用户名: 密码: 验证码:
琯溪蜜柚细菌人工染色体(Bacterial Artificial Chromosome)文库的构建及其应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
琯溪蜜柚(Citrus grandis cv. Guanximiyou)是我国柚类优良品种之一,原产于福建省平和县,已有四百多年的栽培历史,具有很高的经济价值。在生产上,其果实的裂瓣与汁胞粒化造成了食用品质下降,直接影响果农的经济收入。目前,对具有重要经济价值的物种的基因组学研究已成为热点,这些研究成果为解决生产上的问题提供了理论依据,但对琯溪蜜柚基因组的研究尚属空白。因此,本研究首次构建了琯溪蜜柚BAC文库,并将文库应用于汁胞粒化相关基因的筛选和BAC末端测序;用生物信息学方法分析相关的基因组序列,初步研究了琯溪蜜柚基因组结构;为进一步开展琯溪蜜柚基因组学研究,揭示柑果汁胞粒化分子机制奠定了良好基础。取得的主要研究结果如下:
     1、本研究以琯溪蜜柚叶片为材料,比较了两种提取方法对高分子量核DNA(HMW-DNA)制备效果的影响。结果表明,改良Zhang法与Peterson法相比,前者更适合于琯溪蜜柚HMW-DNA的提取。改良Zhang法用温和的物理方法破碎细胞壁,在一定的渗透压下保证细胞核的完整性,运用miracloth和低速离心去除大部分的多糖和细胞壁碎片,经显微观察,所提取的细胞核完整、纯净、质量高;将这些细胞核用低熔点琼脂糖包埋,以琼脂糖小块的方式保存细胞核,以保持核的稳定;琼脂糖小块的最适消化时间为48 h,脉冲场凝胶电泳分析结果表明所获得的HMW-DNA大于1 Mb,这些核DNA能够被限制性内切酶消化,适合于琯溪蜜柚BAC基因组文库的构建。
     2、本研究改进了适合琯溪蜜柚BAC文库构建的方法,用一次电泳回收法获得酶切后的DNA片段,构建的琯溪蜜柚BAC文库含有26112个单克隆,空载率小于1%,叶绿体DNA的污染率不超过1%,插入片段平均大小约120 kb,覆盖8倍的琯溪蜜柚基因组。
     3、利用PCR法和Southern杂交法相结合,以琯溪蜜柚汁胞粒化相关EST M4为探针,从琯溪蜜柚BAC文库中筛选得到一个阳性BAC克隆。说明本研究所构建的BAC文库覆盖琯溪蜜柚基因组,从中能筛选得到目的片段。利用与琯溪蜜柚汁胞粒化相关的EST序列M4设计PCR引物筛选文库,得到一段大小为1088 bp的DNA序列,该序列含有两段大小分别为122 bp和172 bp的内含子。在M4序列的两端设计一对反向PCR引物,利用反向PCR技术,以自连接产物为模板,分别扩增得到约4000 bp和400 bp的DNA片段。将目的片段回收、克隆、测序,序列用Phred软件拼接,得到3984 bp的DNA序列,其中位于M4上游的序列3107 bp,位于下游的序列877 bp。分别用GENSCAN和FGENESH软件预测这部分DNA序列中可能包含的基因,两个软件预测的编码区基本一致。两个软件的预测编码区与NCBI上的核酸数据库进行BLAST,BLAST结果表明,该序列中部分序列与蓖麻(Ricinus communis)、杨树(Populus trichocarpa)多铜氧化酶(multicopper oxidase)cDNA序列分别有85%和71%的同源性;与毛叶番荔枝(Annona cherimola)和拟南芥(Arabidopsis thaliana)果胶酯酶(pectinesterase)cDNA序列分别有76%和73%的同源性。推测多铜氧化酶和果胶酯酶可能与琯溪蜜柚汁胞粒化相关。
     4、本研究从琯溪蜜柚BAC文库中共随机挑选了120个克隆,获得105664 bp BAC末端序列。根据末端序列信息,通过生物信息学分析,对琯溪蜜柚基因组进行初步的研究。结果表明,琯溪蜜柚基因组中SSRs占总基因组的0.2%,17.8%的琯溪蜜柚BAC末端序列含有转座元件,基因组中的转座元件以反转录转座子为主。琯溪蜜柚基因组GC含量约为39.17%,估算出琯溪蜜柚的编码区大约为64.02 Mb,预测其基因数大约为32001个,编码区的GC含量约为46.7%。
Guanximiyou [Citrus grandis (L.) Osbeck cv.Guanximiyou], originated from Pinghe county Fujian Province, is one of the most famous pummelos with high economic value. It has been cultivated for 4 hundred years. Juice sac granulation effected edible quality severely and income of farmers. Genomics research mainly focuses on plants with significantly economical value, and the study results offer the theoretical basis to solve the issues on production. Few researches on Guanximiyou genomics have been reported.
     A BAC library was constructed for the first time in this study. The library was screened by probe EST M4. Some BAC end sequences were sequenced, and bioinformatics were used to analyze the BESs. The study revealed first insights into the organization of Guanximiyou genome.
     The main results were indicated as follows:
     1. High molecular weight nuclear DNA(HMW-DNA) from leaves of Guanximiyou was prepared by two methods (improved Zhang’s and Peterson’s method) and the extracting effects of the two preparing methods were compared, the results showed that improved Zhang’s was more suitable for preparation of HMW-DNA in Guanximiyou. In the improved Zhang’s method, the cell walls were broken down by gentle physical homogenization to keep integrity of nuclei under suitable osmolarity. Debris of cell walls and most of polysaccharides were removed by filtering with miracloth and centrifugation under slow speed, the isolated nuclei were proved to be intact, pure, and high-quality by observation under microscope and were embedded with low-melting-point agarose to preserve the isolated nuclei in plugs for keeping stability of nuclei. The optimum digestion time of plugs was 48 hours, the pulse field gel electrophoresis (PFGE) results showed that the isolated HMW-DNAs were more than 1 Mb in size and were digested completely or partially by restriction enzymes, therefore, Zhang’s method was suitable for construction of BAC library of Guanximiyou.
     2. Method for constructing Guanximiyou BAC library was improved. The result showed that DNA fragments obtained by one step electrophoresis protocol were suitable for library construction. The library consists of 26112 clones. A random sample of 100 clones indicated an average insert size of 120 kb, corresponding to 8 genome equivalents. Less than 1% of the clones do not contain inserts. Screening of BAC library with chloroplast DNA probes indicated that less than 1% of the clones contained organelle-derived DNA.
     3. The BAC library was screened with a pair of primers deprived from EST related to granulation by PCR and Southern blot. A positive clone was obtained, proving that the library had deep coverage of Guanximiyou genome. A 1088 bp DNA fragment was amplified by PCR with the primer from EST M4. The sequence contained two introns with the length 122 bp and 172 bp respectively. An about 4000 bp and an about 400 bp DNA fragments were amplified by I-PCR with a pair of I-PCR primers from EST M4 using self-ligations as DNA template. The 4000 bp DNA fragment was cloned and sequenced, and the exactly length was 3984 bp. The potential coding regions were predicted by GENSCAN and FGENESH. The results showed that the coding regions predicted by these two softwares were almost consistent. The coding sequence has 85% and 71% identities with multicopper oxidase cDNA sequences of Ricinus communis and Populus trichocarpa respectively, furthermore, it has 76% and 73% identities with pectinesterase cDNA sequences of Annona cherimola and Arabidopsis thaliana respectively. According to the characterization of BAC clones and the results of screening, the library is suitable for functional genome research on Guanximiyou .
     4. One hundred and twenty BAC clones were picked up from the library, and a total length of 105664bp end sequence was obtained. These sequences were analyzed by bioinformatics. The results showed that approximately 0.2% of Guanximiyou genome contained simple sequence repeats (SSRs), 17.8% of BESs contained transposable elements and most of these elements were retrotransposons. The average GC content of the Guanximiyou genome was 39.17%, and the content of the predicted coding regions of BESs was 46.7%. It was estimated that Guanximiyou genome contained 64.02 Mb coding regions, and gene number was 320001.
引文
1. Hershfield V, Boyer H W, Yanofsky C, et al . Plasmid ColEI as a molecular vehicle for cloning and amplification of DNA[J]. Proc. Natl. Acad. Sci. USA, 1974, 71: 3455-3459.
    2. Murray N E, Murray K. Manipulation of restriction targets in phageλto form receptor chromosomes for DNA fragments[J]. Nature, 1974, 51: 476-481.
    3. Collins J, Hihn B. Cosmids: a type of plasmid gene-cloning vector that is packageable in vitro in bacteriophage-I heads[J]. Proc. Natl. Acad. Sci. USA, 1978, 75: 4242-4246.
    4. Sternberg N. Bacteriophage P1 cloning system for the isolation, amplification, and recovery of DNA fragments as large as 100 kilobase pairs[J]. Proc. Natl. Acad Sci. USA, 1990, 87: 103-107
    5. Murry A W, Szostak J W. Construction of artificial chromosomes in yeast[J]. Nature, 1983, 305: 189-193.
    6. Shizuya H, Birren H B, Kim U J, et al. Cloning and stable maintenance of 300 kilobase-pair fragments of human DNA in Escherichia coli using an F-factor-based vector[J]. Pro. Natl. Acad. Sci. USA, 1992, 89: 8794-8797.
    7. Farr C, Fantes J, Goodfellow P, et al.. Functional reintroduction of human telomeres into mammalian cells[J]. Pro. Natl. Acad. Sci. USA, 1992, 88: 7006-7010.
    8. Joannou P A, Amemiya C T, Grames J, et al.. A new bacteriophage P1-derived vector for the propagation of large human DNA fragments[J]. Nature Genet, 1994, 6: 84-90.
    9. Jiang J M, Gill B S, Wang G L, et al.. Metaphase and interphase fluorescence in situ hybridization mapping of the rice genome with bacterial artificial chromosomes[J]. Pro. Natl. Acad.Sci. USA, 1995, 92:4487-4491.
    10. Harrington J J, Van B G, Mays R W, et al.. Formation of de novo centromeres and construction of first-generation human artificial microchromosomes[J]. Nature Genet, 1997, 15: 345-355.
    11. Liu Y C, Shirano Y, Fukaki H, et al.. Complementation of plant mutants with large genomic DNA fragments by a transformation-competent artificial chromosome vecrot accelerates positional cloning[J]. Pro. Natl. Acad. Sci. USA, 1999, 96: 6535-6540.
    12. Burke D T, Carle G F, Olson M V. Cloning of large segments of exogenous DNA into yeast by means of artificial chromosome vectors[J]. Science, 1987, 236: 806-811.
    13. Bonnema, G., Hontelez, J., Verkerk, R., et al.. An improved method of partially digesting plant megabase DNA suitable for YAC cloning– application to the construction of a 5.5 genome equivalent[J] YAC library of tomato. Plant J. 1996, 9:125-133.
    14. Creusot F, Fouilloux E, Dron M, et al.. The CIC library: A large insert YAC library for genome mapping in Arabidopsis thaliana[J]. Plant J., 1995, 8: 763-770.
    15. Zhang H B, Choi S, Woo S S, et al.. Construction and characterization of two rice bacterial artificial chromosome libraries from the parents of a permanent recombinant inbred mapping population[J]. Mol Breed, 1996, 2: 11–24.
    16. Luo M, Wang Y, Frisch D et al.. Melon bacterial artificial chromosome (BAC) library construction using improved methods and identification of clones linked to the locus conferring resistance to melon Fusarium wilt (Fom-2) [J]. Genome, 2001, 44: 154-162.
    17. Anderson C. 1993. Genome shortcut leads to problems[J]. Science, 259:1684-1687.
    18. Kim U J, Birren B, Slepak T et al.. Construction and characterization of a human bacterial artificial chromosome library[J]. Genomics, 1996, 34: 213-318.
    19.王庆华.玉米“77Ht2”细菌人工染色体文库的构建和ZmSIMK1基因的克隆[D]. 2004.泰安:山东农业大学.
    20. Wing R A, Rastog V K, Zhang H B, et al.. An improved method of plant megabase DNA isolation in agarose microbeads suitable for physical mapping and YAC cloning[J]. Technical Advance, 1993, 4: 893-898.
    21. Zhang H B, Zhao X P, Ding X L, et al.. Preparation of megabase-size DNA from plant nuclei[J]. The Plant Journal, 1995, 7: 175-184.
    22. Ingo H, Sandie W, Joanne R, et al.. Isolation of high molecular weight DNA suitable for BAC library construction from woody perennial soft-fruit species[J]. Bio Techniques, 2005, 38: 69-71.
    23. Osoegawa K, Woon P Y, Zhao B H, et al.. An improved approach for construction of Bacterial Artificial Chromosome libraries[J]. Genomics, 1998, 52: 1-8.
    24. Frengen E, Weichenhan D, Zhao B, et al.. A modular, positive selection bacterial artificial chromosome vector with multiple cloning sites[J]. Genomics, 1999, 58: 250-253.
    25. Hamilton C M, Fray A, Lewis C, et al.. Stable transfer of intact high molecular weigh DNA into plant chromosomes[J]. Pro. Natl. Acad. Sci. USA, 1996, 93: 9975-9979.
    26. Boulos C, Harry B, Michel C. Efficient cloning of plant genomes into bacterial artificial chromosome (BAC) libraries with larger and more uniform insert size[J]. Plant biotechnology Journal, 2004, 2: 181-188.
    27. Clarke L, Carbon J. A colony bank containing synthetic Col El hybrid plasmids representative of the entire E.coli genome[J]. Cell, 1976, 9: 91-100.
    28. Suzuki K. Construction of a porcine BAC library and its 4-Dimensional PCR screening system. Report of International Workshop on Animal Genome Analysis[J]. 1997, 51-58.
    29. Collins F.S., Patrinos A., Jordan E., et al.. New goals for the U.S. Human Genome Project: 1998-2003[J]. Science, 1998, 282 : 682-689.
    30. Dumham I., Shimizu N., Roe B.A., et al.. The DNA sequence of human chromosome 22[J]. Nature, 1999, 402: 489-495.
    31. Lin X., Kaul S., Rounsley S., et al.. Sequence and analysis of chromosome 2 of the plant Arabidopsis thaliana[J]. Nature, 1999, 402: 761–768.
    32. Adams M D, Celniker S E, Holt R A, et al.. The genome sequence of Drosophila melanogaster[J]. Science, 2000, 287: 2185–2195.
    33. Elizabeth P. Plant science: stealth genome rocks rice researchers[J]. Science, 2000, 288:239-241.
    34. Baig M N R, Yu A, Guo W W, et al.. Construction, characterization of two Citrus BAC libraries and identification of clones containing phytoene synthase gene[J]. Genome, 2009, 52: 484-489.
    35. Kelley J M, Field C E, Craven M B, et al.. High throughput direct end sequencing of BAC clones[J]. Nuleic Acids Research, 1999, 7: 1539-1546.
    36. Lai C W, Yu Q, Hou S, et al.. Analysis of papaya BAC end sequences reveals first insights into the organization of a fruit tree genome[J]. Mol Genet Genomics, 2006, 276: 1-12.
    37. Mao L, Wood T, Yu Y, et al.. Rice transposable elements: a survey of 73,000 sequen-ce tagged connectors[J]. Genome Res, 2000, 10: 982-990.
    38. Zhao S, Shatsman S, Ayodeji B, et al.. Mouse BAC ends quality assessment and sequence analysis[J]. Genome Res, 2001, 11: 1736-1745.
    39. Hong C P, Lee S J, Park J Y, et al.. Construction of a BAC library of Korean ginseng and initial analysis of BAC-end sequences[J]. Mol Genet Genomics, 2004, 271: 709-716.
    40. Rice Chromosome 10 Sequencing Consortium. In-depth view of structures, activity and evolution of rice chromosome 10[J]. Science, 2003, 300: 1566-1569.
    41. Goff S A, Ricke D, Lan T, et al.. A draft sequence of the rice genome (Oryza sativa L. ssp. japonica) [J]. Science, 2002, 296: 92-100.
    42. Mahairas G G, Wallace J C, Smith K, et al.. Sequence-tagged connectors: a sequence approach to mapping and scanning the human genome[J]. Proc Natl Acad Sci USA, 1999, 96: 9739-9744.
    43. Tomkins J P, Mahalingam R, Smith H, et al.. A bacterial artificial chromosome library for soybean PI 437654 and identification of clones associated with cyst nematode resistance[J]. Plant Mol Biol, 1999, 41: 25-32.
    44. Larkin D M, Everts-van der Wind A, Rebeiz M, et al.. A cattle human comparative map built with cattle BAC-ends and human genome sequence[J]. Genome Res, 2003, 13: 1966-1972.
    45. Shultz J L, Kazi S, Bashir R, et al.. The development of BAC-end sequence-based microsatellite markers and placement in the physical and genetic maps of soybean[J]. Theor Appl Genet, 2007, 114: 1081-1090.
    46. Han Y, Korban S S. An overview of the apple genome through BAC end sequence analysis[J]. Plant Mol Biol, 2008, 67: 581-588.
    47. Cheung F, Town C D. A BAC end view of the Musa acuminata genome[J]. BMC Plant Biology, 2007, 7: 29.
    48. Chen C X, Gmitter JR. F G. Direct cloning and sequencing of bacterial artificial chromosome (BAC) insert ends based on double digestion[J]. Plant Molecular Biology Reporter, 1999, 17: 231-238.
    49. Ling H Q, Koch G, Baumlein H, et al.. Map-based cloning of chloronerva, a gene involved in iron uptake of higher plants encoding nicotianamine synthase[J]. Proc. Natl. Acad. Sci. USA, 1998, 96: 7098-7103.
    50. Yu J, Hu S, Wang J, et al.. A draft sequence assembly of the rice genome ( Oryza Sativa L.ssp. indica) [J]. Science, 2002, 296: 79-92.
    51. Feng Q, Zhang Y, Hao P, et al.. Sequence and analysis of rice chromosome 4[J]. Nature, 2002, 420: 316-320.
    52. Thief T, Michalek W, Varshney R K, et al.. Exploiting EST databases for the development and characterization of gene-derived SSR-markers in barley (Hordeum vulgare L.) [J]. Theor Appl Genet, 2003, 106: 411-422.
    53. Tóth G, Gáspári Z, Jurka J. Microastellites in different eukaryotic genomes: survey and analysis[J]. Genome Res, 2000, 10: 967-981.
    54. Katti M V, Ranjekar P K, Gupta V S. Differential distribution of simple sequence repeats in eukaryotic genome sequences[J]. Mol Biol Evol, 2000, 18: 1161-1167.
    55. Coburn J, Temnykh S, Paul E, et al.. Design and application of microsatellite marker panels for semi-automated genotyping of rice (Oryza sativa L.) [J]. Crop Sci, 2002, 42: 2092-2099.
    56. McCouch S R, Teytelman L, Xu Y, et al.. Development and mapping of 2240 new SSR markers for rice (Oryza sativa L.) [J]. DNA Res, 2002, 9: 199-207.
    57. Sharopova N, McMullen M D, Schultz L, et al.. Development and mapping of SSR markers for maize[J]. Plant Mol Biol, 2002, 48: 463-481.
    58. La Rota M, Kantety R V, Yu J K, et al.. Nonrandom distribution and frequencies of genomic and EST-derived microsatellite markers in rice wheat and barley[J]. BMC Genomics, 2005, 6: 23-35.
    59. Gao L F, Jing R L, Huo N X, et al.. One hundred and one new microsatellite loci derived from ESTs (EST-SSRs) in bread wheat[J]. Theor Appl Genet, 2004, 108: 1392-1400.
    60. Eustice M, Yu Q, Lai C W, et al.. Development and application of microsatellite markers for genomic analysis of papaya[J]. Tree Genet Genomes, 2007, 4: 333-341.
    61. Barkley N A, Roose M L, Krueger R R, et al.. Assessing genetic diversity and population structure in a citrus germplasm collection utilizing simple sequence repeat markers (SSRs) [J]. Theor Appl Genet, 2006, 112: 1519-1531.
    62. Frelichowski J E, Palmer M B, Main D, et al.. Cotton genome mapping with new microsatellites from Acala‘Maxxa’BACends[J]. Mol Gen Genomics, 2006, 275: 479-491.
    63. Casacuberta J M, Santiago N. Plant LTR-retrotransposons and MITEs: control of transposition and impact on the evolution of plant genes and genomes[J]. Gene, 2003, 311: 1-11.
    64. Vitte C, Bennetzen J L. Eukaryotic transposable elements and genome evolution special feature: analysis of retrotransposon structural diversity uncovers properties and propensities in angiosperm genome evolution[J]. Proc Natl Acad Sci USA, 2006, 103: 17638-17643.
    65. Akhunov E D, Akhunova A R, Dvorak J. Mechanisms and rates of birth and death of dispersed duplicated genes during the evolution of a multigene family in diploid and tetraploid wheats[J]. Mol Biol Evol, 2007, 24: 539-550.
    66. Wicker T, Keller B. Genome-wide comparative analysis of copia retrotransposons in Triticeae,rice, and Arabidopsis reveals conserved ancient evolutionary lineages and distinct dynamics of individual copia families[J]. Genome Res, 2007, 17: 1072-1081.
    67. McClintock B. Chromosome organization and genic expression[J]. Cold Spring Harb Symp Quant Biol, 1951, 16: 13-47.
    68. Kapitonov V V, Jurka J A. A universal classification of eukaryotic transposable elements implemented in Repbase[J]. Nat Rev Genet, 2008, 9: 411-412.
    69. Huo N, Lazo G R, Vogel J P, et al.. The nuclear genome of Brachypodium distachyou: analysis of BAC end sequences[J]. Funct Integr Genomics, 2008, 8: 135-147.
    70. IRGSP. The map-based sequence of the rice genome[J]. Nature, 2005, 436: 793-800.
    71. Bonas U, Sommer H, Saedler H. The 17 kb Taml element of Antirrhinum majus induces a 3 bp duplication upon integration into chalcon synthase gene[J]. EMBO J, 1984, 3: 1015-1019.
    72. Coen E S, Carpenter R, Martin C. Transposable elements generate novel spatial patterns of gene expression in Antirrhinum majus[J]. Cell, 1986, 47:285-296.
    73. Calvi B R, Hong T J, Findley S D, et al.. Evidence for a common evolutionary origin of inverted repeat transposons in Drosophila and plants: hobo, Activator, and Tam3[J]. Cell, 1991, 66: 465-471.
    74. Wessler S R, Bureau T E, White S E. LTR-retrotransposons and MITE: important players in the evolution of plant genomes[J]. Curr Opin Genet Dev, 1995, 5: 814-821.
    75. Asíns M, Monforte A, Mestre P, et al.. Citrus and Prunus copia-like retrotransposons[J]. Theor Appl Genet, 1999, 99: 503-510.
    76. BretóM O, Ruiz C, Pina J A, et al.. The diversification of citrus clementina Hort. ex Tan., a vegetatively propagated crop species[J]. Mol Phylogenet Evol, 2001, 21: 285-293.
    77. Bernet G P, Aíns M. Identification and genomic distribution of gypsy like retrotransposons in Citrus and Poncirus[J]. Theor. Appl. Genet, 2003, 108: 121-130.
    78. Vicient C M, Schulman A H. Copia-like retrotransposons in the rice genome: few and assorted[J]. Genome Lett, 2002, 1:35-47.
    79. Laura R C, Jose A M I. CIRE1, a novel transcriptionally active Ty1-copia retrotransposon from citrus sinensis[J]. Mol Genet Genomics, 2007, 277: 365-377.
    80. Pearce S R, Harrison G, Li D, et al.. The Ty1-copia group retrotransposons in Vicia species: copy number, sequence heterogeneity and chromosomal localization[J]. Mol Gen Genet, 1996, 250: 305-315.
    81. Consortium, I.H.G.S. Initial sequencing and analysis of the human genome[J]. Nature, 2001, 409: 860-921.
    82. Zhu H Q, Hu G Q, Yang Y F, et al.. MED: a new non-supervised gene prediction algorithm for bacterial and archaeal genomes[J]. BMC Bioinformatics, 2007, 97: 1-14.
    83. Lewin, B. Gene VIII. Pearson Education Inc., 2004.
    84. Guigo R, Knudsen S., Drake N, et al.. Prediction of gene structure[J]. J.Mol.Biol, 1992, 226: 141-157.
    85. Rogic S, Alan K, Francis B F, et al.. Evaluation of gene-finding programs on mammalian sequences[J]. Genome research, 2001, 11: 817-832.
    86. Forment J, Gadea J, Huerta L, et al.. Development of a citrus genome-wide EST collection and cDNA microarray as resources for genomic studies[J]. Plant Molecular Biology, 2005, 57: 375-391.
    87. The Arabidopsis Genome Initiative. Analysis of the genome sequence of the flowering plant Arabidopsis thaliana[J]. Nature, 2000, 408: 796-815.
    88. Schnable P S, Ware D, Fulton R S, et al.. The B73 Maize Genome: Complexity, Diversity, and Dynamics[J]. Science, 2009, 326: 1112-1115.
    89. Ming R, Hou S B, Feng Y, et al.. The draft genome of the transgenic tropical fruit tree papaya (Carica papaya Linnaeus) [J]. Nature, 2008, 452, 991-996.
    90. Jailon O, Aura J M, Noel B, et al.. The grapevine genome sequence suggests ancestral hexaploidization in major angiosperm phyla[J]. Nature, 2007, 449, 463-467.
    91. Baig M N R, Yu A, Guo W W, et al.. Construction, characterization of two Citrus BAC libraries and identification of clones containing Phytoene synthase gene[J]. Genome, 2009, 52: 484-489.
    92. Arumuganathan K, Earle E D. Nuclear DNA content of some important plant species[J]. Plant Mol Biol Rep, 1991, 9: 208-218.
    93. Gmitter F G, Huang S, Crosby K M, et al. Progress toward isolating the CTV-immunity gene[M]. VIII Proc. Int. Soc. Citriculture, Sun City, South Africa. Printed by Dynamic Ad, Nelspruit. 1996, pp 845-848.
    94. Deng Z, Tao Q, Chang Y L, et al.. Construction of a bacterial artificial chromosome (BAC) library for citrus and identification of BAC contigs containing resistance gene candidates[J]. Theoretical and Applied Genetics, 2001, 102: 1177-1184.
    95. Chen C X, Gmitter Jr F G. Direct cloning and sequencing of bacterial artificial chromosome (BAC) insert ends based on double digestion[J]. Plant Molecular Biology Reporter, 1999, 17: 231-238.
    96. Yang Z N, Ye X R, Choi S, et al.. Construction of a 1.2-Mb contig including the citrus tristeza virus resistance gene locus using a bacterial artificial chromosome library of Poncirus trifoliate (L.) Raf[J]. Genome, 2001, 44: 382-393.
    97. Guan Y, Chen Q, Pan J, et al.. Construction of a BAC library from cucumber (Cucumis sativus L.) and identification of linkage group specific clones[J]. Progress in Natural Science, 2008, 18: 143-147.
    99. Peterson D G, Tomkins J P, Frisch D A, et al.. Construction of plant bacterial artificial chromosome (BAC) libraries: An illustrated guide[J]. Journal of Agricultural Genomics, 2000, 5: www.nugr.org/research/jag.
    100. Frijters A C J, Zhang Z, Damme M van, et al.. Construction of a bacterial artificial chromosome library containing large EcoRI and HindIII genomic fragments of lettuce[J]. Theor.Appl. Genet, 1997, 94: 390-399.
    101. Sambrook J, Russell D. Molecular Cloning: A Laboratory Manual, 3rd Ed.[M]. Cold Spring Harbor Laboratory Press, Plainview, NY, 2001, pp: 404-406, 345-350, 492-499.
    102.潘腾飞,陈桂信,潘东明.琯溪蜜柚高分子量DNA提取方法的建立[J].园艺学报(已接收).
    103. Jang S H, Zhou F, Xia L X, et al.. Construction of a BAC library and identification of Dmrt1 gene of the rice field eel, Monopterus albus[J]. Biochemical and Biophysical Research Communications, 2006, 348: 775-780.
    104. Eric L, Magalie C, Marie M, et al.. Construction and characterization of a BAC library from Arabidopsis halleri: Evaluation of physical mapping based on conserved synteny with Arabidopsis thaliana[J]. Plant Science, 2008, 174: 634-640.
    105. Vinatzer B A, Zhang H B, Sansavini S. Construction and characterization of a bacterial artificial chromosome library of apple[J]. Theoretical and Applied Genetics, 1998, 97: 1183-1190.
    106. Larson S R, Scheuring C, Kaur P, et al.. BAC library development for allotetraploid leymus (Triticeae) wildryes enable comparative genetic analysis of lax-barrenstalk 1 orthogene sequences and growth habit QTLs[J]. Plant Science, 2009, 177: 427-438.
    107. She K. So you want to work with giants: the BAC vector[J]. Bioteach J., 2003, 1: 69-74
    108. Allouis S, Qi X, Lindup S., et al. Construction of a BAC library of pearl millet (Pennisetum glaucum) [J]. Thero Appl Genet, 2001, 102: 1200-1205.
    109. Osoegawa K, Woon P Y, Zhao B, et al. An improved approach for construction of bacterial artificial chromosome libraries[J]. Genomics, 1998, 52: 1-8.
    110. Weaver J C. Electroporation: A general phenomenon for manipulating cells and tissues[J]. J Cell Biochem, 1993, 51: 426-435.
    111.周高峰.玉米自交系1145 BAC文库的构建及抗甘蔗花叶病毒基因Scmv1区域BAC克隆的筛选[D].北京:中国农业大学,2006.
    112. Wang Q, Zhang K C, Qu X P, et al. Construction and characterization of a bacterial artificial chromosome library of peach[J]. Theor Appl Genet, 2001, 103: 1174-1179.
    113. Mollet O, Zhang H B, Lagudah E S. Construction and characterization of a large DNA insert library from the D genome of wheat[J]. Theor Appl Genet, 1999, 99: 305-313.
    114. Ma Z Y, Song W N, Sharp P J, et al. Non-gridded library: a new approach for BAC (bacterial artificial chromosome) exploitation in hexaploid wheat (Triticum aestivum) [J]. Nucleic Acids Res, 2000, 28: e106.
    115. Chen F G, Zhang X Y, Xia G M, et al. Construction and characterization of a bacterial artificial chromosome library for Triticum boeoticum[J]. Acta Botanica sinica, 2002, 44: 451-456.
    116.杨继良.玉米自交系77Ht2细菌人工染色体(BAC)文库的构建与筛选[D].北京:中国科学院,2003.
    117.刘越.矮败——中国春小麦品系BAC文库的构建与筛选[D].北京:中国农业科学院,2003.
    118. Song J, Dong F, Lilly J W, et al.. Instability of bacterial artificial chromosome (BAC) clones containing tandemly repeated DNA sequences[J]. Genome, 2001, 44: 463-469.
    119. Milner J L, Stohl E A, Handelsman J. Zwittermicin a resistance gene from bacillus cereus[J]. Journal of Bacteriology, 1996, 178: 4266-4272.
    120. Noir S, Patheyron S, Combes M C, et al.. Construction and characterization of a BAC library for genome analysis of the allotetraploid coffee species (Coffea Arabica L.)[J]. Theor Appl Genet, 2004, 109: 225-230.
    121. Scott N S, Timmis J N. Homologies between nuclear and plastid DNA in spinach[J]. Theor Appl Genet, 1984, 67: 279-288.
    122. Choi S, Wing R A. The construction of bacterial artificial chromosome (BAC) libraries[M]. In: Gelvin S, Schilperoort (eds) Plant molecular biology manuals, 2nd edn, suppl IV. 2000, Kluwer, Dordrecht.
    123.佘文琴.琯溪蜜柚汁胞粒化过程中生理变化与基因差异表达分析[D]. 2009.福州:福建农林大学.
    124. Jones D H, Winistorfer S C. A method for the amplification of unknown flanking DNA: Targeted inverted repeat amplification[J]. BioTechniques, 1993, 15: 894-904.
    125. Yasukochi Y. PCR-based screening for bacterial artificial chromosome libraries[M]. Methods in Molecular Biology, 2002, 192: PCR cloning protocols, 2nd edition, Humana Press Inc., Totowa, NJ.
    126. Asakawa S, Abe I, Kudoh Y. Human BAC library: construction and rapid screening[J]. Gene, 1997, 69-79.
    127. Chumakov I, Rigault P, Guillou S, et al. Continuum of overlapping clones spanning the entire human chromosome 21q[J]. Nature, 1992, 359: 380-387.
    128. He C F, Takao K. PCR-based screening BAC library and direct end sequencing of BAC clones[J]. Acta Genetica Sinica, 2004, 31: 1262-1267.
    129. Ochman H, Gerber A S, Hartl, D L. Genetic applications of an inverse polymerase chain reaction[J]. Genetics. 1988; 120: 621-623.
    130.洪宇植,肖亚中,房伟,等.长距离反向PCR技术高效扩增已知DNA片段的侧翼序列[J].激光生物学报, 2006, 15: 46-49.
    131. Putterill J, Robson F, Lee K, et al.. Chromosome walking with YAC clones in Arabidopsis: isolation of 1700 kb of contiguous DNA on chromosome 5, including a 300 kb region containing the flowering-time gene CO[J]. Molecular and General Genetics, 1993, 239: 1-2.
    132. Gelfand M S, Mironov A A, Pevzner P A. Gene recognition via spliced sequence alignment[J]. Proc Natl Acad Sci USA, 1996, 93: 9061-9066.
    133. Kulp D, Haussler D, Reese M G, et al. A generalized Hidden Markov Model for the recognition of human genes in DNA[M]. AAAI/MIT Press, St. Louis, MO; 1996.
    134. Burge C, Karlin S. Finding the genes in genomic DNA[J]. Current Opinion in Structural Biology, 1998, 8: 346-354.
    135. Ouyang S, Zhu W, Hamilton J, Lin H, Campbell M, Childs K, Thibaud-Nissen F, Malek RL, Lee Y, Zheng L, et al.: The TIGR Rice Genome Annotation Resource: improvements and new features[J]. nucleic Acids Res 2007: D883-887.
    136. Francoise T N, Ouyang S, Buell C R. Identification and characterization of pseudogenes in the rice gene complement[J]. BMC genomics, 2009, 10: 317-329.
    137. Amare A, Sweedler J V. Neuropeptide precursors in Tribolium castaneum[J]. Peptides, 2007, 28: 1281-1291.
    138. Ragupathy R, Cloutier S. Genome organisation and retrotransposon driven molecular evolution of the endosperm Hardness (Ha) locus in Triticum aestivum cv Glenlea[J]. Molecular Genetics and Genomics, 2008, 280: 467-481.
    139. Pontroli A C, Rogers R L, Zhang Q, et al. Gene content and distribution in the nuclear genome of Fragaria vesca[J]. The Plant Genome, 2009, 2: 93-101
    140.宗汝静,邵蒲芬,胡西琴,等.柑桔枯水果实汁胞和果皮成分消长变化的初步探讨[J].中国农业科学, 1979, 12: 60-64.
    141.陈昆松,张上隆,李方.胡柚果实采后枯水的研究[J].园艺学报, 1995, 22: 35-39.
    142. Harminer K, Chanana Y R, Kapur S P. Effect of growth regulation on granulation and fruit quality of sweet orange cv[J]. Mosambi. Indian Journal of Horticulture, 1991, 48: 224-227.
    143.潘东明,陈桂信,郑国华,等.植物生长调节剂对琯溪蜜柚汁胞粒化的影响[J].福建农业大学学报, 1998, 27: 155-159.
    144.潘东明,郑国华,陈桂信,等.琯溪蜜柚汁胞粒化原因分析[J].果树科学, 1999, 16: 202-209.
    145.钟凤林.琯溪蜜柚汁胞发育过程的差异蛋白质组学研究[D]. 2009.福州:福建农林大学.
    146. Hoegger P J, Kilaru S, James T Y, et al.. Phylogenetic comparison and classification of laccase and related multicopper oxidase protein sequences[J]. FEBS Journal, 2006, 273: 2308-2326.
    147. Smirnoff N. The function and metabolism of ascorbic acid in plants[J]. Annals of Botany, 1996, 78: 661-669.
    148. Bao W, O’Malley D M, Whetten R, et al.. A laccase associated with lignification in loblolly pine xylem[J]. Science, 1993, 260: 672-674.
    149. Phan T D, Bo Wen, West G, et al.. Silencing of the major salt-dependent isoform of pectinesterase in tomato alters fruit softening[J]. Plant Physiology, 2007, 144: 1960-1967.
    150. Goodman H M, Ecker J R, Dean C. The genome of Arabidopsis thaliana[J]. Proc. Natl. Acad. Sci. USA, 1995, 92: 10831-10835.
    151. Venter J C, Smith H O, Hood L.A new strategy for genome sequencing[J]. Nature, 1996, 381: 364-366.
    152. Adams M.D., Celniker S.E., Holt R.A., Evans C.A., et al. The genome sequence of Drosophila melanogaster[J]. Science, 2000, 287, 2185–2195.
    153. Hong C P, Lee S J, Park J Y, et al.. Conctruction of a BAC library of Korean ginseng and initial analysis of BAC-end sequences[J]. Mol Genet Genomics, 2004, 271: 709-716.
    154. David P, Sévignac M, Thareau V, et al. BAC end sequences corresponding to the B4 resistance gene cluster in common bean: a resource for markers and synteny analyses[J]. Mol Genet Genomics, 2008, 280: 521-533.
    155. Lee H R, Bae I K, Park S W, et al. Construction of an Integrated Pepper Map Using RFLP, SSR, CAPS, AFLP, WRKY, rRAMP, and BAC End Sequences[J]. Mol Cells, 2009, 27: 21-37.
    156. Cavagnaro P F, Chung S M, Szklarczyk M, et al. Characterization of a deep-coverage carrot (Daucus carota L.) BAC library and initial analysis of BAC-end sequences[J]. Mol Genet Genomics, 2009, 281: 273-288.
    157. Ouyang S, Buell C R. The TIGR Plant Repeat Database: a collective resource for the identification of repetitive sequences in plants[J]. Nucleic Acids Res, 2004, 32: D360-3.
    158. The Arabidopsis Genome Initiative. Aanalysis of the genome sequence of the flowering plant Arabidopsis thaliana[J]. Nature, 2000, 408: 796-815.
    159. Ahmad R, Struss D, Southwick S M. Development and characterization of microsatellite markers in citrus[J]. J Am Soc Hortic Sci, 2003, 128: 584-590.
    160. Chen C X, Zhou P, Choi Y A, et al. Mining and characterizing microsatellites from citrus ESTs[J]. Theor Appl Genet, 2006, 112: 1248-1257.
    161. Jiang D, Zhong G Y, Hong Q B. Analysis of Microsatellites in Citrus Unigenes[J]. Acta Genetica Sinica, 2006, 33: 345-353.
    162. Kumar A, Bennetzen J L. Plant Retrotransposons[J]. Annu Rev Genet, 1999, 33: 479-532.
    163. Hawkins J S, Kim H, Nason J D, et al.. Differential lineage-specific amplification of transposable elements is responsible for genome size variation in Gossypium[J]. Genome Res, 2006, 16: 1252-1261.
    164. Vitte C, Bennetzen J L. Eukaryotic transposable elements and genome evolution special feature: analysis of retrotransposon structural diversity uncovers properties and propensities in angiosperm genome evolution[J]. Proc Natl Acad Sci USA, 2006, 103: 17638-17643.
    165. Huo N, Lazo, G R, Vogel J P. The nuclear genome of Brachypodium distachyon: analysis of BAC end sequences[J]. Funct Integr Genomics, 2008, 8: 135-147.
    166. SanMiguel P, Gaut B S, Tikhonov A, et al.. The paleontology of intergene retrotransposons of maize[J]. Nat Genet, 1998, 20: 43-45.
    167. Feschotte C, Jiang N, Wessler S R. Plant transposable elements: where genetics meets genomics[J]. Nature Rev, 2002, 3: 329-341.
    169. Voytas D F, Ausubel F M. A copia-like transposable element family in Arabidopsis thaliana[J]. Nature, 1988, 336: 242-244.
    170. Laten H M, Morris R O. SIRE-1, a long interspersed repetitive DNA element from soybeanwith weak sequence similarity to retrotransposons: initial characterization and partial sequence[J]. Gene, 1993, 134: 153-159.
    171. Laten H M, Majumdar A, Gaucher E A. SIRE-1, a copia/Ty1-like retroelement from soybean, encodes a retroviral envelope-like protein[J]. Pro.Natl. Acad. Sci. USA, 1998, 95 :6897-6902
    172. Felice B D, Wilson R R, Argenziano C, et al.. A transcriptionally active copia -like retroelement in Citrus limon[J]. Cellular & Molecular Biology Letters, 2009, 14: 289-304.
    173. Biswas M K, Baig M N R, Cheng Y J, et al. Retro-transposon based genetic similarity within the genus citrus and its relatives[J]. Genet Resour Crop Evol, 2010, DOI 10.1007/s10722-010-9533-0.
    174. Vodkin L O, Rhodes P R, GOLDBER R B. A lectin gene insertion has the structural features of a transposable element[J]. Cell, 1983, 34: 1023-1031.
    175. Rhodes P R, Vodkin L O. Organization of the Tgm family of transposable elements in soybean[J]. Genetics, 1988, 120, 597-604.
    176. Rhodes P R, Vodkin L O. Highly structured sequence homology between an insertion element and the gene in which it resides[J]. Proc. Natl. Acad. Sci. USA, 1985, 82: 493-497.
    177. Xia X, Xie Z, Li W. Effects of GC content and mutational pressure on the lengths of exons and coding sequenes[J]. J Mol Evol, 2003, 56: 362-370.
    178. Jaillon O, Aury J M, Noel B, et al. The grapevine genome sequence suggests ancestral hexaploidization in major angiosperm phyla[J]. Nature, 2007, 449: 463-467.
    179. Meyers B C, Tingey S V, Morgante M. Abundance, distribution, and transcriptional activity of repetitive elements in the maize genome[J]. Genome Res., 2001, 11, 1660-1676.
    180. Montero L M, Salinas J, Matassi G, et al.. Gene distribution and isochore organization in the nuclear genome of plants[J]. Nucleic Acids Res., 1990, 18, 1859-1867.
    181. http://hbz7.tamu.edu/homelinks/bac_est/bac.htm,http://www.genome.clemson.edu

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700