用户名: 密码: 验证码:
酵母催化还原制备手性双羟基苊及其应用开发
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
双羟基苊及其衍生物广泛存在于生理活性物质中,同时作为中间体用于功能材料的合成。由于没有有效的合成方法,几乎没有手性双羟基苊的应用研究。与在手性荧光探针和手性催化剂配体中常用的联萘化合物相比,手性双羟基苊的刚性更好,其在这些领域具有非常高的潜在的应用价值。由于苊醌羰基两侧的立体结构和电子排布的相似性,常规化学还原方法制备手性双羟基苊还是较大的难题。因此,开发手性双羟基苊的合成方法及其应用是一个新颖并且具有挑战性的课题。
     本文以苊醌和取代苊醌为底物,用面包酵母作为生物催化剂,探索并实现了生物催化高立体选择性的还原苊醌制备相应的手性双羟基苊。通过筛选搅拌设备和有机助溶剂等方法,对反应过程进行了系统的研究和优化。采用高效液相色谱手性柱实现了ee值的测定,用激子手性圆二色谱(ECCD)成功对反式手性双羟基苊及取代的手性双羟基苊的绝对构型进行了确定。对手性双羟基苊及其衍生物在生理活性方面的应用做了初步探索。
     以苊醌为起始原料,经溴化、硝化、取代、还原等多步反应合成取代苊醌。使用DMSO作为底物助溶剂,在强烈搅拌下,面包酵母催化还原苊醌和5-取代苊醌制备了具有ee.为>97-100%的trans-5-取代-1,2-二羟基苊。采用激子手性圆二色谱(ECCD)方法确定了制备的(-)-trans-双羟基苊为(S,S)构型,(-)-trans-5-甲氧基-双羟基苊为(S,S)构型, (+)-trans-5-溴-双羟基苊为(S,S)构型, (-)-trans-5-硫代吗啉-双羟基苊为(R,R)构型。
     以Bcl-2为靶向的抗肿瘤活性测试中,发现cis-双羟基苊及其衍生物比trans-构型的相应化合物的活性高出近10倍。这部分研究还有待于进一步对这类化合物进行优化改造。
     以反式手性双羟基苊为手性源,对相应手性探针设计、合成做了一些尝试,还有待于进一步优化。
     本论文研究,是建立在面包酵母制备手性芴醇的基础上,作为第二个实例,扩展了生物转化法还原刚性、稠环芳香酮反应的底物适用范围。进一步证明了在克服质量传递限制的反应条件下,面包酵母有能力还原具有高度空间位阻的芳香酮。
Acenaphthene-1,2-diol derivatives are widely exsited in many biologically active compounds and also widely used as synthetic intermediates for functional materials. However, the applying of enantiomerically pure substituted acenaphthene-1,2-diol have been scarcely reported due to lacking of efficient preparation procedure to obtain them. Compared with binanaphthalenes, which are widely used in chiral recognition or as ligands of chiral catalyst, dihydroxyacenaphthenes have better rigid structures. So, dihydroxyacenaphthenes may have more potential value in these two aspects. Because of the structural and electronic symmetry of the two sides, it was difficult to obtain the enantiopure dioxyacenaphthenes from the usual chemical methods. Finding an efficient method to synthesize the chiral dihydroxyacenaphthene and developing its applying has still been a novel challenging.
     In this paper, we explored and achieved to obtain the enantiomerically pure acenaphthene-1,2-diols and 5-substitued-acenaphthene-1,2-diols using baker's yeast as reducing reagent. To optimize the reacting condition a series of reacts were carried out to find the proper mass-transfer driver and co-solvent. The anantiomeric excess was determined by HPLC with a chiral AD-H column and the absolute configuration was assignment by the exciton chirality circular dichroism method (ECCD). To some degree, we also made some exploring in applying of the acenaphthene-1,2-diols and its derivatives in physiologically active aspect.
     The 5-substitued-acenaphthylene-1,2-diones were prepared by nitration, substitution, diazotization and reduction using acenaphthylene-1,2-diones as the crude material. A series of highly enantioselective trans-5-subsitituded-acenaphthene-1,2-diols in 21~72% yield with 97~100% ee could be obtained by baker's yeast mediated reduction of corresponding 5-substituted-acenaphthylene-1,2-dione, in the presence of DMSO as co-solvent and under vigorous agitation. The absolute configuration of (-)-trans-5-methoxy-acenaphthene-1,2-diol, (-)-trans-5-methoxy-acenaphthene-1,2-diol, (-)-trans-5-bromo-acenaphthene-1,2-diol were assigned as (S,S), and (-)-trans-5-thiomorpholin-acenaphthene-1,2-diol was established as (R,R) by the exciton chirality circular dichroism method.
     In the measurement of Bcl-2 targeted antitumor drugs, we found the efficiency of the cis-5 thiomorpholin-dihydroxyacenathenes and these derivatives were nearly 10 times toward the corresponding trans-congiguration. On base of this result, the object products could be further modified.
     In the resesrch of chrial recognition, we found another dihydroxyacenaphthene derivatives could recognize L-glutamic acid to some extent, in spite of needing more identification.
     On the basis of baker's yeast-catalyzed reduction of fluorenones, the substrate of the baker's yeast reductions was extended in the research. It further proved that if the obstacle of mass-transfer was overcomed, rigid and polycyclic aromatic ketones could be reduced by baker's yeast.
引文
[1]殷元骐,将耀忠.不对称催化反应进展[M].北京:科学出版社,2000.
    [2]胡文浩,周静.手性,手性药物及手性合成.专论—化学前沿.2009,5:1-3.
    [3]ZHANG S J, XIE J W, LIU C S. Microenvironmental properties and chiral discrimination abilities of bile salt micelles by fluorescence probe technique. Anal. Chem.,2003,75:91-97.
    [4]MCCUBBIN J A, TONG X, WANG R, ZHAO Y, SNIECKUS V, LEMIEUX R P. Directed metalation route toferroelectric liquid crystals with a chiral fluorenol core:The effect of restricted rotation on polar order. J. Am. Chem. Soc.,2004,126 (4):1161 - 1167.
    [5]MCCUBBIN J A, TONG X, ZHAO Y, SNIECKUS V, LEMIEUX R P. Directed metalation-cross coupling route to ferroelectric liquid crystals with a chiral fluorenol core:The effect of intermolecular hydrogen bonding on polar order. Chem. Mater.,2005, 17 (10):2574-2581.
    [6]宓爱巧,王朝阳,蒋耀忠,黄志镗.手性催化剂的结构及其反应性能[J].合成化学.1994.2:105-116.
    [7]LUIS J G, LABLOU E H, ANDRES L S, ECHEVERRI F, FLETCHER W Q. Phenylphenalenonic Phytoanticipins. New Acenaphtylene and Dimeric Phenylphenalenones from the Resistant Muss Selected Hybrid SH-3481. Tetrahedron,1997,24:8249-8256.
    [8]ROY C D, BROWN H C. Stability of boronic esters-Structural effects on the relative rates of transesterification of 2-(phenyl)-1,3,2-dioxaborolane. Org. Chem.,2007,692:784-790.
    [9]LAKSHMAN M K, ZAJC B. Regio and Stereocontrolled Synthesis of Aryi Cis Aminoalcohols From Cis Glycols. Tetrahedron Lett.,1996,37:2529-2532.
    [10]PRIVALOVA E G, NOSALEVICH I M. Use of Acenaphthylene Glycols for Production of Polyurethanes [M]. Yu. S.,3rd Ed.; Naukova Dumka:Kiev.,1973; pp.36.
    [11]MERZ A, DIETL F, TOMAHOGH R, WEBER G, SHELDRICK G M.1,2-Dialkoxyacenaphthylenes and 2,3,11,12-bis-(1,2-acenaphtho)-[18]crown-6. Tetrahedron,1984,40:665-671.
    [12]CHARTRAIN M, LYNCH J, CHOI W-B, CHURCHILL H, PATEL S, YAMAZAKI S, VOLANTE R, GREASHAM R. Asymmetric bioreduction of a bisaryl ketone to its corresponding (S)-bisaryl alcohol, by the yeast Rhodotorula pilimanae ATCC 32762. J. Mol. Catal. B:Enzym., 2000, 8,285-288
    [13]ROY S; ALEXANDRE V; NEUWELS M; LE TEXIER L. Asymmetric Bioreduction of a Bulky Ketone:1-Phenyl-1-(2-phenylthiazol-5-yl)-methanone. Adv. Synth. Catal.,2001, 343,738-743
    [14]LI F, CUI J, QIAN X, REN W, WANG X. Baker's yeast-mediated enantioselective reduction of substituted fluorenones. Chem. Commun.,2006,8:865-867.
    [15]WANG X, CUI J, REN W, LI F, LU C, QIAN X. Baker's yeast mediated reduction of substituted acenaphthenequinones:Regio-and enantioselective preparation of mono-hydroxyacenaphthenonesm. Chinese Chem. Lett.,2007,18:681-684.
    [16]承勇.生物催化反应在工业生产中的应用[J].安徽教育学院学报,2001,19:57-63.
    [17]CRUMP S P, ROZZELL J D. Biocatalytic production of amino acids by transamination. Biocatal. Prod. Amino Acids Deriv.,1992,43-58.
    [18]ROZZELL J D. Commercial scale biocatalysis:myths and realities. Bioorg. Med. Chem., 1999,7(10):2253-2261.
    [19]SERVI S. Baker's yeast as a reagent in organic synthesis. Synthesis, 1990,1: 1-25.
    [20]CSUK R, GLAENZER B I. Baker's yeast mediated transformations in organic chemistry. Chem. Rev.,1991,91(1):49-97.
    [21]GARCIA-URDIALES E, ALFONSO I, GOTOR V. Enantioselective enzymatic desymmetrizations in organic synthesis. Chem. Rev.,2005,105(1):313-354.
    [22]KOMETANI T, YOSHII H, MATSUNO R. Large-scale production of chiral alcohols with bakers' yeast [J]. J. Mol. Catal. B Enzym.,1996,1, (2):45-52.
    [23]BELAN A, BOLTE J, FAUVE A, GOURCY J G, VESCHAMBRE H. Use of biological systems for the preparation of chiral molecules.3. Application in pheromone synthesis: preparation of sulcatol enantiomers. J. Org. Chem.,1987,52(2):256-260.
    [24]BARTMANN W, TROST B M. Proceedings of the Fourteenth Workshop Conference Hoechst, Selectivity-A goal for Synthetic Efficiency.Schloss Reisensburg,1983.
    [25]NAKAMURA K, MIYAI T, NAGAR A, OKA S, OHNO A. Stereochemical control in microbial reduction.9. Diastereoselective reduction of 2-alkyl-3-oxobutanoate with bakers' yeast. Bull. Chem. Soc. Jpn.,1989,62(4):1179-1187.
    [26]CHENEVERT R, THIBOUTOT S. Conversion of carboxylic acids to alkyl fluorides with xenon difluoride. Can. J. Chem.,1986,64.(8):1599-1601.
    [27]DEREK H R, BEATRICE M C. The selective functionalization of saturated hydrocarbons. Part 37. Utilization of a New Oxidant:Bis (trimethylsilyl) peroxide. Tetrahedron, 1997,53(2):487-510.
    [28]DEE W B, KEITH W W. Chiral building blocks for fused cyclopentanoids: enantioselective synthesis of 5-methylbicyclo[3.3.0]oct-1-ene-3,6-dione and derivatives. J. Org. Chem.,1987,52(10):2036-2039.
    [29]FUJISAWA T, KOJIMA E, SATO T. (2S,3S)-1-Phenylthio-2,3-butanediol. A useful chiral building block for a single synthesis of (4R,5S)-S-hydroxyhexen-4-oliole and (4R,5S)-5-hydroxy-2-hexen-4-olide. Chem. Lett.,1987,11:2227-2228.
    [30]SIMON H, WHITE H, LEBERTZ H, THANOS I. Reduction of 2-enoates and alkanoates with carbon monoxide or formate,'viologens and Clostridium thermoaceticum to saturated acids and unsaturated and saturated alcohols. Angew. Chem.,1987,99(8):785-787.
    [31]TAKABE K, HIYOSHI H, SAWADA H, TANAKA M, MIYAZAKI A, YAMADA T, KATAGIRI T, YODA H. Baker' s yeast reduction of 3-phenylthiomethyl-2-butenolide and its derivatives: Synthesis of versatile chiral C5-building blocks for terpenoid synthesis. Tetrahedron:Asymmetry,1992,3(11):1399-1400:
    [32]GRAMATICA P, MANITTO P, MONTI D, SPERANZA G. Regio-and stereoselective hydrogenation of methyl substituted pentadien-1-ols by baker's yeast. Tetrahedron, 1988,44 (4):1299-1304.
    [33]UTAKA M, KONISHI S, TAKEDA A. Asymmetric reduction of Z-3-chloro-3-alken-2-ones with fermenting baker' s yeast. Tetrahedron Lett.,1986,27(39):4737-4740.
    [34]Ohta H, Kobayashi N, Ozaki K. Asymmetric reduction of nitro olefins by fermenting bakers' yeast. J. Org. Chem.,1989,54(8):1802-1804.
    [35]HUGHES J B, SHANKS J, VANDERFORD M, LAURITZEN J, BHADRA R. Transformation of TNT by Aquatic plants and plant tissue cultures. Environ. Sci. Technol.,1997,31(1): 266-271.
    [36]JOSIE A B, NICHOLAS J T, ANDREW S W. Concerning the baker's yeast (Saccharomyces cerevisiae) mediated reduction of nitroarenes and other N-0 containing functional groups. Tetrahedron Lett,1997,38(17):3043-3046.
    [37]LI F, CUI J N, QIAN X H, ZHANG R. A novel strategy for the preparation of arylhydroxylamines:chemoselective reduction of aromatic nitro compounds using bakers'yeast. Chem Commun,2004,20,2338-2339.
    [38]OHTA H, OZAKI K, KONISHI J, TSUCHIHASHI I. Reductive C2-homologation of substituted benzaldehydes by fermenting baker's yeast. Agric. Biol. Chem.,1986, 50:1261-1266.
    [39]黄锦霞,潘贻军.baker酵母用于不对称合成的研究.合成化学.1993,1(4):304-312.
    [40]FRONZA G, FUGANTI C, MENDOZZA M, RALLO R, OTTOLINA G, JOULAIN D. Stereochemistry of the double bond saturation in the formation in baker's Yeast of 4-(4-hydroxyphenyl)-2-butanone (raspberry Ketone). Tetrahedron,1996,52(11): 4041-4052.
    [41]FOGLIATO G, FRONZA G, FUGANTI C, LANATI S, RALLO R, RIGONI R, SERVI S. Baker's yeast reduction of arylidenecycloalkanones. Tetrahedron,1995,51(37): 10231-10240.
    [42]GRAMATICA P, MANITTO P, MONTI D, SPERANZA G. Stereoselective total synthesis of natural phytol via double bond reductions by baker's yeast. Tetrahedron,1987,43 (19):4481-4486.
    [43]TANG J, BRACKENRIDGE I, ROBERTS S M, BEECHER J, WILLETTS A J. Baker's yeast oxidation of methyl para-tolylsuifide:Synthesis of a chiral intermediate in the preparation of the mevinic acid-type hypocholestemic agents. Tetrahedron,1995,51 (48):13217-13238.
    [44]GRAMATICA P, RANZI M B AND MANITTO P. Decarboxylation of cinnamic acids by Saccharomyces cerevisiae. Bioorg. Chem..1981,10:14-21.
    [45]LAUMEN K, SCHNEIDER M. Enzymatic hydrolysis of prochiral cis-1, 4-diacyl-2-cyc-lopentenediols:preparation of (IS,4R)-and (1R,4S)-4-hydroxy-2-cyclopentenylderivatives, versatile building blocks for cyclopentanoid natural products. Tetrahedron Lett.,1984,25(51):5875-5878.
    [46]JOE I C, NELISSE P M, STRAATHOF A J, JONGEJAN J A, PRONK J T, HEIJNEN J J. Hydrolytic activity in baker' s yeast limits the yield of asymmetric 3-oxo ester reduction. Biotechnol. Bioeng.,2000,69:370-376.
    [47]周维善.绝对够型的确定.化学通报.1962,16-25.
    [48]KAMO T, HIRAI N, IWAMI K, FUJIOKA D, OHIGASHI H. New phenylphenalenones from banana fruit. Tetrahedron.2001,57:7649-7656.
    [49]滕荣伟,沈平,王德祖,杨崇仁.应用核磁共振确定有机化合物绝对够行的方法.波谱学杂志.2002,19,203-223.
    [50]范康年.谱学导论.北京:高等教育出版社.2001,6:216-227.
    [51]应百平,秦国伟,徐任生.圆二色谱中的激子手性法在有机化学中的应用.有机化学,1987,3:165-173.
    [52]MCCUBBIN J A, TONG X, WANG R, ZHAO Y, SNIECKUS V, LEMIEUX R P. Directed Metalation Route to Ferroelectric Liquid Crystals with a Chiral Fluorenol Core:The Effect of Restricted Rotation on Polar Order. J. Am. Chem. Soc.,2004,126:1161-1167.
    [53]TONG L, CUI J, REN W, et al. Asymmetric bioreduction of substituted acenaphthenequinones using plant enzymatic systems:A novel strategy for the preparation of (+)-and (-)-mono-hydroxyacenaphthenones. Chinese Chem. Lett., 2008,19:1179-1182.
    [54]RULE H G, THOMPSON S B. Acenaphthenone and acenaphthenequinone. J. Chem. Soc.,1937, 1761-1763.
    [55]O'BRIEN S, SMITH D C C. The synthesis of heterocyclic analogues of phenalene (perinaphthene), containing one hetero-atom J. Chem. Soc.,1963,2907-2917.
    [56]HAYWARD L D, CSIZMADIA I G. The conformations of 1,2-acenaphthene derivatives and steric interaction of contiguous nitroxy groups. Tetrahedron,1963,19,2111-2121.
    [57]ZHAO C.; WHALEN D L. Transition State Effects in the Acid-Catalyzed Hydrolysis of 5-Methoxyacenaphthylene 1,2-Oxide:Implications for the Mechanism of Acid-Catalyzed Hydrolysis of Cyclopenta[cd]pyrene 3,4-Oxide. Chem. Res. Toxicol. 2006,19,217-222.
    [58]PETRENKO G P, IVANOVA V P. J. Org. Chem. USSR,1972,8,1074-1076.
    [59]IKEDA H, SATO E, SUGAI T, OHTA H. Yeast-mediated Synthesis of Optically Active Diols with C2-Symmetry and (R)-4-Pentanolide. Tetrahedron,1996,52:8113-8122.
    [60]HAYAKAWA R, SHIMIZU M, FUJISAWA T. The baker's yeast reduction of 1-acetoxy-2-alkanones in the presence of a sulfur compound. Tetrahedron:Asymmetry, 1997,8,3201-3204.
    [61]HAYAKAWA R, NOZAWA K, KIMURA K, SHIMIZU M. The Bakers' Yeast Reductions of α and β-Keto Ester Derivatives in the Presence of a Sulfur Compound. Tetrahedron, 1999,55,7519-7528.
    [62]IMUTA M, KASAI M, ZIFFER H. Absolute Stereochemistry of (+)-trans-1, 2-Dihydroxyacenaphthene, a Mammalian Metabolite of Acenaphthylene. Biorg. Chem.,1985,13:131-134.
    [63]陈小明,蔡继文.单晶结构分析原理与实践[M].北京:科学出版社.pp 150-155。
    [64]SHIEH W-R, GOPALAN A S, SIH G J. Stereochemical Control of Yeast Reductions. 5. Characterization of the Oxidoreductases Involved in the Reduction of &Keto Esters. J. Am. Chem. Soc.,1985,107,2993-2994.
    [65]NAKAMURA K, KAWAI Y, NAKAJIMA N, OHNO A. Stereochemical Control of Microbial Reduction.17. A Method for Controlling the Enantioselectivity of Reductions with Bakers'Yeast. J. Org. Chem.,1991,56,4778-4783.
    [66]NAKAMURA K, KONDO S, NAKAJIMA N, OHNO. A. Mechanistic Study for Stereochemical Control of Microbial Reduction of α-Keto Esters in an Organic Solvent. Tetrahedron, 1995,51,687-694.
    [67]RONG Y, DISTELHORST CW. Bcl-2 protein family members:versatile regulators of calcium signaling in cell survival and apoptosis. Annu. Rev. Physiol.,2008,70:73-91
    [68]YOULE RJ, STRASSER A. The BCL-2 protein family:opposing activities that mediate cell death. Nat. Rev. Mol. Cell Biol.,2008,9:47-59
    [69]COULTAS L, STRASSER A. The role of the Bcl-2 protein family in cancer. Semin. Cancer Biol.,2003,13:115-123
    [70]WANG S, YANG D. Small Molecule Antagonists of Bcl-2 family proteins, US20030008924[P].2002,05,30.
    [71]TANG G, YANG C-Y, NIKOLOVSKA-COLESKA Z, WANG M. Pyrogallol-Based Molecules as Potent Inhibitors of the Antiapoptotic Bcl-2 Proteins J. Med. Chem.,2007,50:1723-1726.
    [72]金礼吉,张志超等.一个新的有机小分子Bcl-2蛋白抑制剂.中国科学,2007,37:416-421.
    [73]许旭,林炳承,吴如金.手性药物的高效毛细管电泳拆分方法[J].化学进展,1997,9(4):416-427.
    [74]VERLEYSEN K, SABAH S, SCRIBA G, et al. Enantioseparation of aspartyl dipeptides by CE:Comparison between 18-crown-6-tetracarboxylic acid carboxymethyl-beta-cyclodextrin as chiral selector[J]. Chromatographia, 1999,49(3-4):215-218.
    [75]YUAN Q, FU E Q, WU X J, et al. A convenient synthesis of chiral dioxocyclens and application as chiral solvating agents[J]. Tetrahedron Lett,2002,43(21): 3935-3937.
    [76]GALAN A, ANDREU D, ECHAVARREN A M, PRADOS P, MENDOZA J D. A receptor for the enantioselective recognition of phenylalanine and tryptophan under neutral conditions. J. Am. Chem. SOC.,1992,114,1511.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700