用户名: 密码: 验证码:
纳米结构Al-1%Si合金的组织、热稳定性及力学行为研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
纳米结构纯金属有很高的强度,但面临两个最基本的问题:一是因界面密度高,材料中的储存能高而导致的热稳定性下降的问题;另一个是因加工硬化能力下降而导致的塑性严重降低。在本论文工作中,设计制备了一种纳米结构Al-1%Si合金,该合金以超高纯铝(99.9996%)为基体,在基体中弥散分布了质量比1%的Si第二相。目的是研究弥散分布的纳米颗粒第二相对于纳米结构Al-1%Si材料的热稳定性和力学行为的影响,以期探寻一种优化纳米结构材料结构和力学性能的新方法。
     由于室温下Si在超高纯铝基体中的固溶度几乎为零,因而1%的Si元素都以第二相的形式弥散分布在基体中。通过将热轧后的材料进行98%形变量的冷轧,获得了用于研究其热稳定性和力学性能的纳米结构材料。通过对冷轧和不同工艺下热处理后材料的力学行为进行系统的测试,以及利用透射电镜(TEM)、扫描电镜(SEM)和高分辨EBSD等方法对材料的微观组织进行了系统表征,得出以下结论:
     通过冷轧变形制备出了ND方向(Normal Direction)平均界面间距为230nm、RD方向(Rolling direction)平均界面间距为950nm和基体中弥散分布着尺寸约为20nm的Si颗粒相的层状纳米结构材料。Si第二相颗粒绝大多数都沿晶界分布,对材料的形变组织起到了很好的稳定作用。制得的纳米结构Al-1%Si材料的屈服强度为210MPa,拉伸强度为230MPa,拉伸延伸率为15%。与文献中利用ARB制备的高纯铝(99.99%)与工业纯铝Al1050(99.5%)和Al1100(99.2%)相比较,纳米结构Al-1%Si材料具有最好的强塑匹配。
     通过对纳米结构Al-1%Si材料在大温度范围内(100-600℃)的热稳定性进行研究发现,纳米结构Al-Si材料在200℃以下退火1小时只发生回复;当退火温度大于200℃时,材料发生再结晶形核与长大;在200~250℃之间退火1小时,材料发生部分再结晶,当退火温度高于250℃时,材料在1小时内完全再结晶。基体中的纳米尺寸第二相Si颗粒在受热过程中发生粗化,退火温度越高,颗粒的平均尺寸越大。尽管在材料中有少量直径在数微米的粗大的第二相Si颗粒,在其周围形成的高形变区内并没有发现明显的PSN(Particle Stimulated Nucleatin)现象,这是由于周围基体的弥散颗粒对界面移动的钉扎作用所致。认为粗大第二相颗粒对于材料的热稳定性不产生重要影响。98%冷轧形变后的Al-1%Si材料在较低温度下再结晶退火后形成近似随机织构,在高温下退火时再结晶的性质与传统的铝和铝合金形变材料类似,形成旋转立方织构,退火温度越高,织构越强。
     在相同的温度范围内还对材料的力学行为进行了系统研究。纳米结构Al-1%Si合金在回复阶段(<200℃退火)强度随退火温度的增加下降较快,而塑性(总延伸率)变化不大,保持在15%的水平。这与纳米结构工业纯Al回复退火造成的拉伸塑性急剧下降形成鲜明对比。并且,在Al-1%Si合金并没有出现纳米结构工业纯铝在中温退火条件下所出现的屈服点现象,即没有发现屈服点和Lüders带的形成。Al-1%Si合金的Hall-Petch系数(斜率)是粗晶(>10m)纯Al的Hall-Petch系数的2倍,表明对于所研究的Al-1%Si合金可通过细化晶粒,更有效地实现强化。以上结果表明形变和退火材料的拉伸稳定性得到了显著提升,这与基体中弥散的Si颗粒阻止了基体中位错组织的回复、促进了拉伸过程中与运动位错的交互作用从而提高加工硬化能力有关。
     通过与文献报导的具有类似名义成分(99%)的纳米结构工业纯Al的退火行为比较发现,本研究所设计的Al-1%Si合金在大于100MP的强度范围内具有显著的强塑匹配优势。
     本论文的研究结果表明,在纳米结构中引入弥散分布第二相的方式可以显著提高热稳定性和改善力学行为(包括去除回复导致的流变失稳和屈服点现象),是一种实现纯Al材料高强度、高塑性的有效途径。
Nanostructured pure metals show enhanced strength but suffer from twofundamental problems: reduced thermal stability due to the high stored energyassociated with the high density of grain boundaries and reduced ductility due to thelack of capability of work hardening. In this thesis we have designed and produced ananostructured Al-1%Si alloy with the addition of1%Si present in the form of dispersedparticles in the Al matrix. The principal objective of the present study is to explore theeffects of dispersed particles on the thermal stability and mechanical behavior of thenanostructured Al-1%Si alloy, with an aim to establish a new strategy to optimize thestructure and mechanical properties of nanostructured metals.
     High purity Al (99.9996%) was used as the matrix and the addition of1%Si was toform dispersed Si particles as the solubility of Si in Al is almost zero at roomtemperature. The cast Al-1%Si ingot was hot deformed and then cold-rolled to athickness reduction of98%to obtain a nanostructured state of the alloy, which was usedas the base material for investigating the effects of annealing on thermal stability andmechanical behavior. The specimens of as-cold-rolled and after different annealingtreatments were characterized by tensile tests and by microstructural analysis usingtransmission electron microscopy (TEM), scanning electron microscopy/electronbackscatter diffraction (SEM/EBSD). The main findings are summarized as follows:
     After cold rolling to98%thickness reduction a nanostructured Al-1%Si alloy wasproduced with a nanoscale lamellar structure containing nanoscale (~20nm) Si particles.The average boundary spacings are230nm and950nm along the normal direction (ND)and the rolling direction (RD), respectively. Large amount of second phase particlesdisperse mostly along lamellar boundaries which stabilize the microstructure. Thenanostructured Al-1%Si alloy has a yield strength of210MPa, a UTS of230MPa and atensile elongation of15%. Comparing with nanostructured high purity Al (99.99%),commercial purity Al1050(99.5%) and Al1100(99.2%), the as-processednanostructured Al-1%Si exhibits the best combination of strength and tensile ductility.
     The thermal stability of nanostructured Al-1%Si alloy was investigated over a widerange of temperature from100–600℃. It is found that the nanostructured Al-1%Sialloy is relatively stable when annealing for1hour at temperatures below200℃where only recovery takes place. Nucleation and growth occur when annealing for1 hour at temperatures higher than200℃. In more detail, partial recrystallization takeplace when the annealing temperature is between200and250℃. After annealing for1hour at temperatures higher than250℃, the material is fully recrystallized. Secondphase particles are coarsening, resulting in an increase in average size with an increasein annealing temperature. Highly strained regions are formed around second phaseparticles with diameters of several micrometers. Nevertheless these large particles donot stimulate preferred nucleation and growth around them during annealing due to thepinning effect of fine particles on the boundary migration. Therefore they have littleeffect on the thermal stability of the nanostructure. Nearly random texture is developedafter low temperature annealing, and rotated cube texture is developed after annealing athigh temperatures. The higher the annealing temperature is, the stronger the textureforms.
     The effect of annealing on mechanical behavior was investigated over the sametemperature range as for the thermal stability study. The strength drops rapidly withincreasing annealing temperature in the recovery region but the plasticity (totalelongation) shows nearly no change. This observation shows a distinct contrast to thatobserved in nanostructured commerical purity Al alloys, in which the elongation isreduced greatly after recovery annealing. Furthermore, no yield point phenomenonassociated with a yield drop and Lüders deformation appears after annealing at mediumtemperatures, as observed in nanostructured commerical purity Al after a similarannealing treatment. The Hall-Petch slope of the nanostructured Al-1%Si is twice ofthat obtained in the coarse grain range (>10m). This manifests that grain refinementinduced strengthening is much more effective when the grain size is in thesubmicrometer and nanometer range. The above results show a significant improvementin the tensile stability for both the as-processed structure and after recovery annealing.This improvement is related to the fine dispersion of Si particles in the microstructure,which retraded the recovery of dislocations during recovery and enhanced theinteraction with dislocations during tensile deformation.
     Comparing with nanostructured commercial purity Al alloys with similar nominalcompositions, the present nanostructured Al-1%Si shows a greatly improvedcombination of strength and ductility at strength levels of higher than100MPa.
     In conclusion, the results obtained in this thesis show that introducing dispersedparticles in nanostructured pure metals can generate significant beneficial effects instabilizing the mechanical behavior (including removal of recovery enhanced flow instability and of the occurrence of yield point phenomena) and the thermal response,and in achieving improved combination of strength and ductility at the higher level ofstrength of pure Al.
引文
[1] Hall E. The deformation and ageing of mild steel: III discussion of results. Proceedings of thePhysical Society Section B1951;64:747.
    [2] Petch N. The cleavage strength of polycrystals. J Iron Steel Inst1953;174:25-8.
    [3] Gleiter H. Materials with ultra-fine grain sizes. Deformation of Polycrystals: Mechanismsand Microstructures2nd Riso Int Symposium on Metallurgy and Materials Science1981. p.15-21.
    [4] Gleiter H. Nanocrystalline materials. Progress in Materials Science1989;33:223-315.
    [5] Zhu T, Li J. Ultra-strength materials. Progress in Materials Science2010;55:710-57.
    [6] Meyers MA, Mishra A, Benson DJ. Mechanical properties of nanocrystalline materials.Progress in Materials Science2006;51:427-556.
    [7] Zhao YH, Liao XZ, Cheng S, Ma E, Zhu YT. Simultaneously Increasing the Ductility andStrength of Nanostructured Alloys. Advanced Materials2006;18:2280-3.
    [8] Chang L, Kao PW, Chen CH. Strengthening mechanisms in electrodeposited Ni–P alloyswith nanocrystalline grains. Scripta Materialia2007;56:713-6.
    [9] Guduru RK, Murty KL, Youssef KM, Scattergood RO, Koch CC. Mechanical behavior ofnanocrystalline copper. Materials Science and Engineering: A2007;463:14-21.
    [10] Lu K, Lu L, Suresh S. Strengthening Materials by Engineering Coherent Internal Boundariesat the Nanoscale. Science2009;324:4.
    [11] Lu K. Materials science. The future of metals. Science2010;328:319-20.
    [12] Lu K, Hansen N. Structural refinement and deformation mechanisms in nanostructuredmetals. Scripta Materialia2009;60:1033-8.
    [13] Wu X-L, Ma E. Dislocations in nanocrystalline grains. Applied physics letters2006;88:231911.
    [14] Grivel J-C, Hansen N, Huang X, Juul Jensen D, Mishin O, Nielsen SF, et al. Nanostructuredmetals: Fundamentals to applications: Proceedings of the30th Ris International Symposiumon Materials Science: Danmarks Tekniske Universitet, Ris Nationallaboratoriet forB redygtig Energi;2009.
    [15] Faester S, Hansen N, Huang X, Juul Jensen D. Nanometals-Status and perspective.2012.
    [16] Lu L, Shen Y, Chen X, Qian L, Lu K. Ultrahigh strength and high electrical conductivity incopper. Science2004;304:422-6.
    [17] Wang Y, Ma E. Three strategies to achieve uniform tensile deformation in a nanostructuredmetal. Acta Materialia2004;52:1699-709.
    [18] Hughes DA, Hansen N. Deformation structures developing on fine scales. PhilosophicalMagazine2003;83:3871-93.
    [19] Koch CC. Top-Down Synthesis Of Nanostructured Materials Mechanical And ThermalProcessing Methods. Rev Adv Mater Sci2003;5:9.
    [20] Zhang H, Huang X, Hansen N. Evolution of microstructural parameters and flow stressestoward limits in nickel deformed to ultra-high strains. Acta Materialia2008;56:5451-65.
    [21] Zhang X, Godfrey A, Hansen N, Huang X. Hierarchical structures in cold-drawn pearliticsteel wire. Acta Materialia2013;61:4898-909.
    [22] Valiev R. Nanostructuring of metals by severe plastic deformation for advanced properties.Nature materials2004;3:511-6.
    [23] Valiev R, Alexandrov I. Nanostructured materials from severe plastic deformation.Nanostructured materials1999;12:35-40.
    [24] Valiev RZ, Islamgaliev RK, Alexandrov IV. Bulk nanostructured materials from severeplastic deformation. Progress in materials science2000;45:103-89.
    [25] Lu L, Sui ML, Lu K. Superplastic Extensibility of Nanocrystalline Copper at RoomTemperature. Science2000;287:4.
    [26] Mühlbach J, Pfau P, Sattler K, Recknagel E. Inert gas condensation of metal microclusters.Zeitschrift für Physik B Condensed Matter1982;47:233-7.
    [27] Lü L, Lai MO. Introduction to Mechanical Alloying. Mechanical alloying: Springer;1998.p.1-9.
    [28] Suryanarayana C. Mechanical alloying and milling. Progress in materials science2001;46:1-184.
    [29] Zach MP, Ng KH, Penner RM. Molybdenum nanowires by electrodeposition. Science2000;290:2120-3.
    [30] Zein El Abedin S, Moustafa E, Hempelmann R, Natter H, Endres F. Electrodeposition ofNano‐and Microcrystalline Aluminium in Three Different Air and Water Stable IonicLiquids. ChemPhysChem2006;7:1535-43.
    [31] Lu K. Nanocrystalline metals crystallized from amorphous solids: nanocrystallization,structure, and properties. Materials Science and Engineering: R: Reports1996;16:161-221.
    [32] Zallen R. The physics of amorphous solids: John Wiley&Sons;2008.
    [33] Bay B, Hansen N, Hughes D, Kuhlmann-Wilsdorf D. Overview no.96evolution of fccdeformation structures in polyslip. Acta metallurgica et materialia1992;40:205-19.
    [34] Li B, Godfrey A, Meng Q, Liu Q, Hansen N. Microstructural evolution of IF-steel duringcold rolling. Acta materialia2004;52:1069-81.
    [35] Hansen N, Jensen DJ. Development of microstructure FCC metals during cold work. PhilTrans R Soc Lond A1999;357:23.
    [36] Hughes DA, Hansen N. Microstructure and strength of nickel at large strains. Acta Materialia2000;48:2985-3004.
    [37] Hansen N, Juul Jensen D. Deformed metals-structure, recrystallisation and strength.Materials Science and Technology2011;27:1229-40.
    [38] Liu Q, Huang X, Lloyd DJ, Hansen N. Microstructure and strength of commercial purityaluminium (AA1200) cold-rolled to large strains. Acta Materialia2002;50:14.
    [39] Saito Y, Utsunomiya H, Tsuji N, Sakai T. Novel ultra-high straining process for bulkmaterials—development of the accumulative roll-bonding (ARB) process. Acta materialia1999;47:579-83.
    [40] Tsuji N, to YI, Saito Y, Minamino Y. Strength and ductility of ultrafine grained aluminum andiron produced by ARB and annealing. scripta Materialia2002;47:7.
    [41] Tsuji N, Saito Y, Lee SH, Minamino Y. ARB (Accumulative Roll‐Bonding) and other newTechniques to Produce Bulk Ultrafine Grained Materials. Advanced Engineering Materials2003;5:338-44.
    [42] Lee S, Saito Y, Tsuji N, Utsunomiya H, Sakai T. Role of shear strain in ultragrain refinementby accumulative roll-bonding (ARB) process. Scripta Materialia2002;46:281-5.
    [43] Huang X, Tsuji N, Hansen N, Minamino Y. Microstructural evolution during accumulativeroll-bonding of commercial purity aluminum. Materials Science and Engineering: A2003;340:265-71.
    [44] H ppel HW, May J, G ken M. Enhanced Strength and Ductility in Ultrafine‐GrainedAluminium Produced by Accumulative Roll Bonding. Advanced engineering materials2004;6:781-4.
    [45] Kamikawa N, Zhang HW, Huang X, Hansen N. Microstructure and Mechanical Properties ofNanostructured Metals Produced by High Strain Deformation. Materials Science Forum2008;579:135-46.
    [46] Islamgaliev R, Yunusova N, Sabirov I, Sergueeva A, Valiev R. Deformation behavior ofnanostructured aluminum alloy processed by severe plastic deformation. Materials Scienceand Engineering: A2001;319:877-81.
    [47] Jiang H, Zhu YT, Butt DP, Alexandrov IV, Lowe TC. Microstructural evolution,microhardness and thermal stability of HPT-processed Cu. Materials Science andEngineering: A2000;290:128-38.
    [48] Valiev RZ. Structure and mechanical properties of ultrafine-grained metals. MaterialsScience and Engineering: A1997;234:59-66.
    [49] Valiev R. Approach to nanostructured solids through the studies of submicron grainedpolycrystals. Nanostructured materials1995;6:73-82.
    [50] Alexandrov I, Valiev R. Nanostructures from severe plastic deformation and mechanisms oflarge-strain work hardening. Nanostructured Materials1999;12:709-12.
    [51] Kamikawa N, Zhang HW, Huang X, Hansen N. Microstructure and mechanical properties ofnanostructured metals produced by high strain deformation. Materials Science Forum:Trans Tech Publ;2008. p.135-46.
    [52] Balogh L, Ungár T, Zhao Y, Zhu Y, Horita Z, Xu C, et al. Influence of stacking-fault energyon microstructural characteristics of ultrafine-grain copper and copper–zinc alloys. ActaMaterialia2008;56:809-20.
    [53] Valiev R, Korznikov A, Mulyukov R. Structure and properties of ultrafine-grained materialsproduced by severe plastic deformation. Materials Science and Engineering: A1993;168:141-8.
    [54] Iwahashi Y, Horita Z, Nemoto M, Langdon TG. Factors influencing the equilibrium grainsize in equal-channel angular pressing: Role of Mg additions to aluminum. Metallurgical andMaterials Transactions A1998;29:2503-10.
    [55] Huang W, Chang L, Kao P, Chang C. Effect of die angle on the deformation texture of copperprocessed by equal channel angular extrusion. Materials Science and Engineering: A2001;307:113-8.
    [56] Sun P, Yu C, Kao P, Chang C. Microstructural characteristics of ultrafine-grained aluminumproduced by equal channel angular extrusion. Scripta materialia2002;47:377-81.
    [57] Stolyarov V, Zhu Y, Lowe T, Islamgaliev R, Valiev R. A two step SPD processing ofultrafine-grained titanium. Nanostructured Materials1999;11:947-54.
    [58] Segal V. Slip line solutions, deformation mode and loading history during equal channelangular extrusion. Materials Science and Engineering: A2003;345:36-46.
    [59] Segal V. Equal channel angular extrusion: from macromechanics to structure formation.Materials Science and Engineering: A1999;271:322-33.
    [60] Zhang J. A new bulk deformation method–Cyclic extrusion. Materials Science Forum:Trans Tech Publ;2007. p.2293-300.
    [61] Tao N, Wang Z, Tong W, Sui M, Lu J, Lu K. An investigation of surface nanocrystallizationmechanism in Fe induced by surface mechanical attrition treatment. Acta Materialia2002;50:4603-16.
    [62] Liu X, Zhang H, Lu K. Strain-Induced Ultrahard and Ultrastable Nanolaminated Structure inNickel. Science2013;342:337-40.
    [63] Li Y, Tao N, Lu K. Microstructural evolution and nanostructure formation in copper duringdynamic plastic deformation at cryogenic temperatures. Acta materialia2008;56:230-41.
    [64] Zhao W, Tao N, Guo J, Lu Q, Lu K. High density nano-scale twins in Cu induced by dynamicplastic deformation. Scripta materialia2005;53:745-9.
    [65] Kamikawa N, Huang X, Tsuji N, Hansen N. Strengthening mechanisms in nanostructuredhigh-purity aluminium deformed to high strain and annealed. Acta Materialia2009;57:4198-208.
    [66] Sanders P, Eastman J, Weertman J. Elastic and tensile behavior of nanocrystalline copper andpalladium. Acta Materialia1997;45:4019-25.
    [67] Youngdahl CJ, Sanders PG, Eastman JA, Weertman JR. Compressive yield strengths ofnanocrystalline Cu and Pd. Scripta Materialia1997;37:809-13.
    [68] Weertman J, Farkas D, Hemker K, Kung H, Mayo M, Mitra R, et al. Structure andmechanical behavior of bulk nanocrystalline materials. Mrs Bulletin1999;24:44-53.
    [69] Weertman JR. Mechanical behavior of nanocrystalline metals. Nanostructured materials:processing, properties and potential applications Norwich (NY): Willia Andrew Publishing2002:393-417.
    [70] Hansen N. Hall–Petch relation and boundary strengthening. Scripta Materialia2004;51:801-6.
    [71] Suryanarayana C. The structure and properties of nanocrystalline materials: Issues andconcerns. JOM Journal of the Minerals, Metals and Materials Society2002;54:24-7.
    [72] Schuh C, Nieh T, Yamasaki T. Hall–Petch breakdown manifested in abrasive wear resistanceof nanocrystalline nickel. Scripta Materialia2002;46:735-40.
    [73] Koch CC, Narayan J. The Inverse Hall-Petch Effect—Fact or Artifact? MRS Proceedings:Cambridge Univ Press;2000. p. B5.1.
    [74] Carlton C, Ferreira P. What is behind the inverse Hall–Petch effect in nanocrystallinematerials? Acta Materialia2007;55:3749-56.
    [75] Fan G, Choo H, Liaw P, Lavernia E. A model for the inverse Hall–Petch relation ofnanocrystalline materials. Materials Science and Engineering: A2005;409:243-8.
    [76] Yu CY, Kao PW, Chang CP. Transition of tensile deformation behaviors in ultrafine-grainedaluminum. Acta Materialia2005;53:4019-28.
    [77] Kamikawa N. Ph.D thesis of Osaka University;2005.
    [78] Choi H, Kim Y, Shin J, Bae D. Deformation behavior of magnesium in the grain sizespectrum from nano-to micrometer. Materials Science and Engineering: A2010;527:1565-70.
    [79] Huang X, Hansen N, Tsuji N. Hardening by annealing and softening by deformation innanostructured metals. Science2006;312:249-51.
    [80] Huang X, Kamikawa N, Hansen N. Strengthening mechanisms in nanostructured aluminum.Materials Science and Engineering: A2008;483:102-4.
    [81] Huang X, Kamikawa N, Hansen N. Increasing the ductility of nanostructured Al and Fe bydeformation. Materials Science and Engineering: A2008;493:184-9.
    [82] Huang X. Tailoring dislocation structures and mechanical properties of nanostructured metalsproduced by plastic deformation. Scripta Materialia2009;60:1078-82.
    [83] Huang X, Kamikawa N, Hansen N. Strengthening mechanisms and optimization of structureand properties in a nanostructured IF steel. Journal of materials science2010;45:4761-9.
    [84] Huang X, Tsuji N, Pantleon W. Strengthening mechanisms, flow instabilities and propertyoptimization in nanostructured metals.
    [85] Takaki S. Review on the Hall-Petch Relation in Ferritic Steel. Materials Science Forum:Trans Tech Publ;2010. p.11-6.
    [86] Takeda K, Nakada N, Tsuchiyama T, Takaki S. Effect of interstitial elements on Hall-Petchcoefficient of ferritic iron. ISIJ international2008;48:1122-5.
    [87] Nakada N, Fujihara M, Tsuchiyama T, Takaki S. Effect of Phosphorus on Hall-PetchCoefficient in Ferritic Steel. ISIJ international2011;51:1169-73.
    [88] Zhang HW, Huang X, Pippan R, Hansen N. Thermal behavior of Ni (99.967%and99.5%purity) deformed to an ultra-high strain by high pressure torsion. Acta Materialia2010;58:1698-707.
    [89] Zhang HW, Lu K, Pippan R, Huang X, Hansen N. Enhancement of strength and stability ofnanostructured Ni by small amounts of solutes. Scripta Materialia2011;65:481-4.
    [90] Hertzberg RW. Deformation and fracture mechanics of engineering materials: Wiley NewYork;1996.
    [91] Ma E. Instabilities and ductility of nanocrystalline and ultrafine-grained metals. ScriptaMaterialia2003;49:663-8.
    [92] Koch C. Optimization of strength and ductility in nanocrystalline and ultrafine grainedmetals. Scripta Materialia2003;49:657-62.
    [93] Gil Sevillano J, Aldazabal J. Ductilization of nanocrystalline materials for structuralapplications. Scripta Materialia2004;51:795-800.
    [94] Zhu YT, Liao XZ. Nanostructured Metals Retaining ductility. Nature materials2004;3:2.
    [95] Woodford D. STRAIN-RATE SENSITIVITY AS A MEASURE OF DUCTILITY. GeneralElectric Co., Schenectady, NY;1969.
    [96] Wei Q, Cheng S, Ramesh K, Ma E. Effect of nanocrystalline and ultrafine grain sizes on thestrain rate sensitivity and activation volume: fcc versus bcc metals. Materials Science andEngineering: A2004;381:71-9.
    [97] Schwaiger R, Moser B, Dao M, Chollacoop N, Suresh S. Some critical experiments on thestrain-rate sensitivity of nanocrystalline nickel. Acta materialia2003;51:5159-72.
    [98] Wei Q. Strain rate effects in the ultrafine grain and nanocrystalline regimes—influence onsome constitutive responses. Journal of materials science2007;42:1709-27.
    [99] Hutchinson J, Neale K. Influence of strain-rate sensitivity on necking under uniaxial tension.Acta Metallurgica1977;25:839-46.
    [100] Cheng S, Zhao YH, Zhu YT, Ma E. Optimizing the strength and ductility of fine structured2024Al alloy by nano-precipitation. Acta Materialia2007;55:5822-32.
    [101] Song R, Ponge D, Raabe D, Kaspar R. Microstructure and crystallographic texture of anultrafine grained C–Mn steel and their evolution during warm deformation and annealing.Acta Materialia2005;53:845-58.
    [102] Song R, Ponge D, Raabe D. Improvement of the work hardening rate of ultrafine grainedsteels through second phase particles. Scripta Materialia2005;52:1075-80.
    [103] Liu G, Zhang G, Jiang F, Ding X, Sun Y, Sun J, et al. Nanostructured high-strengthmolybdenum alloys with unprecedented tensile ductility. Nature materials2013;12:344-50.
    [104] Zhao Y-H, Liao X-Z, Cheng S, Ma E, Zhu YT. Simultaneously increasing the ductility andstrength of nanostructured alloys. Advanced Materials2006;18:2280-3.
    [105] Rollett A, Humphreys F, Rohrer GS, Hatherly M. Recrystallization and related annealingphenomena: Elsevier;2004.
    [106] Kamikawa N, Tsuji N, Huang X, Hansen N. Quantification of annealed microstructures inARB processed aluminum. Acta Materialia2006;54:3055-66.
    [107] Koch CC. Structural nanocrystalline materials: an overview. Journal of Materials Science2007;42:1403-14.
    [108] H fler H, Averback R. Grain growth in nanocrystalline TiO2 and its relation tovickers hardness and fracture toughness. Scripta metallurgica et materialia1990;24:2401-6.
    [109] Boylan K, Ostrander D, Erb U, Palumbo G, Aust K. An in-situ tem study of the thermalstability of nanocrystalline NiP. Scripta metallurgica et materialia1991;25:2711-6.
    [110] Michels A, Krill C, Ehrhardt H, Birringer R, Wu D. Modelling the influence ofgrain-size-dependent solute drag on the kinetics of grain growth in nanocrystalline materials.Acta materialia1999;47:2143-52.
    [111] Koch C, Scattergood R, Darling K, Semones J. Stabilization of nanocrystalline grain sizes bysolute additions. Journal of Materials Science2008;43:7264‐72
    [112] Christiansen G, Bowen JR, Lindbo J. Electrolytic preparation of metallic thin foils with largeelectron-transparent regions. Materials Characterization2002;49:331-5.
    [113] Liu Q. A simple and rapid method for determining orientations and misorientations ofcrystalline specimens in TEM. Ultramicroscopy1995;60:81-9.
    [114] Ham R. The determination of dislocation densities in thin films. Philosophical Magazine1961;6:1183-4.
    [115] Pe i ka J, Ku el R, Dronhofer A, Eggeler G. The evolution of dislocation density during heattreatment and creep of tempered martensite ferritic steels. Acta materialia2003;51:4847-62.
    [116] Williams DB, Carter CB. The Transmission Electron Microscope: Springer;1996.
    [117] Kuhlmann-Wilsdorf D, Hansen N. Geometrically necessary, incidental and subgrainboundaries. Scripta metallurgica et materialia1991;25:1557-62.
    [118] Liu Q, Hansen N. Geometrically necessary boundaries and incidental dislocation boundariesformed during cold deformation. Scripta metallurgica et materialia1995;32:1289-95.
    [119] Hansen N, Jensen DJ. Development of microstructure in FCC metals during cold work.Philosophical Transactions of the Royal Society of London Series A: Mathematical, Physicaland Engineering Sciences1999;357:1447-69.
    [120] Hughes D, Hansen N, Bammann D. Geometrically necessary boundaries, incidentaldislocation boundaries and geometrically necessary dislocations. Scripta Materialia2003;48:147-53.
    [121] Kidmose J. Structural optimization of nanostructured aluminum for enhancing mechanicalproperties and formability: Technical University of Denmark;2014.
    [122] Rosenbaum H, Turnbull D. Metallographic investigation of precipitation of silicon fromaluminum. Acta metallurgica1959;7:664-74.
    [123] Nakagawa K, Tsuji N, Terada D, Nakano T, Nizam K, Kanadani T. Aging Behavior ofUltra-Fine Grained Al-0.5%Si-0.5%Ge Alloy Fabricated by ARB Process. MaterialsTransactions2014;55:249-54.
    [124] Kidmose J, Lu L, Winther G, Hansen N, Huang X. Strain distribution during tensiledeformation of nanostructured aluminum samples. Journal of Materials Science2012;47:7901-7.
    [125] Jiang H, Zhang Q, Chen X, Chen Z, Jiang Z, Wu X, et al. Three types of Portevin–LeChatelier effects: experiment and modelling. Acta materialia2007;55:2219-28.
    [126] Hansen N, Huang X. Microstructure and flow stress of polycrystals and single crystals. Actamaterialia1998;46:1827-36.
    [127] Zhang X, Godfrey A, Huang X, Hansen N, Liu Q. Microstructure and strengtheningmechanisms in cold-drawn pearlitic steel wire. Acta Materialia2011;59:3422-30.
    [128] Hansen N. Dispersion-Strengthened Aluminium Products.1971:156.
    [129] Nabarro FRN, Basinski ZS, Holt D. The plasticity of pure single crystals. Advances inPhysics1964;13:193-323.
    [130] Neuhaus R, Schwink C. On the flow stress of [100]-and [111]-oriented Cu-Mn single crystals:A transmission electron microscopy study. Philosophical Magazine A1992;65:1463-84.
    [131] Kuhlmann-Wilsdorf D, Thompson A. Work hardening in Tension and Fatigue. AIME, NewYork1977:1.
    [132] Johnson L, Ashby M. The stress at which dislocations multiply in well-annealed metalcrystals. Acta Metallurgica1968;16:219-25.
    [133] Yu Q, Shan Z-W, Li J, Huang X, Xiao L, Sun J, et al. Strong crystal size effect ondeformation twinning. Nature2010;463:335-8.
    [134] Kidmose J, Lu L, Hansen N, Winther G, Huang X. Onset of strain localisation innanostructured aluminium.33rd Ris International Symposium on Materials Science. p.265-70.
    [135] Hart E. Theory of the tensile test. Acta Metallurgica1967;15:351-5.
    [136] Takata N, Okitsu Y, Tsuji N. Dynamic deformation behavior of ultrafine grained aluminumproduced by ARB and subsequent annealing. Journal of Materials Science2008;43:7385-90.
    [137] Humphreys F. The nucleation of recrystallization at second phase particles in deformedaluminium. Acta Metallurgica1977;25:1323-44.
    [138] Daaland O, Nes E. Recrystallization texture development in commercial Al Mn Mgalloys. Acta materialia1996;44:1413-35.
    [139] Hosford W. Texture strengthening. Metals Eng Quart1966;6:13-9.
    [140] Wright SI, Adams BL. An evaluation of the single orientation method for texturedetermination in materials of moderate texture strength. Textures and Microstructures1990;12:65-76.
    [141] Hansen N. The effect of grain size and strain on the tensile flow stress of aluminium at roomtemperature. Acta Metallurgica1977;25:863-9.
    [142] Wang Y, Chen M, Zhou F, Ma E. High tensile ductility in a nanostructured metal. Nature2002;419:912-5.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700