用户名: 密码: 验证码:
猕猴桃果实后熟进程中乙烯信号转导元件功能及其对非生物胁迫的应答
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以猕猴桃(Actinidia)果实为试材,研究乙烯信号转导途径相关编码基因在猕猴桃果实生长发育和后熟软化进程中的表达模式,以及对乙烯(100μl/L)、1-MCP(0.5μl/L).低温(0℃)、高温(35℃)、高CO2(5%)和快速失水(~10%RH空气)等采后处理的应答模式,鉴别参与猕猴桃后熟软化及采后逆境胁迫应答的相关成员;开展转录因子级别元件与果实后熟软化相关基因的互作模式研究,探索基因的作用方向;进行部分基因的功能验证,明确其与猕猴桃果实后熟软化及逆境胁迫应答相关的功能。主要结果如下:
     1、基于猕猴桃EST数据库,分离得到猕猴桃5个AdETRs基因、2个AdCTRs基因、4个AdEILs基因和14个AdERFs基因。组织和阶段特异性分析结果表明,除AdERF2不在果实组织中表达外,其他成员在根、茎、叶、花和果实等不同组织中均有分布,这与乙烯的广泛生理功能相一致;另外,信号转导元件编码基因的大部分成员在果实发育初期表达较强,它们可能介导了乙烯参与果实快速生长过程。
     2、AdETRs家族成员的AdERS1a、AdETR2和AdETR3在果实后熟软化中表达增强,且受外源乙烯上调,可能是直接“绑定”乙烯的结合子(binder);而AdETR1表达伴随果实后熟软化进程下降,并受外源乙烯下调,可能是果实乙烯敏感性感受器(sensor);首次发现的呈乙烯下调模式的AdETR1基因,可部分解释猕猴桃果实乙烯超敏感性的内在分子机制。AdERS1b对外源乙烯无应答,它在果实快速软化前表达较强,而在果实完成快速软化之后表达下降,并维持在较低水平,表明AdERS1b可能与果实软化相关。
     3、AdEILs基因家族成员在果实后熟进程中表达水平较稳定,Transient Assay结果显示AdEIL2/3可增强AdACO1和AdXET5启动子活性,表明AdEIL2/3行使转录激活子功能。转基因结果显示,过量表达AdEIL2和AdEIL3均可增加拟南芥乙烯合成。AdXET5启动子删截实验表明,AdEIL2识别AdXET5启动子的第1和第3个结构域,而AdEIL3识别第1和第2结构域,认为同一启动子区不同结构域在基因互作中具有不同功能,且同一转录因子家族不同成员的识别位点也可存在差异。
     4、除AdERF2外(不在果实中表达),其他13个AdERFs家族成员在猕猴桃果实后熟软化进程中呈4种表达模式,其中AdERF10/14随果实后熟软化表达增强,AdERF4/6转录本在乙烯跃变高峰后的果实中大量积累,而AdERF5/9呈组成型表达,其余7个AdERFs成员在果实后熟软化进程中表达下降。分析乙烯、1-MCP处理及ACO敲除的果实,7个表达下调的AdERFs中,AdERF1/7/8/11/12与乙烯无显著联系,表现为果实后熟软化进程特异性模式。AdERFs与后熟软化相关基因互作结果表明AdERFs对含有GCC盒的AdEXP1启动子无显著调控效应,但AdERF9可抑制AdXET5启动子活性,表明其行使转录抑制子功能。进一步的启动子删截研究表明,AdERF9始终抑制AdXET5启动子活性,认为未知的AdERF9结合位点可能位于AdXET5启动子的-265至-1区间。
     5、低温可显著延缓猕猴桃果实后熟软化,且可诱导大部分乙烯信号转导基因的表达。这些乙烯信号转导元件对于低温的应答模式,与果实后熟软化无直接联系,更可能是相关基因的逆境应答。但AdEILs对低温处理的独特应答模式,表明AdEILs可能是调控果实低温应答的关键级别之一。转基因结果显示,AdEIL3、AdERF1/6/9/13可增强拟南芥植株的低温抗性。依据相关基因对低温的应答模式,进一步分析了AdETRs和AdERFs基因家族对采后逆境(高温、高CO2和快速失水等)的应答模式,发现AdETR3、AdERF1/3/4/11/12/14对不同的采后非生物逆境的应答模式一致,它们可能是猕猴桃AdETRs和AdERFs级别参与采后逆境应答的重要成员。
     上述结果表明,猕猴桃乙烯信号转导途径不同成员不仅参与调控果实后熟软化进程,还参与果实对采后非生物逆境胁迫的应答机制。
Kiwifruit(Actinidia) was used to study ethylene signaling related genes expression during kiwifruit development, ripening and softening. Treatment of fruit with ethylene (100μl/L),1-MCP (0.5μl/L), low-temperature (0℃), high-temperature (35℃), high CO2 (5%) and dry air (~10%RH) was used to follow responses of these genes in relation to fruit ripening and postharvest stress. Transcription factor and promoter interaction and functional transgenic works were also included in the experiment. The main results are as follows:
     1. Five ethylene receptor genes, two CTR1 like genes, four AdEILs and fourteen AdERFs were isolated based on kiwifruit EST database. Among the 25 genes, only AdERF2 was not detected in fruit tissue, while the others were widely expressed in various kiwifruit plant tissues. Temporal expression patterns of the genes indicated that most of them were strongly expressed at fruit early stages of development. This is consistent with our knowledge of ethylene-dependent activity in early stages of organ development.
     2. Expression studies of the five ethylene receptor genes showed that AdERS1a, AdETR2 and AdETR3 were increased during fruit ripening, oppositely, AdETR1 was down-regulated by ethylene. According to ethylene receptor negative regulation model, AdERS1a, AdETR2 and AdETR3 might act as ethylene binder, while AdETR1 might act as sensor with implications for responsiveness of the ethylene signalling pathway. The expression patterns of AdETR1 also could partially explain the mechanism of kiwifruit high ethylene sensitivity. The relative insensitivity to ethylene of AdERS1b and its pattern associated with softening invites the speculation that it might have a separate involvement in promoting some aspect of later fruit softening.
     3. Contrast to AdETRs, AdEILs were constitutively expressed during fruit ripening. Gene interaction experiments indicated that AdEIL2/3 act as transcription activators by inducing AdACO1 and AdXET5 promoter activity. Further study on AdEIL2/3 function found that ethylene production was triggered in AdEIL2/3 over-expressed Arabidopsis plants. In order to study the function of different motifs in gene interaction, four deletions were designed in promoter of AdXET5. AdEIL2 might recognize the first and third motif in AdXET5 promoter, while the first and second motifs were important for AdEIL3. These results indicated AdEIL2/3 could transcriptionally regulate ripening related genes, but the target motifs might be different.
     4. Within AdERFs gene family, AdERF2 was excluded in fruit regime experiment. The other thirteen AdERFs genes were differentially expressed during fruit ripening, which could be divided into four patterns:(Ⅰ) AdERF10 and 14 were increased during fruit ripening, (Ⅱ) AdERF4 and 6 expression was relatively high at the post-climacteric stage, (Ⅲ) Expression of AdERF5 and 9 was constant and not affected by exogenous ethylene, (Ⅳ) the other seven AdERFs genes followed a decreasing pattern during ripening. Combined results from ethylene treatment,1-MCP treatment and ACO knock-out fruit, decreases of AdERF1/7/8/11/12 transcripts were likely to be ripening specific, and be independent of ethylene. Promoter of AdEXP1 contains a GCC box, however, no significant interaction was found between AdERFs and AdEXPl promoter. Interestingly, AdERF9 was confirmed as a transcriptional repressor by repressing AdXET5 promoter, although no GCC box was found in this promoter. Based on AdXET5 promoter deletion results, the unknown target for AdERF9 located at-265 to-1 region of AdXET5 promoter.
     5. Low-temperature (0℃) significantly delay kiwifruit ripening and softening, while low temperature generally resulted in increased gene expression, it is not yet clear how much it is associated with ripening changes including softening, whilst that response is more likely to be stress response. It is worth emphasizing the novel response of EIN3-like genes to low temperature, which provides some insight into the relationship between ethylene signalling and low temperature. AdEIL3 and AdERF1/6/9/13 were over-expressed in Arabidopsis respectively, and all of the transgenic lines manifest higher low-temperature tolerance. More postharvest abiotic stresses were applied to kiwifruit, and AdETRs and AdERFs were choosed to study the genes stress response. AdETR3 and AdERF1/3/4/11/12/14 had similar response to different abiotic stress.
     In conclusion, different ethylene signalling components of kiwifruit are not only involved in regulation on kiwifruit ripening, but also involved in response to fruit postharvest abiotic stress.
引文
安丰英,郭红卫.乙烯信号转导的分子机制[J].植物学通报,2006,23(5):531-542.
    陈昆松,郑金土.乙烯与猕猴桃果实的后熟软化[J].浙江农业大学学报,1999,25(3):251-254.
    陈涛,张劲松.乙烯的生物合成与信号转导[J].植物学通报,2006,23(5):519-530.
    丁建国,陈昆松,许文平,徐昌杰.1-甲基环丙烯处理对美味猕猴桃果实后熟软化的影响[J].园艺学报,2003,30(3):277-280.
    魏绍冲,陈昆松,罗云波.ETR与果实成熟调控[J].园艺学报,2004,31(4):543-548.
    徐昌杰,陈昆松,张上隆.乙烯生物合成及其控制研究进展[J].植物学通报,1998,15(增刊):54-61.
    Abeles F B, Morgan P W, Saltveit Jr M E. Ethylene in plant biology,2nd edn. San Diego: Academic Press,1992.
    Adams M D, Kelley J M, Gocayne J D, Dubnick M, Polymeropoulos M H, Xiao H, Merril C R, Wu A, Olde B, Moreno R F. Complementary DNA sequencing: expressed sequence tags and human genome project[J]. Science,1991,252(5013): 1651-1656.
    Adams-Phillips L, Barry C, Kannan P, Leclercq J, Bouzayen M, Giovannoni J. Evidence that CTR1-mediated ethylene signal transduction in tomato is encoded by a multigene family whose members display distinct regulatory features[J]. Plant Molecular Biology,2004,54(3):387-404.
    Aharoni A, Dixit S, Jetter R, Thoenes E, van Arkel G, Pereira A. The SHINE clade of AP2 domain transcription factors activates wax biosynthesis, alters cuticle properties, and confers drought tolerance when overexpressed in Arabidopsis[J]. The Plant Cell, 2004,16(9):2463-2480.
    Alexander L, Grierson D. Ethylene biosynthesis and action in tomato:a model for climacteric fruit ripening[J]. Journal of Experimental Botany,2002,53(377):2039-2055.
    Alonso J M, Hirayama T, Roman G, Nourizadeh S, Ecker J R. EIN2, a bifunctional
    transducer of ethylene and stress response in Arabidopsis[J]. Science,1999, 284(5423):2148-2152.
    Alonso J M, Stepanova A N, Solano R, Wisman E, Ferrari S, Ausubel F M, Ecker J R. Five components of the ethylene-response pathway indentified in a screen for weak ethylene-insensitive mutants in Arabidopsis[J]. Proceedings of the National Academy of Sciences of the United States of America,2003,100(5):2992-2997.
    Antunes M D C, Pateraki I, Kanellis A K, Sfakiotakis E M. Differential effects of low-temperature inhibition on the propylene induced autocatalysis of ethylene production, respiration and ripening of'Hayward'kiwifruit[J]. Journal of Horticultural Science and Biotechnology,2000,75(5):575-580.
    Arpaia M L, Mitchell F G, Kader A A, Mayer G. The ethylene problem in modified atmosphere storage of kiwifruit. In:Richardson DG and Mchcriuk M (editors), Controlled atomospheres for storage and transport of perishable agricultural commodities, Timber Press, Beaverton, Oregon,1982, pp:331-335.
    Atkinson R G, Gardner R C.A polygalacturonase gene from kiwifruit (Actinidia deliciosa)[J]. Plant Physiology,1993,103(2):669-670.
    Ayub R, Guis M, Ben Amor M, Gillot L, Roustan J P, Latche A, Bouzayen M, Pech J C. Expression of ACC oxidase antisense gene inhibits ripening of cantaloupe melon fruits[J]. Nature Biotechnology,1996,14(7):862-866.
    Barry C S, Giovannoni J J. Ripening in the tomato Green-ripe mutant is inhibited by ectopic expression of a protein that disrupts ethylene signaling[J]. Proceedings of the National Academy of Sciences of the United States of America,2006,103(20): 7923-7928.
    Barry C S, Gionannoni J J. Ethylene and fruit ripening[J]. Journal of Plant Growth Regulation,2007,26(2):143-159.
    Beever D J, Hopkirk G. Fruit development and fruitphysiology. In:Warrington IJ, Weston GC(editors). Kiwifruit:science and management. Auckland:New Zealand Society for Horticultural Science,1990, pp:97-126.
    Begheldo M, Manganaris G A, Bonghi C, Tonutti P. Different postharvest conditions modulate ripening and ethylene biosynthetic and signal transduction pathways in Stony Hard peaches[J]. Postharvest Biology and Technology,2007,48(1):84-91.
    Ben-Amor M, Flores B, Latche A, Bouzayen M, Pech J C, Fomojaro F. Inhibition of ethylene biosynthesis by antisense ACC oxidase RNA prevents chilling injury in Charentais cantaloupe melons[J]. Plant, Cell and Environment,1999,22(12): 1579-1586.
    Bleecker A B, Estelle M A, Somerville C, Kende H. Insensitivity to ethylene conferred by a dominant mutation in Arabidopsis thaliana[J]. Science,1988,241(486):1086-1089.
    Bleecker A B, Kende H. Ethylene:a gaseous signal molecule in plants[J]. Annual Review of Cell and Developmental Biology,2000,16:1-18.
    Blume B, Barry C S, Hamilton A J, Bouzayen M, Grierson D. Identification of transposon-like elements in non-coding regions of tomato ACC oxidase genes[J]. Molecular and General Genetics,1997,254(3):297-303.
    Bolitho K M, Lay-Yee M, Knighton M L, Ross G S. Antisense apple ACC-oxidase RNA reduces ethylene production in transgenic tomato fruit[J]. Plant Science,1997, 122(1):91-99.
    Brown R L, Kazan K, McGrath K C, Maclean D J, Manners J M. A role for the GCC-box in jasmonate-mediated activation of the PDF1.2 Gene of Arabidopsis[J]. Plant Physiology,2003,132:1020-1032.
    Burdon J, Lallu N, Francis K, Boldingh H. The susceptibility of kiwifruit to low temperature breakdown is associated with pre-harvest temperatures and at-harvest soluble solids content[J]. Postharvest Biology and Technology,2007,43(3): 283-290.
    Cao W H, Liu J, Zhou Q Y, Cao Y R, Zheng S F, Du B X, Zhang J S, Chen S Y. Expression of tobacco ethylene receptor NTHK1 alters plant responses to salt stress[J]. Plant, Cell and Environment,2006,29(7):1210-1219.
    Cao W H, Liu J, He X J, Mu R L, Zhou H L, Chen S Y, Zhang J S. Modulation of ethylene response affects plant salt-stress responses[J]. Plant Physiology,2007,143: 707-719.
    Chakravarthy S, Tuori R P, D'Ascenzo M D, Fobert P R, Despres C, Martin G B. The tomato transcription factor Pti4 regulates defense-related gene expression via GCC box and non-GCC box cis elements[J]. The Plant Cell,2003,15(12):3033-3050.
    Chang C, Kwok S F, Bleecker A B, Meyerowitz E M.. Arabidopsis Ethylene-Response
    Gene ETR1:Similarity of Product to Two-Component Regulators[J]. Science,1993a, 262(5133):539-544.
    Chang C, Stadler R. Ethylene hormone receptor action in Arabidopsis[J].BioEssays, 2001,23(7):619-627.
    Chang S, Puryear J, Cairney J. A simpie and efficient method for isolating RNA from pine trees[J]. Plant Molecular Biology Reporter,1993b,11(2):113-116.
    Chen G P, Hu Z L, Grierson D. Differential regulation of tomato ethylene responsive factor LeERF3b, a putative repressor, and the activator Pti4 in ripening mutants and in response to environmental stresses[J]. Journal of Plant Physiology,2008,165(6): 662-670.
    Chen Y-F, Etheridge N, Schaller G E. Ethylene signal transduction[J]. Annals of Botany, 2005,95(6):901-915.
    Chen Y F, Randlett M D, Findell J L, Schaller G E. Localization of the ethylene receptor ETR1 to the endoplasmic reticulum of Arabidopsis[J]. The Journal of Biological Chemistry,2002,277:19861-19866.
    Crowhurst R N, Gleave A P, MacRae E A, Ampomah-Dwamena C, Atkinson R G, Beuning L L, Bulley S M, Chagne D, Marsh K B, Matich A J, Montefiori M, Newcomb R D, Schaffer R J, Usadel B, Allan A C, Boldingh H L, Bowen J H, Davy M W, Eckloff R, Ferguson A R, Fraser L G, Gera E, Hellens R P, Janssen B J, Klages K, Lo K R, MacDiarmid R M, Nain B, McNeilage M A, Rassam M, Richardson A C, Rikkerink E H A, Ross G S, Schroder R, Snowden K C, Souleyre E J F, Templeton M D, Walton E F, Wang D, Wang M Y, Wang Y Y, Wood M, Wu R M, Yauk Y K, Liang W A. Analysis of expressed sequence tags from Actinidia:applications of a cross species EST database for gene discovery in the areas of flavor, health, color and ripening[J]. BMC Genomics,2008,9:351.
    Dal Cin V, Rizzini F M, Botton A, Tonutti P. The ethylene biosynthetic and signal transduction pathways are differently affected by 1-MCP in apple and peach fruit[J]. Postharvest Biology and Technology,2006,42(2):125-133.
    Dong C H, Rivarola M, Resnick J S, Maggin B D, Chang C. Subcellular co-localization of Arabidopsis RTE1 and ETR1 supports a regulatory role for RTE1 in ETR1 ethylene signaling[J]. The Plant Journal,2008,53(2),275-286.
    EI-Sharkawy I, Jones B, Li Z G, Lelievre J M, Pech J C, Latche A. Isolation and characterization of four ethylene perception elements and their expression during ripening in pears (Pyrus communis L.) with/without cold requirement[J]. Journal of Experimental Botany,2003,54(387):1615-1625.
    EI-Sharkawy I, Kim W S, EI-Kereamy A, Jayasankar S, Svircev A M, Brown D C W. Isolation and characterization of four ethylene signal transduction elements in plums (Prunus salicina L.)[J]. Journal of Experimental Botany,2007,58(13):3631-3643.
    EI-Sharkawy I, Sherif S, Mila I, Bouzayen M, Jayasankar S. Molecular characterization of seven genes encoding ethylene-responsive transcriptional factors during plum fruit development and ripening[J]. Journal of Experimental Botany,2009,60(3):907-922.
    Espley R V, Hellens R P, Putterill J, Stevenson D E, Kutty-Amma S, Allan A C. Red coloration in apple fruit is due to the activity of the MYB transcription factor, MdMYB10[J]. The Plant Journal,2007,49(3):414-427.
    Fernandez-Otero C I, Torre F D L, Iglesias R, Rodriguez-Gacio M C, Matilla A J. Stage-and tissue-expression of genes involved in the biosynthesis and signalling of ethylene in reproductive organs of damson plum(Prunus domestica L. subsp. insititia)[J]. Plant Physiology and Biochemistry,2007,45(3-4):199-208.
    Fujimoto S Y, Ohta M, Usui A, Shinshi H, Ohme-Takagi M. Arabidopsis ethylene-response element binding factors act as transcriptional activator or repressors of GCC box-mediated gene expression[J]. The Plant Cell,2000,12(4): 393-404.
    Gagne J, Smalle J, Gingerich D, Walker J, Yoo S, Yanagisawa S, Vierstra R. Arabidopsis EIN3-binding F-box 1 and 2 form ubiquitin-protein ligases that repress ethylene action and promote growth by directing EIN3 degradation [J]. Proceedings of the National Academy of Sciences of the United States of America,2004,101(17): 6803-6808.
    Gane R. Production of ethylene by some ripening fruit[J]. Nature,1934,134(3400):1008.
    Giovannoni J J. Fruit ripening mutants yield insights into ripening control[J]. Current Opinion in Plant Biology,2007,10(3):283-289.
    Gu Y Q, Yang C M, Thara V K, Zhou J M, Martin G B. Pti4 is induced by ethylene and salicylic acid, and its production is phosphorylated by the Pto kinase[J]. The Plant
    Cell,2000,12(5):771-785.
    Guo H, Ecker J. Plant responses to ethylene gas are mediated by SCFEBF1/EBF2-dependent proteolysis of EIN3 transcription factor[J]. Cell,2003, 115(6):667-677.
    Hamilton A J, Lycett G W, Grierson D. Antisense gene that inhibits synthesis of the hormone ethylene in transgenic plants[J]. Nature,1990,346(6281):284-287.
    Hao D Y, Yamasaki K, Sarai A, Ohme-Takagi M. Determinants in the sequence specific binding of two plant transcription factors, CBF1 and NtERF2, to the DRE and GCC motifs[J]. Biochemistry,2002,41(13):4202-4208.
    Hellens R, Allan A, Friel E, Bolitho K, Grafton K, Templeton M, Karunairetnam S, Gleave A, Laing W. Transient expression vectors for functional genomics, quantification of promoter activity and RNA silencing in plants[J]. Plant Methods, 2005,1:13.
    Henzi M X, McNeil D L, Christey M C, Lill R E. A tomato antisense 1-aminocyclopropane-l-carboxylic acid oxidase gene causes reduced ethylene production in transgenic broccoli[J]. Australian Journal of Plant Physiology,1999, 26(2):179-183.
    Hibi T, Kosugi S, Iwai T, Kawata M, Seo S, Mitsuhara I, Ohashi Y. Involvement of EIN3 homologues in basic PR gene expression and flower development in tobacco plants[J]. Journal of Experimental Botany,2007,58(13):3671-3678.
    Higo K, Ugawa Y, Iwamoto M, Korenaga T. Plant cis-acting regulatory DNA elements (PLACE) database:1999[J]. Nucleic Acids Research,1999,27(1):297-300.
    Hua J, Sakai H, Nourizadeh S, Chen Q G, Bleecker A B, Ecker J R, Meyerowitz E M. EIN4 and ERS2 are members of the putative ethylene receptor gene family in Arabidopsis[J]. The Plant Cell,1998,10(8):1321-1332.
    Huang Z J, Zhang Z J, Zhang X L, Zhang H B, Huang D F, Huang R F. Tomato TERF1 modulates ethylene response and enhances osmotic stress tolerance by activating expression of downstream genes[J]. FEBS Letters,2004,573(1-3):110-116.
    Kader A A. A summary of CA requirements and recommendations for fruit other than apples and pears. In:CA'97 Proc. Volume 3:Postharvest Horticulture Series no.17. University of California, Davis,1997, pp:1-34.
    Kannangara R, Branigan C, Liu Y, Penfield T, Rao V, Mouille G, Hofte H, Pauly M, Riechmann J L, Broun P. The transcription factor WIN1/SHN1 regulates cutin biosynthesis in Arabidopsis thaliana[J]. The Plant Cell,2007,19(4):1278-1294.
    Katz E, Lagunes P M, Riov J Weiss D, Goldschmidt E E. Molecular and physiological evidence suggests the existence of a system Ⅱ-like pathway of ethylene production in non-climacteric Citrus fruit[J]. Planta,2004,219(2):243-252.
    Kendrick M D, Chang C. Ethylene signaling:new levels of complexity and regulation[J]. Current Opinion in Plant Biology,2008,11(5):479-485.
    Kevany B M, TaylorM G, Klee H J. Fruit-specific suppression of the ethylene receptor LeETR4 results in early ripening tomato fruit[J]. Plant Biotechnology Journal,2008, 6(3):295-300.
    Kevany B M, Tieman D M, TaylorM G, Dal Cin V, Klee H J. Ethylene receptor degradation controls the timing of ripening in tomato fruit[J]. The Plant Journal, 2007,51(3):458-467.
    Kieber J J, Rothenberg M, Roman G, Feldman K A, Ecker J R. CTR1, a negative regulator of the ethylene response pathway in Arabidopsis, encodes amember of the Raf family of protein kinases[J]. Cell,1993,72(3):427-441.
    Knoester M, van Loon L C, van den Heuvel J, Hennig J, Bol J F, Linthorst H J M. Ethylene-insensitive tobacco lacks nonhost resistance against soil-borne fungi[J]. Proceedings of the National Academy of Sciences of the United States of America, 1998,95(4):1933-1937.
    Kosugi S, Ohashi Y. Cloning and DNA-binding properties of a tobacco Ethylene-Insensitive3 (EIN3) homolog[J]. Nucleic Acids Research,2000,28(4): 960-967.
    Kumar S, Tamura K, Nei M. MEGA3:Integrated software for molecular evolutionary genetics analysis and sequence alignment[J]. Briefings in Bioinformatics,2004,5(2): 150-163.
    Lallu N. Low temperature breakdown in kiwifruit[J]. Acta Horticulturae,1997,444: 579-585.
    Lallu N, Burdon J, Yearsley C W, Billing D. Commercial practices used for controlled atmosphere storage of'Hayward'kiwifruit[J]. Acta Horticulturae,2003,610:
    245-251.
    Lashbrook C C, Tieman D M, Klee H J. Differential regulation of the tomato ETR gene family throughout plant development[J]. The Plant Journal,1998,15(2):243-252.
    Lasserre E, Godard F, Bouquin T, Hernandez J A, Pech J C, Roby D, Balague C. Differential activation of two ACC oxidase gene promoters from melon during p lant development and in response to pathogen attack[J]. Molecular and General Genetics, 1997,256(3):211-222.
    Lee J-H, Kim W T. Molecular and biochemical characterization of VR-EILs encoding mung bean ETHYLENE INSENSITIVE3-LIKE proteins[J]. Plant Physiology,2003, 132(3):1475-1488.
    Lelievre J M, Latche A, Jones B, Bouzayen M, Pech J C. Ethylene and fruit ripening[J]. Physiologia Plantarum,1997,101(4):727-739.
    Lescot M, Dehais P, Thijs G, Marchal K, Moreau Y, van de Peer Y, Rouze P, Rombauts S. PlantCARE, a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences[J]. Nucleic Acids Research,2002,30(1): 325-327.
    Li Y C, Zhu B Z, Xu W T, Zhu H L, Chen A J, Xie Y H, Shao Y, Luo Y B. LeERFl positively modulated ethylene triple response on etiolated seedling, plant development and fruit ripening and softening in tomato[J]. Plant Cell Reports,2007, 26(11):1999-2008.
    Lin Z F, Arciga-Reyes L, Zhong S L, Alexander L, Hackett R, Wilson I, Grierson D. S1TPR1, a tomato tetratricopeptide repeat protein interacts with the ethylene receptor NR and LeETR1, modulating ethylene and auxin responses and development[J]. Journal of Experimental Botany,2008,59(15):4271-4287.
    Lurie S. Postharvest heat treatments[J]. Postharvest Biology and Technology,1998,14(3): 257-269.
    Lynch J, Brown K M. Ethylene and plant responses to nutritional stress[J]. Physiologia plantrum,1997,100(3):613-619.
    Magome H, Yamaguchi S, Hanada A, Kamiya Y, Oda K. Dwarf and delayed-flowering 1, a novel Arabidopsis mutant deficient in gibberellin biosynthesis because of overexpression of a putative AP2 transcription factor[J]. The Plant Journal,2004,
    37(5):720-729.
    Mariani I R C, Weterings K. Expression analysis of five tobacco EIN3 family members in relation to tissue-specific ethylene responses[J]. Journal of Experimental Botany, 2003,54(391):2239-2244.
    McDonald B, Harman J E. Controlled-atmosphere storage of kiwifruit. I. effect on fruit firmness and storage life[J]. Scientia Horticulturae,1982,17(2):113-123.
    Nag A, Yang Y Z, Jack T. DORNRoSCHEN-LIKE, an AP2 gene, is necessary for stamen emergence in Arabidopsis[J]. Plant Molecular Biology,2007,65(3): 219-232.
    Nakano T, Suzuki K, Fujimura T, Shinshi H. Genome-wide analysis of the ERF gene family in Arabidopsis and rice[J]. Plant Physiology,2006,140(2):411-432.
    Novillo F, Alonso J M, Ecker J R, Salinas J. CBF2/DREB1C is a negative regulator of CBF1/DREB1B and CBF3/DREB1A expression and plays a central role in stress tolerance in Arabidopsis[J]. Proceedings of the National Academy of Sciences of the United States of America,2004,101(11):3985-3990.
    Novillo F, Medina J, Salinas J. Arabidopsis CBF1 and CBF3 have a different function than CBF2 in cold acclimation and define different gene classes in the CBF regulon[J]. Proceedings of the National Academy of Sciences of the United States of America,2007,104(52):21002-21007.
    O'Donnell P J, Calvert C, Atzorn R, Wasternack C, Leyser H M O, Bowles D J. Ethylene as a signal mediating the wounding response of tomato plants[J]. Science,1996, 274(5294):1914-1917.
    Oeller P W, Lu M W, Taylor L P, Pike D A, Theologis A. Reversible inhibition of tomato fruit senescence by antisense RNA[J]. Science,1991,254(5030):437-439.
    Ohem-Takagi M, Shinshi H. Ethylene-inducible DNA binding proteins that interact with an ethylene-responsive element[J]. The Plant Cell,1995,7(2):173-182.
    O'Malley R C, Rodriguez F I, Esch J J, Binder B M, O'Donnell P, Klee H J, Bleecker A B. Ethylene-binding activity, gene expression levels, and receptor system output for ethylene receptor family members from Arabidopsis and tomato[J]. The Plant Journal,2005,41(5):651-659.
    Onate-Sanchez L, Anderson J P, Young J, Singh K B. AtERF14, a member of the ERF
    family of transcription factors, plays a nonredundant role in plant defense[J]. Plant Physiology,2007,143:400-409.
    Palapol Y, Ketsa S, Lin-Wang K, Ferguson I B, Allan A C. A MYB transcription factor regulates anthocyanin biosynthesis in mangosteen (Garcinia mangostana L.) fruit during ripening[J]. Planta,2009,229(6):1323-1334.
    Pang J H, Ma B, Sun H-J, Ortiz G I, Imanishi S, Sugaya S, Gemma H, Ezura H. Identification and characterization of ethylene receptor homologs expressed during fruit development and ripening in persimmon(Diospyros kaki Thumb.)[J]. Postharvest Biology and Technology,2007,44(3):195-203.
    Pesis E, Ibanez A M, Phu M L, Mitcham E J, Ebeler S E, Dandekar A M. Superficial scald and bitter pit development in cold-stored transgenic apples suppressed for ethylene biosynthesis[J]. Journal of Agriculture and Food Chemistry,2009,57(7): 2786-2792.
    Pieterse C M J, van Wees S C M, van Pelt J A, Knoester M, Laan R, Gerrits H, Weisbeek P J, van Loon L C. A novel signaling pathway controlling induced systemic resistance in Arabidopsis[J]. The Plant Cell,1998,10(9):1571-1580.
    Ponce-Valadez M, Moore Fellman S, Giovannoni J, Gan S S, Watkins C B. Differential fruit gene expression in two strawberry cultivars in responses to elevated CO2 during storage revealed by a heterologous fruit microarray approach[J]. Postharvest Biology and Technology,2009,51(2):131-140.
    Potuschak T, Lechner E, Parmentier Y, Yanagisawa S, Grava S, Koncz C, Genschik P. EIN3-dependent regulation of plant ethylene hormone signaling by two Arabidopsis F box proteins:EBF1 and EBF2[J]. Cell,2003,115(6):679-689.
    Prestridge D S. SIGNAL SCAN:A computer program that scans DNA sequences for eukaryotic transcriptional elements[J]. Bioinformatics,1991,7(2):203-206.
    Qin F, Sakuma Y, Tran L S P, Maruyma K, Kidokoro S, Fujita Y, Fujita M, Umezawa T, Sawano Y, Miyazono K I, Tanokura M, Shinozaki K, Yamaguchi-Shinozaki K. Arabidopsis DREB2A-interacting proteins function as RING E3 ligase and negatively regulate plant drought stress-responsive gene expression[J]. The Plant Cell, 2008,20(6):1693-1707.
    Rasori A, Ruperti B, Bonghi C, Tonutti P, Ramina A. Characterization of two putative
    ethylene receptor genes expressed during peach fruit development and abscission[J]. Journal of Experimental Botany,2002,53(379):2333-2339.
    Resnick J S, Wen C K, Shockey J A, Chang C. REVERSION-TO-ETHYLENE SENSITIVITY1, a conserved gene that regulates ethylene receptor function in Arabidopsis[J]. Proceedings of the National Academy of Sciences of the United States of America,2006,103(20):7917-7922.
    Riechmann J L, Heard J, Martin G, Reuber L, Jiang C Z, Keddie J, Adam L, Pineda O, Ratcliffe O J, Samaha R R, Creelman R, Pilgrim M, Broun P, Zhang J Z, Ghandehari D, Sherman B K, Yu G L. Arabidopsis transcription factor:genome-wide comparative analysis among eukaryotes[J]. Science,2000,290(2105):2105-2110.
    Rombaldi C V, Silva J A, Wally L, Da Costa T S, Zanuzo M R. Characterization of transgenic melons expressing an apple ACC oxidase antisense gene. NATO advanced research workshop on biology and biotechnology of the plant hormone ethylene, Murcia Spain, April 23-27,2002. p.161. Abs# S8-P4
    Sakuma Y, Maruyama K, Qin F, Osakabe Y, Shinozaki K, Yamaguchi-Shinozaki K. Dual function of an Arabidopsis transcription factor DREB2A in water-stress-responsive and heat-stress-responsive gene expression[J]. Proceedings of the National Academy of Sciences of the United States of America,2006,103(49):18822-18827.
    Schroder R, Atkinson R G, Langenkamper G, Redgwell R J. Biochemical and molecular characterization of xyloglucan endotransglycosylase from ripe kiwifruit[J]. Planta, 1998,204(2):242-251.
    Sato-Nara K, Yuhashi K-I, Higashi K, Hosoya K, Kubota M, Ezura H. Stage-and tissue-specific expression of ethylene receptor homolog genes during fruit development in muskmelon[J]. Plant Physiology,1999,119(1):321-329.
    Savin K W, Baudinette S C, Graham M W, Michael M Z, Nugent G D, Lu C Y, Chandler S F, Cornish E C. Antisense ACC oxidase RNA delays carnation petal senescence [J]. Hortscience,1995,30(5):970-972.
    Schramm F, Larkindale J, Kiehlmann E, Ganguli A, Englich G, Vierling E, von Koskull-Doring P. A cascade of transctiption factor DREB2A and heat stress transcription factor HsfA3 regulates the heat stress response of Arabidopsis[J]. The Plant Journal,2008,53(2):264-272.
    Sfakiotakis E, Antunes M D, Stavroulakis G, Niklis N, Ververidis P, Gerasopoulos D. Ethylene biosynthesis and its regulation in ripening "Hayward" kiwifruit. In: Kanellis AK, Chang C, Kende H, Grierson D. (editors.), Biology and Biotechnology of the Plant Hormone Ethylene. Kluwer Academic Publishers, Boston, Dordrecht, 1997,47-56.
    Solano R, Stepanova A, Chao Q M, Ecker J R. Nuclear events in ethylene signaling:a transcriptional cascade mediated by ETHYLENE-INSENSITIVE3 and ETHYLENE-RESPONSE-FACTOR1[J]. Gene & Development,1998,12(23): 3703-3714.
    Stepanova A N, Ecker J R. Ethylene signaling:from mutants to molecules[J]. Current Opinion in Plant Biology,2000,3(5):353-360.
    Sun S, Yu J P, Chen F, Zhao T J, Fang X H, Li Y Q, Sui S F. TINY, a dehydration-responsive element (DRE)-binding protein-like transcription factor connection the DRE-and ethylene-responsive element-mediated signaling pathways in Arabidopsis[J]. The Journal of Biological Chemistry,2008,283(10):6261-6271.
    Takahashi H, Kobayashi T, Sato-Nara K, Tomita K O, Ezura H. Detection of ethylene receptor protein Cm-ERS1 during fruit development in melon(Cucumis melo L.)[J]. Journal of Experimental Botany,2002,53(368):415-422.
    Tatsuki M, Endo A, Ohkawa H. Influence of time from harvest to 1-MCP treatment of apple fruit quality and expression of genes for ethylene biosynthesis enzymes and ethylene receptors[J]. Postharvest Biology and Technology,2007,43(1):28-35.
    Thara V K, Tang X Y, Gu Y Q, Martin G B, Zhou J M. Pseudomonas syringae pv tomato induces the expression of tomato EREBP-like genes Pti4 and Pti5 independent of ethylene, salicylate and jasmonate[J]. The Plant Journal,1999,20(4):475-483.
    The Arabidopsis Genome Initiative. Analysis of the genome sequence of the flowering plant Arabidopsis thaliana[J]. Nature,2000,408(6814):796-815.
    Tieman D M, Ciardi J A, Taylor M G, Klee H J. Members of the tomato LeEIL (EIN3-like) gene family are functionally redundant and regulate ethylene responses throughout plant development[J]. The Plant Journal,2001,26(1):47-58.
    Tieman D M, Klee H J. Differential expression of two novel members of the tomato ethylene-receptor family[J]. Plant Physiology,1999,120(1):165-172.
    Tieman D M, Taylor M G, Ciardi J A, Klee H J. The tomato ethylene receptors NR and LeETR4 are negative regulators of ethylene response and exhibit functional compensation within a multigene family[J]. Proceedings of the National Academy of Sciences of the United States of America,2000,97(10):5663-5668.
    Tournier B, Sanchez-Ballesta M, Jones B, Pesquet E, Regad F, Latche A, Pech J, Bouzayen M. New members of the tomato ERF family show specific exp ression pattern and diverse DNA-binding capacity to the GCC box element[J]. FEBS letters, 2003,550(1-3):149-154.
    Trainotti L, Bonghi C, Ziliotto F, Zanin D, Rasori A, Casadoro G, Ramina A, Tonutti P. The use of microarray μPEACH1.0 to investigate transcriptome changes during transition from pre-climacteric to climacteric phase in peach fruit[J]. Plant Science, 2006,170(3):606-613.
    Trainotti L, Pavanello A, Casadoro G. Different ethylene receptors show an increased expression during the ripening of strawberries:does such an increment imply a role for ethylene in the ripening of these non-climacteric fruits[J]? Journal of Experimental Botany,2005,56(418):2037-2046.
    Trujillo LE, Sotolongo M, Menendez C, Ochogavia ME, Coll Y, Hernandez I, Borras-Hidalgo O, Thomma BPHJ, Vera P, Hernandez L. SodERF3, a novel sugarcane ethylene responsive factor (ERF), enhances salt and drought tolerance when overexpressed in tobacco plants[J]. Plant and Cell Physiology,2008,49(4): 512-525.
    Wang A, Tan D M, Takahashi A, Li T Z, Harada T. MdERFs, two ethylene-response factors involved in apple fruit ripening[J]. Journal of Experimental Botany,2007a, 58(13):3743-3748
    Wang A, Yamakake J, Kudo H, Wakasa Y, Hatsuyama Y, Igarashi M, Kasai A, Li TZ, Harada T. Null mutation of the MdACS3 gene, coding for a ripening-specific 1-aminocyclopropane-l-carboxylate synthase, leads to long shelf life in apple fruit[J]. Plant Physiology,2009,151(1):391-399.
    Wang H, Huang ZJ, Chen Q, Zhang ZJ, Zhang HB, Wu YM, Huang DF, Huang RF. Ectopic overexpression of tomato JERF3 in tobacco activates downstream gene expression and enhances salt tolerance[J]. Plant Molecular Biology,2004,55(2):
    183-192.
    Wang J, Chen G P, Hu Z L, Chen X Q. Cloning and characterization of the EIN2-homology gene LeEIN2 from tomato[J]. DNA sequence,2007b,18:33-38.
    Wang K L C, Li H, Ecker J R. Ethylene biosynthesis and signaling networks[J]. The Plant Cell,2002, S131-135.
    Wang P, Zhang B, Li X, Xu C J, Yin X R, Shan L L, Ferguson I B, Chen K S. Ethylene signal transduction elements involved in chilling injury in non-climacteric loquat fruit[J]. Journal of Experimental Botany,2010,61(1):179-190.
    Ward J M, Smith A M, Shah P K, Galanti S E, Yi H, Demianski A J, Graaff E V D, Keller B, Neff M M. A new role for the Arabidopsis AP2 transcription factor, LEAFY PETIOLE, in gibberellin-induced germination is revealed by misexpression of a homologous gene, SOB2/DRN-LIKE[J]. The Plant Cell,2006,18(1):29-39.
    Wiersma P A, Zhang H, Lu C, Quail A, Toivonen P M A. Survey of the expression of genes for ethylene synthesis and perception during maturation and ripening of 'Sunrise'and'Golden Delicious'apple fruit[J]. Postharvest Biology and Technology, 2007,44(3):204-211.
    Wilkinson J Q, LanahanM B, Yen H C, Giovannoni J J, Klee H J. An ethylene-inducible component of signal transduction encoded by never-ripe[J]. Science,1995, 270(5243):1807-1809.
    Wills R B H, Warton M A, Mussa D M D N, Chew L P. Ripening of climacteric fruits initiated at low ethylene levels[J]. Australian Journal of Experimental Agriculture, 2001,41(1):89-92.
    Xu Z C, Ikoma Y, Yano M, Ogawa K, Hyodo H. Varietal differences in the potential to produce ethylene and gene expression of ACC synthase and ACC oxidase between 'Kui mi'and'Hong xin'of Chinese kiwifruit[J]. Journal of Japanese Society for Horticultural Science,1998,67(2):204-209.
    Yanagisawa S, Yoo S-D, Sheen J. Differential regulation of EIN3 stability by glucose and ethylene signalling in plants[J]. Nature,2003,425(6957):521-525.
    Yang S F, Hoffman N E. Ethylene biosynthesis and its regulation in higher plants[J]. Annual Review of Plant Physiology,1984,35:155-189.
    Yang S L, Xu C J, Zhang B, Li X, Chen K S. Involvement of both subgroups A and B of
    expansin genes in kiwifruit ripening[J]. Hortscience,2007,42(1):315-319.
    Yokotani N, Tamura S, Nakano R, Inaba A, Kubo Y. Characterization of a novel tomato EIN321ike gene (LeEIL4)[J]. Journal of Experimental Botany,2003,54(393): 2775-2776.
    Yoo S D, Cho Y H, Tena G, Xiong Y, Sheen J. Dual control of nuclear EIN3 by bifurcate MAPK cascades in C2H4 signalling[J]. Nature,2008,451(7180):789-796.
    Yu X M, Griffith M, Wiseman S B. Ethylene induces antifreeze activity in winter ray leaves[J]. Plant Physiology,2001,126(3):1232-1240.
    Zhang B, Chen K S, Bowen J, Allan A, Espley R, Karunairetnam S, Ferguson I. Differential expression within the LOX gene family in ripening kiwifruit[J]. Journal of Experimental Botany,2006,57(14):3825-3836.
    Zhang J S, Xie C, Shen Y G, Chen S Y. A two-component gene (NTHK1) encoding a putative ethylene-receptor homolog is both developmentally and stress regulated in tobacco[J]. Theoretical and Applied Genetics,2001,102(6-7):815-824.
    Zhang Z J, Zhang H W, Quan R D, Wang X C, Huang R F. Transcriptional regulation of ethylene response factor LeERF2 in the expression of ethylene biosynthesis genes controls ethylene production in tomato and tobacco[J]. Plant Physiology,2009, 150(1):365-377.
    Zhao X C, Schaller G E. Effect of salt and osmotic stress upon expression of the ethylene receptor ETR1 in Arabidopsis thaliana[J]. FEBS letters,2004,562(1-3):189-192.
    Zhou J, Tang X, Martin G B. The Pto kinase conferring resistance to tomato bacterial speck disease interacts with proteins that bind a cis element of pathogenesis-related genes[J]. EMBO Journal,1997,16(11):3207-3218.
    Zhou X, Liu Q, Xie F, Wen C K. RTE1 is a Golgi-associated and ETR1-dependent negative regulator of ethylene responses[J]. Plant Physiology,2007,145(1):75-86.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700