEN expression throughout the human menstrual cycle. J Clin Endocrinol Metab 2000; 85(6),2334-2338.
    15. Mutter GL, Lin MC, Fitzgerald JT, Kum JB, Baak JP, Lees JA, Weng LP, Eng C. Altered PTEN expression as a diagnostic marker for the earliest endometrial precancers. J Natl Cancer Inst 2000; 92,924-930.
    16. Gentilini D, Busacca M, Di Francesco S, Vignali M, Vigano P, Di Blasio AM. PI3K/Akt and ERK1/2 signalling pathways are involved in endometrial cell migration induced by 17beta-estradiol and growth factors. Mol Hum Reprod 2007; 13(5),317-322.
    17. Bulun SE, Zeitoun KM, Takayama K, Sasano H. Estrogen biosynthesis in endometriosis:molecular basis and clinical relevance. J Mol Endocrinol 2000; 25(1),35-42.
    18. Kitawaki J, Noguchi T, Amatsu T, Maeda K, Tsukamoto K, Yamamoto T, Fushiki S, Osawa Y, Honjo H. Expression of aromatase cytochrome P450 protein and messenger ribonucleic acid in human endometriotic and adenomyotic tissues but not in normal endometrium. Biol Reprod 1997; 57 (3),514-519.
    19. Noble LS, Simpson ER, Johns A, Bulun SE. Aromatase expression in endometriosis. J Clin Endocrinol Metab 1996; 81,174-179.
    20. Bergqvist A, Jeppsson S, Ljungberg O. Histochemical demonstration of estrogen and progesterone binding in endometriotic tissue and in uterine endometrium:A comparative study. J Histochem Cytochem 1985; 33(2),155-161.
    21. Noyes, R.W., Hertig, A.T., Rock, J. Dating the endometrial biopsy. Fertil Steril 1950; 1,3-25.
    22. Chakraborty A, Guha S. Granulocyte colony-stimulating factor/granulocyte colony-stimulating factor receptor biological axis promotes survival and growth of bladder cancer cells. Urology 2007; 69(6),1210-1215.
    23. Jin X, Gossett DR, Wang S, Yang D, Cao Y, Chen J, Guo R, Reynolds RK, Lin J. Inhibition of AKT survival pathway by a small molecule inhibitor in human endometrial cancer cells. Br J Cancer 2004; 91(10),1808-1912.
    24. Martini M, Ciccarone M, Garganese G, Maggiore C, Evangelista A, Rahimi S, Zannoni G, Vittori G, Larocca LM. Possible involvement of hMLHl, p16 (INK4a) and PTEN in the malignant transformation of endometriosis. Int J Cancer 2002; 102(4),398-406.
    25. Sato N, Nishida M, Noguchi M. [An approach to early genetic alterations in precancerous cells] Hum Cell 2000; 13(3),103-108.
    26. Chang CJ, Mulholland DJ, Valamehr B, Mosessian S, Sellers WR, Wu H. PTEN nuclear localization is regulated by oxidative stress and mediates p53-dependent tumor suppression. Mol Cell Biol 2008; 28(10),3281-3289.
    27. Shen WH, Balajee AS, Wang J, Wu H, Eng C, Pandolfi PP, Yin Y. Essential role for nuclear PTEN in maintaining chromosomal integrity. Cell 2007; 128(1), 157-170.
    28. Chung JH, Ostrowski MC, Romigh T, Minaguchi T, Waite KA, Eng C. The ERK1/2 pathway modulates nuclear PTEN-mediated cell cycle arrest by cyclin Dl transcriptional regulation. Hum Mol Genet 2006; 15(17),2553-2559.
    29. Perren A, Komminoth P, Saremaslani P, Matter C, Feurer S, Lees JA, Heitz PU, Eng C. Mutation and expression analyses reveal differential subcellular compartmentalization of PTEN in endocrine pancreatic tumors compared to normal islet cells. Am J Pathol 2000; 157(4),1097-1103.
    30. Gimm O, Perren A, Weng LP, Marsh DJ, Yeh JJ, Ziebold U, Gil E, Hinze R, Delbridge L, Lees JA, Mutter GL, Robinson BG, Komminoth P, Dralle H, Eng C. Differential nuclear and cytoplasmic expression of PTEN in normal thyroid tissue, and benign and malignant epithelial thyroid tumors. Am J Pathol 2000; 156(5), 1693-1700.
    31. Maehama T. PTEN:Its deregulation and tumorigenesis. Biol Pharm Bull 2007; 30, 1624-1627.
    32. Stambolic V, MacPherson D, Sas D, Lin Y, Snow B, Jang Y, Benchimol S, Mak TW. Regulation of PTEN transcription by p53. Mol Cell 2001; 8,317-325.
    33. Virolle T, Adamson ED, Baron V, Birle D, Mercola D, Mustelin T, de Belle I. The Egr-1 transcription factor directly activates PTEN during irradiation-induced signalling. Nat Cell Biol 2001; 3,1124-1128.
    34. Tian B, Brasier AR. Identification of a nuclear factor kappa B-dependent gene network. Recent Prog Horm Res 2003; 58,95-130.
    35. Gilmore TD. Introduction to NF-kappaB:players, pathways, perspectives. Oncogene 2006; 25(51),6680-6684.
    36. Brasier AR. The NF-kappaB regulatory network. Cardiovasc Toxicol 2006; 6(2), 111-130.
    37. Kim S., Domon-Dell C., Kang J., Chung D. H., Freund J. N., Evers B. M. Down-regulation of the tumor suppressor PTEN by the tumor necrosis factor-alpha/nuclear factor-kappaB (NF-kappaB)-inducing kinase/NF-kappaB pathway is linked to a default IkappaB-alpha autoregulatory loop. J Biol Chem 2004; 279,4285-4291.
    38. Vasudevan K. M., Gurumurthy S., Rangnekar V. M. Suppression of PTEN expression by NF-kappa B prevents apoptosis. Mol Cell Biol 2004; 24, 1007-1021.
    39. Sheikh MS, Huang Y. Death receptor activation complexes:it takes two to activate TNF receptor 1. Cell Cycle 2003; 2(6),550-552.
    40. Escarcega RO, Fuentes-Alexandro S, Garcia-Carrasco M, Gatica A, Zamora A. The transcription factor nuclear factor-kappa B and cancer. Clin Oncol (R Coll Radiol)2007; 19(2),154-161.
    41. Xia D, Srinivas H, Ahn YH, Sethi G, Sheng X, Yung WK, Xia Q, Chiao PJ, Kim H, Brown PH, Wistuba Ⅱ, Aggarwal BB, Kurie JM. Mitogen-activated Protein Kinase Kinase-4 Promotes Cell Survival by Decreasing PTEN Expression through an NFKB-dependent Pathway. J Biol Chem 2007; 282,3507-3519.
    42. Pearson G, Robinson F, Beers Gibson T, Xu BE, Karandikar M, Berman K, Cobb MH. "Mitogen-activated protein (MAP) kinase pathways:regulation and physiological functions". Endocr Rev 2000; 22 (2),153-183.
    43. Matsuzaki S, Canis M, Vaurs-Barriere C, Boespflug-Tanguy O, Dastugue B, Mage G. DNA microarray analysis of gene expression in eutopic endometrium from patients with deep endometriosis using laser capture microdissection. Fertil Steril 2005; 84,1180-1190.
    44. Yoshino O, Osuga Y, Koga K, Hirota Y, Hirata T, Ruimeng X, Na L, Yano T, Tsutsumi O, Taketani Y. FR 167653, a p38 mitogen-activated protein kinase inhibitor, suppresses the development of endometriosis in a murine model. J. Reprod Immunol 2006; 72(1-2),85-93.
    45. Honda H, Barrueto FF, Gogusev J, Im DD, Morin PJ. Serial analysis of gene expression reveals differential expression between endometriosis and normal endometrium. Possible roles for AXL and SHC1 in the pathogenesis of endometriosis. Reprod Biol Endocrinol 2008; 6,59.
    46. Yang ZZ, Tschopp O, Baudry A, Dummler B, Hynx D, Hemmings BA. "Physiological functions of protein kinase B/Akt" . Biochem Soc Trans 2004; 32 (Pt 2),350-354.
    47. Song G, Ouyang G, Bao S. "The activation of Akt/PKB signaling pathway and cell survival". J Cell Mol Med 2005; 9 (1),59-71.
    48. Ramaswamy S, Nakamura N, Vazquez F, Batt DB, Perera S, Roberts TM, Sellers WR. "Regulation of G1 progression by the PTEN tumor suppressor protein is linked to inhibition of the phosphatidylinositol 3-kinase/Akt pathway". Proc Natl Acad Sci U.S.A.1999; 96 (5),2110-2115.
    49. Cakmak H, Guzeloglu-Kayisli O, Kayisli UA, Arici A. Immune-endocrine interactions in endometriosis. Front Biosci 2009; 1,429-443.
    50. Yagyu T, Tsuji Y, Haruta S, Kitanaka T, Yamada Y, Kawaguchi R, Kanayama S, Tanase Y, Kurita N, Kobayashi H. Activation of mammalian target of rapamycin in postmenopausal ovarian endometriosis. Int J Gynecol Cancer 2006; 16(4), 1545-1551.
    51. Faissner A, Heck N, Dobbertin A, Garwood J. "DSD-1-Proteoglycan/Phosphacan and receptor protein tyrosine phosphatase-beta isoforms during development and regeneration of neural tissues". Adv Exp Med Biol 2006; 557,25-53.
    52. Sampson J. Peritoneal endometriosis due to menstrual dissemination of endometrial tissue into the peritoneal cavity. Am J Obstet Gynecol 1927; 14, 422-469.
    53. Halme J, Hammond MG, Hulka JF, Raj SG, Talbert LM. Retrograde menstruation in healthy women and in patients with endometriosis. Obstet Gynecol 1984; 64, 151-154.
    54. Strathy JH, Molgaard CA, Coulam CB, Melton LJ Ⅲ. Endometriosis and infertility:a laparoscopic study of endometriosis among fertile and infertile women. Fertil Steril 1982; 38,667-672.
    55. Goldman, M.B., Cramer, D.W. The epidemiology of endometriosis. Prog Clin Biol Res 1990; 323,15-31.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700