用户名: 密码: 验证码:
无线频选衰落信道下自适应处理技术的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着社会经济的发展,以及Internet的飞速普及,人们对数据通信,尤其是对于能提供随时随地方便联系的无线通信的传输速率和传输质量提出了越来越高的要求。移动电信网从第一代发展到第三代,计算机无线网络领域用于无线局域网(WLAN)的WiFi技术的成熟,以及用于无线城域网(WMAN)最后一公里的WiMAX技术的火热研究,都表明无线通信在近十年以及未来经历了也将一直要经历的飞速发展。
     众所周知,无线通信的信道相对复杂,带宽限制、传播损耗、时变特性、噪声、干扰、多径衰落这些信道特点都制约着无线通信达到高的传输速率和可靠的通信性能。在如此恶劣的信道环境下,需要新一代无线通信技术来支持通信过程。
     本文主要研究无线频选衰落信道下的自适应处理技术。在无线高速传输系统中,频率选择性会引起符号间干扰(ISI),严重的ISI将导致通信无法进行。抵抗ISI的传统技术是均衡技术,有效自适应均衡器的设计是无线系统接收机中的重要内容。在超高速系统中,自适应均衡器接收机非常复杂。目前认为解决信道频率选择性问题的最好的技术是正交频分复用(OFDM)技术。在宽带无线接入领域采用OFDM技术是发展的趋势,OFDM将成为未来移动通信系统的关键技术。在WLAN和WMAN的空中接口标准IEEE802.11和IEEE802.16都采用OFDM技术。
     通过研究传统均衡技术,针对高速系统,本文提出了一种有效的判决反馈均衡器(DFE)实现方案。和传统的DFE相比,提出的DFE考虑了高速信道的稀疏特性,通过对抽头系数的分组和清零来解决这类信道下的噪声积累问题。在降低均衡器实现复杂度的同时,可获得较好的性能。本文首先分析了传统DFE的输出会受抽头噪声积累的影响,这也是提出的DFE可提高系统性能的理论依据。并通过仿真结果表明提出的DFE可以用低的计算复杂度获得好的性能,可适用于高速系统,如高清晰度电视(HDTV)和宽带移动通信。
     OFDM结合多输入多输出(MIMO)技术是目前的研究重点之重。MIMO技术是近年来无线通信技术上的一个重大突破。它综合了分集技术和现代信号处理技术,可以得到好的频谱利用率。它的主要理论基础是在复杂的环境下,多径信道中不同的路径彼此不相关。MIMO-OFDM具有比单纯的OFDM、单纯的MIMO更强的抗干扰能力、更高的系统容量。在无线通信的频选衰落信道下,MIMO-OFDM可以赢得高数据速率和大系统容量而不必增加额外的功率或者带宽。而自适应调制技术是通过调整信号的发射参数,如调制阶数,发射功率大小,编码率来自适应跟踪信道的变化,可用于在固定和无线通信中,来提高传输速率和频谱利用率。WiMAX系统中就支持自适应调制分配技术。传统的自适应分配方法是以最大化系统容量为目标时,采用注水法,自适应给每个子信道分配功率和比特流。本文考虑实际通信系统的要求,在通信上层传输速率和误码率要求一定的情况下,以最小化发射功率为目标,在发射端根据子信道传输特性自适应给每个空间子信道分配传输比特,发射功率。这样既能够充分满足用户对带宽和服务质量的需求,又能够最大限度的利用MIMO-OFDM系统的空间复用增益,获得了好的频谱效率,节省了发射功率。在分配过程中,首先采用拉格朗日直接求解的方法,得到各个子信道的分配比特和功率,计算简单直接。在求解过程中因分配的比特数取整会引入误差,可应用直接比较法达到目标传输速率。随后提出自适应迭代的实现方法来解决比特取整误差问题,在求解的同时,给出了理论证明,提出的算法具有计算复杂度低的优点,并可以小的发射功率实现系统的性能要求。
     在无线移动通信系统中,手持设备受体积限制,一般采用单天线,基站设备采用多天线,也就是单输入多输出(SIMO)或多输入单输出(MISO)系统。在这个系统中,智能天线,也就是自适应波束形成受到了广泛的研究。OFDM技术可以从根本上解决宽带无线通信存在的多径衰落和时延扩展对系统性能的影响,而智能天线技术被认为是解决同信道干扰(CCI)的重要技术。当系统存在干扰甚至强干扰时,使用智能天线技术能够抑制干扰,降低通信系统误码率,提高性能,扩大系统容量。因此,在宽带无线通信系统中,可以把OFDM技术和智能天线技术结合起来实现高速可靠的数据传输。对于一个智能天线-OFDM系统,其关键技术是波束形成,也就是接收端信号的空间处理。这可以分别在时域和频域处理,即在傅立叶变换(FFT)之前和之后进行加权,称为Pre-FFT波束形成和Post-FFT波束形成。波束形成算法可以基于不同的准则进行。本文研究了在两种波束形成系统中采用最小均方误差(MMSE)方法,RLS和最小误比特率(MBER)的方法的系统性能,证明了基于MBER的滤波方法比MMSE可以得到更低的系统误码率。文中首先提出了一种基于MBER准则的Post-FFT频域自适应波束形成器,该技术在波束形成算法中,直接以最小化误比特率(BER)为约束优化求解权向量。最终应用此算法可以在解决宽带无线通信同信道干扰的同时,获得更好的系统误码率性能。与同样条件下,和使用MMSE准则的自适应波束形成器相比,能更准确的跟踪期望用户,系统误码率也更低。为了降低计算复杂度,随后本文研究了Pre-FFT OFDM系统中的RLS和MBER阵列接收机。自适应RLS波束形成器充分利用OFDM系统的导频信号的,能够快速收敛,在时变信道下有较好的性能。最后把MBER优化准则应用于提出的利用导频信号的Pre-FFT OFDM的系统,在保证收敛性的前提下,获得了更好的系统BER性能。
In recent years, with the development of social economy and popularization of Internet, higher communication quality and transmission rate have been required in the data communications, expecially in wireless mobile communication, which can provide convenient communication at anytime and anywhere. From 1G to 3G of the mobile telecom network, from WiFi that is used in wireless local area network (WLAN) area to WiMAX that is used in wireless metropolitan area network (WMAN) in computer network, it has shown that wireless communication is experiencing high-speed development.
     It is well known that the channel of the wireless communication is very compli-cated. It has limiting bandwidth, transmit waste, time variety, noise, interfere and multi-path characteristic, which restrict the better transmit speed and performance of system in wireless communication. Thus, more advanced technologies need to be used to satisfy the requirements.
     This dissertation mainly is dedicated in studying adaptive signal processing tech-nology under wireless frequency selective channel. In wireless high transmit rate system, the most important characteristic of the channel is frequency selective, which introduces the inter-symbol interference (ISI). Serious ISI makes impossible to communicate. The conventional method for fighting back ISI is equalization tech-nology, and the design of efficient equalizor is important content in the receiver of wireless system. In high-speed wireless communications systems, the quite large-scale equalizer is required in order to reduce effectively the ISI component of the received signal. Orthogonal frequency division multiplexing (OFDM) is the best ef-ficient technique to eliminate the ISI for high-speed digital transmission over severe multi-path fading channel, in which the delay spread is large than the symbol dura-tion. And now OFDM has been considered to be a promising key technique for fu-ture mobile communication systems. OFDM is used in air interface standard IEEE 802.11 and IEEE802.16 of WLAN and WMAN system.
     Following the study of the conventional equalization, an efficient decision feed-back equalizer (DFE) is presented for sparse channels with large delay echoes, which are encountered in many high-speed wireless communication applications. Unlike the conventional DFE, this proposed equalizer considers that the channel is sparse and large number of DFE taps lead to noise accumulation problem. The new method can achieve efficient equalization by setting the active group for equaliza-tion taps and clearing the abandoned taps mechanism. As a result, it can both reduce hardware implementation complexity effectively and improve the performance compared to the conventional DFE. Brief analysis about noise accumulation effects in large-scale equalizer and working mechanism description of this effective algo-rithm exhibits us where the performance gain lies. Simulation results show that this modified DFE exhibits considerable computational savings, faster convergence, and better performance and improved tracking capabilities than the conventional ones. It is quite fit for applications in high-speed systems, such as high definition television (HDTV) and broadband mobile communication.
     The combination between OFDM and multiple input multiple output (MIMO) technology is the keystone in wireless research field. Compared with a single input single output (SISO) system, a MIMO system can improve the capacity linearly. This implies that MIMO system has the channel capacity beyond Shannon limit and has huge potential applications in broadband wireless communications. OFDM can simplified the receiver implement and provide high data rate services. It is self-evident that MIMO-OFDM has higher spectrum efficiency and bigger system capac-ity than any of the above two. MIMO-OFDM allows an impressive increase in data rate in a mobile wireless link without additional power or bandwidth consumption through the use of multiple antennas at both transmitter and receiver and OFDM modulation scheme. So recent industry activities suggest that the use of MIMO-OFDM is particularly promising for new generation wireless communications. By adjusting parameter in transmitter, such as bit allocation and power, the adaptive it-erative modulation is used to track the variety of channel for obtaining better per-formance in fix and wireless communication. It is supported in WiMAX. The con-ventional adaptive modulation is implemented by water-filling to maximum the data rate under fixed transmit power. In this paper, an adaptive minimum transmit power modulation scheme under constant data rate and fixed bit error rate (BER) for the MIMO-OFDM system is proposed. It adjusts the modulation order and allocates the transmit power to each spatial sub-channel by iterative method when meeting the user’s QoS requirements at the cost of minimum transmission power. At first, the bit allocation and power can be obtained by Lagrange algorithm. But there is error by round the modulation order, which can be solved by comparation or adaptive itera-tive method. Proof is given at the same time. Computer simulation results present that the proposed method can be meeting the requirement of the system with lower transmission power and lower computational complexity.
     In general, mobile station is equipped by single antennas for its size. At the same time, base station is equipped by multiple antennas. That is single input multiple output (SIMO) or multiple input single output (MISO). Adaptive antenna array has been widely studied in that system, and it is another effective method to greatly in-crease wireless communication system capacity and performance by suppressing co-channel interference, improving coverage quality and mitigating multi-path interfer-ence. OFDM is the best efficient technique to eliminate the ISI. So combination be-tween OFDM and adaptive antenna array can be used to implement high data trans-mission. For an OFDM system, adaptive antenna array beamforming can be applied to either time domain or frequency domain at the receiver, which are called to“Pre-FFT OFDM adaptive antenna array”and“Post-FFT OFDM adaptive antenna array”respectively. In the paper, different adaptive weight algorithms have been studied under two architechtures, such as MMSE, MBER. At first, a Post-FFT OFDM adap-tive antenna array based MBER is proposed. It is shown that the MBER adaptive beamformer outperforms the MMSE beamformer, since it directly minimizes the BER. In the same situation, the MBER beamform can find accurately desired user and obtain lower BER of system. Compared with Post-FFT adaptive antenna array, much lower computation complexity and shorter training symbols are required in the Pre-FFT adaptive antenna array scheme for having only a FFT processor and Pre-FFT signal processing, at a cost of slight performance degradation. Then the Pre-FFT OFDM beamform based RLS and MBER is studied. The RLS beamform can be quickly converged by using the training sequence well and has good performance in time variety channel. At lase, the MBER Pre-FFT beamformer is applied to obtain better BER performance.
引文
[1] 许军,3G 及 E3G 与 Wimax 关系及发展探究,世界电信,2006(4),pp.35-37。
    [2] 张庆荣,李道本,未来移动通信系统展望,中国科技信息,2005(9),pp.6,23。
    [3] A. G. Andrade, R. Conte, “Mobile network evolution toward 3G: a techno-economic analysis,” CONIELECOMP 2006. 16th International Conference on Electronics, Communications and computers, pp.6-6, Feb.2006.
    [4] K.R.Santhi and G.Senthil Kumaran, “Migration to 4G: mobile IP based solutions,” Proceeding of AICI/ICIW, pp.76-76,Feb.2006
    [5] Liangshan Ma, Dongyan Jia, “The competition and cooperation of Wimax, Wlan and 3G,” 2005 2nd International Mobile Technology, Application and Systems, pp.1-5, Nov.2005.
    [6] Aurelian Bria, Fredrik Gessler, Olav Queseth, etc. “4th-Generation wireless infra-structures: scenarios and research challenges”, IEEE Personal Communications, vol.8, No.6, pp.25-31, Dec.12.
    [7] Hawwar, Y.; Farag, E.; Vanakayala, S.; Pauls, R.; Yang, X. elt., “3G UMTS wireless system physical layer: baseband processing hardware implementation perspective,” IEEE Communication Magazine, vol.44, No.9, pp.52-58, Sept. 2006.
    [8] G. P. John,数字通信(第四版),北京,电子工业出版社,2004年。
    [9] J.A.C. Bingham, “Multicarrier modulation for data transmission: an idea whose time has come,” IEEE Commun. Mag., vol.28, No.5, pp.5-14, May 1990.
    [10] Gordon L.Stuber, John R.Barry, and Steve W.Nclaughlin, “Broadband MIMO-OFDM Wireless Communications,” Proceedings of the IEEE, vol.92, No.2, pp.271-294, Feb.2004
    [11] H.Sari, G.Karam, and I.Jeanclaude, “Transmission techniques for digital terrestrial TV broadcasting,” IEEE Commun.Magazine, vol.33,pp.100-109,Feb.1995
    [12] Radio broadcasting systems: digital audio broadcasting (DAB) to mobile, portable and fixed receivers. ETS 300-401, ETSI, Valbonne, France, Feb.1995.
    [13] P.S. Chow, J.C. Tu and J.M. Cioffi, “Performance evaluation of a multichannel trans-ceiver system for ADSL and VHDSL services,” IEEE J. S. A. C., vol.9, No.6, pp.909-919, Aug.1991.
    [14] IEEE Std 802.11a-1999, “IEEE standard for wireless LAN medium access control (MAC) and physical layer in the 5GHz band.”, Sep.2002
    [15] “Technical requirements and identification of necessary enhancements for HIPER-LAN Type 2”, IST-1999-10050 BRAIN D3.1, Sep.2000.
    [16] G. J. Foschini, “Layered Space-Time architecture for wireless communications in fading environment when using multi-element antennas,” Bell Labs Technical Jour-nal, 1996, 2, pp.41-59.
    [17] Paul K., Varghese A., Iyer S., Ramamurthi B. Kumar A., “WiFiRe: rural area broad-band access using the WiFi PHY and a multisector TDD MAC,” IEEE Communica-tions magazine, vol.45, No.1, pp.111-119, Jan.2007.
    [18] Henry P.S., Hui Luo, “WiFi: what's next?” IEEE Communications magazine, vol.40, No.12, pp.66-72, Dec 2002.
    [19] Ghosh, A., Wolter D.R., Andrews J.G., Chen R., “Broadband wireless access with WiMax/802.16: current performance benchmarks and future potential,” IEEE Com-munications magazine, vol.43, No.2, pp.129-136, Feb.2005
    [20] Kevin Fitchard, “WiMAX prepare to come of age”, Telephony online, 27 June 2005, [Online] Available: www.telephonyonline.com/mag/
    [21] Matthew Miller, “When, where, and WiMAX” Special Projects Editor, EDN, 27 May 2004, [Online] Available: www.edn.com/article/CA419563.html.
    [22] WiMAX Forum, “Business case models for Fixed Broadband Wireless Access based on WiMAX Technology and 802.16 standards,” WiMAX Forum, October 10, 2004.
    [23] J. Kim, R. W. Heath, E. J. Powers, “Receiver Designs for Alamouti Coded OFDM Systems in Fast Fading Channels,” IEEE Trans. Wireless Communications, vol.4, No2, pp.550-559, Mar.2005.
    [24] L. J. Cimini, “Analysis and simulation of a digital mobile channel using orthogonal frequency division multiplexing,” IEEE Trans. Conmmun., vol.COM-33, pp.665-675, July.1985.
    [25] W. P. Siriwongpairat, W. Su, M. Olfat, et al., “Multiband-OFDM MIMO coding framework for UWB communication systems,” IEEE Trans. Signal Processing, vol.54, No.1, pp.214-224. Jan.2006.
    [26] Y. H. You, W. G. Jeon, J. H. Paik, et al. “Performance evaluation of OFDM-CDMA with multiple antennas for broadband wireless access networks,” IEEE Trans. Ve-hicular Technology, vol.54, No.1, pp.385-398. Jan.2005.
    [27] H. EI Gamal, A. R. Hammons, Jr. Y. Liu, et al, “On the design of space-time andspace-frequency codes for MIMO frequency selective fading channels,” IEEE Trans. Inform. Theory, vol.49, pp.2277-2292, Sept.2003.
    [28] A. Dammann, S. Kaiser, “Standard conformable antenna diversity techniques for OFDM and its application to the DVB-T system,” in Proc. IEEE Globecom, 2001, pp.3100-3105, 2001.
    [29] Michael Chryssomallis. “Smart Antenna.” IEEE Trans. Antennas and Propogation, vol.42, No.3, pp.129-136, 2000.
    [30] Paulraj, A. J., Rohit Nabar, D. Gore, Introduction to Space-Time Wireless Communi-cations, England: Cambridge University Press, 2003.
    [31] A.J. Paulraj, D. Gesbert, C. Papadias, Smart Antennas for Mobile Communications, New York: John Wiley, 2000.
    [32] M. Helaoui, S. Boumaiza, A. Ghazel, F. M. Ghannouchi, “Power and efficiency en-hancement of 3G multicarrier amplifiers using digital signal processing with experi-mental validation,” IEEE Trans. Microwave Theory and Techniques, vol.54, No.4, pp.1396-1404, April.2006.
    [33] J. H. Winters, “The diversity gain of transmit diversity in wireless systems with Rayleigh fading,” in Proc. IEEE Int. Conf. Communications, pp.1121-1125, 1994.
    [34] R. S. Blum, J. H. Winters, “On optimum MIMO with antenna selection,” in Proc, IEEE Int. Conf. Communications, vol.1, pp.386-390, 2002.
    [35] 张贤达,保铮,通信信号处理,北京,国防工业出版社,2000 年,pp.529-540。
    [36] 白伟,新一代无线系统中的信道估计,上海交通大学博士学位论文,2003。
    [37] 周文安,付秀花,王志辉译,无线通信原理与应用,北京,电子工业出版社,2006。
    [38] Joram Walfisch, Henry L. Bertoni, “A Theoretical Model of UHF Propagation in Ur-ban Environments,” IEEE Trans. Antennas and Propagation, vol.36, No.12, pp.1788-1796, Dec.1988.
    [39] Kun-Wap Yip, Tung-Sang Ng, “A Simulation Model for Nakagami-m Fading Chan-nels, m<1,” IEEE Trans. Communications, vol.48, No.2, pp.214-221, Feb.2000.
    [40] P. A. Bello, “Characterization of Randomly Time-invariant Linear Channels,” IEEE Trans. Commun. Syst., vol.CS-11, pp.360-393, Dec.1963.
    [41] P. Hoeher, “A Statistical Discrete-time Model for the WSSUS Multipath Channel,” IEEE Trans. Vehic. Technol., vol.41, pp.461-468, Nov.1992.
    [42] U. Dersch, W.R. Braun, “Physical Mobile Radio Channel Model”, IEEE Trans. Veh. Technol., vol.VT-40, No.2, pp.472-482, May.1991.
    [43] Erik G. Strom, Stefan Parkvall, Scott L. Miller, Propagation Delay Estimation in Asynchronous Direct-Sequence Code-Division Multiple Access Systems, IEEE Transactions on Communications, vol.44, No.1, pp84-93, Jan.1996
    [44] Vincent Buchoux, Olivier Cappe, Eric Moulines, A. Gorokhov, On the Performance of Semi-Blind Subspace-Based Channel Estimation, IEEE Transactions on Signal Processing, vol.48, No.6, pp1750-1759, Jun.2000
    [45] 龚耀寰著,自适应滤波(第二版)-时域自适应滤波和智能天线,电子工业出版社,2003。
    [46] Juha Heiskala, John Terry 著,杨晓春,何建吾等译,OFDM 无线局域网,北京,电子工业出版社,2003。
    [47] Michael A.Jensen and Jon W.Wallace. “A Review of Antennas and Propagation for MIMO Wireless Communications.” IEEE Trans. Antennas and Propogation, vol.52, No.11, pp.2810-2824, Nov.2004.
    [48] Helmut Bolcskei and Arogyaswami J. Paulraj, "Multiple-input multiple-output (MIMO) wireless systems," The Communications Handbook, 2nd Edition, USA: CRC Press, 2002.
    [49] 刘云辉,无线通信MIMO和自适应阵列系统的波束形成及性能,上海交通大学博士学位论文,2006。
    [50] LAL C.GODARA. “Application of Antenna Arrays to Mobile Communications, Part II: Beam-Forming and Direction-of-Arrival Considerations,” Proceedings of the IEEE, vol.85, No.8, pp.1195-1245, July.1997.
    [51] B.D.Veen and K.M.Buckley, “Beamforming: A versatile approach to spatial filter-ing”, IEEE ASSP Mag, vol.5, No.2, pp4-24, April.1988
    [52] 郭艳,恒模算法及其在盲波束形成中的应用,西安,西安电子科技大学,2002。
    [53] D Bartolome, AI Perez-Neira, “MMSE Techniques for Space Diversity Receivers in OFDM-Based Wirless LANs,” IEEE Journal on selected areas in communications, vol.21, No.2, pp.151-160, Feb.2003.
    [54] G. Jongren, M. Skoglund and B. Ottersen, “Combining beamforming and orthogonal space-time block coding,” IEEE Trans. Information Thoery, vol.48, No.3, pp.611-627, 2002.
    [55] J.Mietzner and Hoeher, P. A. “Boosting the performance of wireless communication systems: theory and practice of multiple-antenna techniques”. IEEE Communications Magazine, vol.42, No.10, pp.40-47, Oct.2004.
    [56] Michael A.Jensen and Jon W.Wallace. “A Review of Antennas and Propagation for MIMO Wireless Communications.” IEEE Trans. Antennas and Propogation, vol.52, No.11, pp.2810-2824, Nov.2004.
    [57] Y. Li, J. C. Chung, N. R. Sollenberger, “Transmitter diversity for OFDM systems and its impact on high-rate data wireless networks,” IEEE J. Select. Areas Commun., vol.17, pp.1233-1243, July.1999.
    [58] S. M. Alamouti, “A simple transmit diversity technique for wireless communica-tions,” IEEE J. Select. Areas Commun., vol.16, No.8, pp.1451-1458, Oct.1998.
    [59] X. Cai, G. B. Giannakis, Differential space-time modulation with eigen-beamforming for correlated MIMO fading channels, IEEE Trans. Signal Processing, vol.54, No.4, pp.1279-1288, April 2006.
    [60] J.G.Proakis, Digital Communications, 3rd ed. New York: McGraw Hill 1995
    [61] T.S.Rappaport, Wireless Communications: Principles and Practice. Englewood Cliffs, NJ: Prentice-Hall, 1996
    [62] ATSC Recommended Practice: Receiver Performance Guidelines (A/74, Jun. 2004) and ATSC digital television standard, Revision B with Amendment 1 (A/53B, Sept. 2001). To: www.atsc.org
    [63] Advanced Television Technology Centre (ATTC): Evaluation of ATSC 8-VSB Re-ceiver Performance in the Presence of Simulated Multipath and Noise (doc. #99-04A, Sept. 1999). To: www.attc.org
    [64] I.J. Fevrier, S.B. Gelfand and M.P. Fitz, “Reduced complexity decision feedback equalization for multipath channels with large delay spreads,” IEEE Trans. Commu, vol.47, No.6, pp. 927-937, Jun.1999.
    [65] Rontogiannis, A.A.; Berberidis, K., “Efficient decision feedback equalization for sparse wireless channels,” IEEE Trans. Wireless Communications, vol.2, No.3, pp.570-581, May.2003.
    [66] M.R.Asharif, K.Murano and M.Hatori, “TV ghost canceling by LMS-RAT digital filter,” IEEE Trans. Consumer Electronics, vol.27, No.4, pp.588-604, Nov.1981
    [67] M.Ghosh, “Blind decision feedback equalization for terrestrial television receivers,” Proc.IEEE, vol.86, pp.2070-2081, Oct.1998.
    [68] Wu Wen-Rong and Tsuie Yih-Ming, “An LMS-based decision feedback equalizer for IS-136 receivers,” IEEE Trans. Vehicular Technology, vol.51, No.1, pp.130-143, Jan.2002.
    [69] Dongjian Wang, Lingge Jiang, Chen He and Lingyan Fan, “On design of noise resis-tant complexity reduced decision feedback equalizer for large delay sparse eches,” ICC 2005, submitted for publication.
    [70] J.Chuang an N.Sollenberger, “Beyond 3G:wideband wireless data access based on OFDM and dynamic packet assignment,” IEEE Commun.Magazine., vol.38, pp.78-87, July.2000
    [71] Sheikh K., Gesbert D. and Gore D. and Paulraj A, “Smart antennas for broadband wireless access networks”, IEEE Communications Magazine , vol.37, No.11, pp.100 –105, Nov.1999.
    [72] Salvatore Belloflore, Jeffrey Foutz and Constantine A.Balanis, “Smart-Antenna Sys-tem for Mobile Communication Networks Part2: Beamforming and Network Throughtout,” IEEE Antenna’s and Propagation Magazine, vol.44, No.4, Aug.2002
    [73] B.D.Veen and K.M.Buckley, “Beamforming: A versatile approach to spatial filter-ing”, IEEE ASSP Mag. pp4-24, April.1988.
    [74] Hidehiro Matsuoka and Hiroki Shoki, “Comparison of pre-FFT and post-FFT proc-essing adaptive arrays for OFDM systems in the presence of co-channel interfer-ence.” The 14th IEEE International Symposium on Personal and Mobile Radio Com-munication Proceedings, pp.1603-1607, 2000
    [75] M Budsabathon, Y Hara, S Hara, “Optimum Beamforming for Pre-FFT OFDM Adaptive Antenna Array,” IEICE Transactions on Communications, 2003, E86-B(6): 1936-1945.
    [76] M Okada, S. Komaki, “Pre-DFT Combining Space Diversity Assisted COFDM,” IEEE Transactions on vehicular technology, vol.50, No.2, pp.487-496, 2002.
    [77] Hua Zhang, Ye (Geoffrey) Li, “Clustered OFDM with Adaptive Antenna Arrays for Interference Suppression,” in Proc. IEEE International Conference on Communica-tions, pp2066-2070, 2003.
    [78] Y Sun, H Matsuoka, “A Novel Adaptive Antenna Architecture-Subcarrier Clustering For High-Speed OFDM System in Presence of Rich Co-channel Interference,” Proc. Of IEEE Vehicular Technology Conference, pp.1564-1568, 2002.
    [79] BLP Cheung, Simulation of Adaptive Array Algorithms for OFDM and Adaptive Vector OFDM Systems, Blacksburg: Virginia Polytechnic Institute and State.
    [80] H.krim and M.Viberg, “Two decades of array signal processing research”, IEEE SP Mag., pp.67-94, July 1996.
    [81] Sergiy A. Vorobyov, Alex B.and Zhi-Quan Luo, “Adaptive Beamforming With Joint Robustness Against Mismatched Signal Steering Vector and Interference Nonstation-arity”, IEEE Signal Processing Letters, vol. 11, No.2, pp108-111, Feb, 2004.
    [82] Sergiy A. Vorobyov, Alex B.and Zhi-Quan Luo, “Robust Adaptive Beamforming Us-ing Worst-Case Performance Optimization: A Solution to the signal Mismatch Prob-lem”, IEEE Trans. Signal Processing, vol. 51, No.2, pp313-324, Feb, 2003.
    [83] G. V. Tsoulos, G. E. Athanasiadou, and R. J. Piechocki, “Low-complexity smart an-tenna methods for third generation W-CDMA systems,” IEEE Trans. Veh. Technol., vol.49, No.6, pp.2382–2396, 2000.
    [84] A. J. Viterbi, “The orthogonal-random waveform dichotomy for digital mobile per-sonal communication,” IEEE Personal Commun., pp.18–24, 1994.
    [85] D. J. Torrieri, “Performance of direct-sequence system with long pseudonoise se-quence,” IEEE J. Select. Areas Commun., vol.10, pp.770–781, May 1992.
    [86] G. L. Turin, “The effects of multipath and fading on the performance of direct-sequence CDMA system,” IEEE Trans. Veh. Technol., vol.VT-33, pp.213–219, Aug.1984.
    [87] Chan Kyu Kim, Songin Choi and Yong Soo Cho, “Adaptive Beamforming for an OFDM System,” IEEE Vehicular Technology Conference, 1999 IEEE 49th, vol. pp.484-488, May.1999.
    [88] Yih.chyun Jenq, John B.Thomas and Bede Liu, “A Minimum-Error Probability Tapped Delay Line Equalizer, ” IEEE Trancactions on Communications, vol.25, No.10, pp.1120-1127, Oct.1977.
    [89] S.Chen, B.Mulgrew and L.Hanzo, “Least bit error rate adaptive nonlinear equalizers for binary signaling,” Communications, IEE Proceedings, vol.150, pp.29-36, Feb.2003.
    [90] Chen.Chu Yeh and John R.Barry, “Adaptive minimum bit-error rate equalization for binary signaling,” IEEE Transactions on communication , vol.48, No.7, pp.1226-1234, Jul.2000.
    [91] S.Chen, “Adaptive minimum bit-error-rate filtering,” IEE Proceeding, online no.20040301
    [92] Chan Kyu Kim, “Pre-FFT Adaptive beamforming algorithm for OFDM systems with antenna arrays,” IEICE Trans. Commun, vol. E86-B, No. 3, pp.1144-1148, Mar.2003.
    [93] Le Minh Tuan, Pham Van Su, Jewoo Kim and Giwan Yoon, “A New RLS-based adaptive beamforming algorithm for smart antenna applied to an OFDM system,” 2002 3rd International Conference on Microwave and Millimeter Wave Technology Proceeding, pp.672-675, 2002.
    [94] Simon Haykin, “Adaptive filter theory”, The fourth edition, Upper Saddle River, Prentice Hall, NJ 07458
    [95] Chan Kyu Kim, Kwangchun Lee and Yong Soo Cho, “Adaptive beamforming algo-rithm for OFDM systems with antenna arrays,” IEEE Transaction on Consumer Elec-tronics, vol. 46, No.4, pp.1052-1058, Nov.2000.
    [96] S.Chen,Ahmad K.Samingan, and Bernard Mulgrew, “Adaptive Minimum-BER Lin-ear Multiuser Detection for DS-CDMA Signals in Multipath Channels,” IEEE Trans-action on signal processing, vol.49, No.6, pp.1240-1247, Jun.2001.
    [97] M.Y.Alias, A.K.Samingan and S.chen, “Multiple antenna aided OFDM employing minimum bit error rate multiuser detection,” Electronics Letters, vol.39, No.24, pp.1769-1770, Nov.2003.
    [98] S.Chen, L.Hanzo and N.N.Ahmad, “Adaptive minimum bit error rate beamforming assisted receiver for wireless communications,” (ICASSP '03). 2003 IEEE Interna-tional Conference, vol.4, pp.640-643, Apr.2003.
    [99] S.J.Yi, C.C.Tsimenidis, O.R.Hinton and B.S.Sharif, “Adaptive minimum bit error rate multiuser detection for asynchronous MC-CDMA system in frequency selective Rayleigh fading channels,” the 14th IEEE 2003 International Symposium on Personal, Indoor and Mobile Communication Proceeding, pp: 1269-1273, 2003.
    [100] Goldsmith, A.; Jafar, S.A.; Jindal, N.; Vishwanath, S., “Capacity limits of MIMO channels” IEEE Journal on Selected Areas in Communications, vol.21, No.5, Jun 2003.
    [101] Siwaruk Siwamogsatham and Michael P. Fitz, “Robust Space-Time Codes for Corre-lated Rayleigh Fading Channels”, IEEE Trans. Signal Processing, vol.50, No.10, Oct.2002.
    [102] M. Sellathurai and Simon Haykin, “Turbo-BLAST: Performance Evaluation in Cor-related Rayleigh-Fading Environment”, IEEE Journal on Selected Areas in Commu-nications, vol.21, No.3, Apr.2003.
    [103] Mérouane Debbah, “Short introduction to OFDM,” http://www.eurecom.fr/~debbah/ papier/ofdmtutorial.pdf.
    [104] Gordon L, John R, Steve W, et al. “Broadband MIMO-OFDM Wireless Communica-tions”, Proceedings of the IEEE, vol.92, No.2, pp.271-294, Feb.2004.
    [105] Uthansakul. P., Bialkowski, M.E., “Multipath signal effect on the capacity of MIMO, MIMO-OFDM and spread MIMO-OFDM,” Microwaves, Radar and Wireless Com-munications, 2004. MIKON-2004. 15th International Conference on, vol.3, pp.989-992, May 2004.
    [106] Allert van Zelst and Tim C.W.Schenk, “Implementation of a MIMO OFDM-Based Wireless LAN System,” IEEE Trans. Signal Processing, vol.52, No.2, pp.484-494, 2004.
    [107] Zhou Z. and Vucetic, B., “Design of adaptive modulation using impact CSI in MIMO systems”, Electronics Letters, vol.40, No.17, pp. 1073-1074, Aug.2004.
    [108] Zhiying Wang, Chen He and An He, “Robust AM-MIMO Based on Minimized Transmission Power”, IEEE Communications Letters, vol.10, No.6, Jun.2006.
    [109] Lin Dai, Shi-dong Zhou, Hai-rui Zhang and Yan Yao: “Closed –loop MIMO archi-tecture based on water-filling”, Electronics Letters, vol.38, No.25, pp.1718-1720, Dec.2002.
    [110] Jang J, Lee K B, Lee Y H, “Transmit power and bit allocations for OFDM systems in a fading channel”, 2003 IEEE. GLOBECOM, pp.858-862, 2003.
    [111] Cheng Wang and Ross D. Murch, “Adaptive downlink multi-user MIMO wireless systems for correlated channels with imperfect CSI”, IEEE Trans. Wireless Commu-nications, vol.5, No.9, Sep.2006.
    [112] Pengfei Xia, Shengli Zhou, Georgios B.Giannakis, “Adaptive MIMO-OFDM Based on Partial Channel State Information,” IEEE Trans. Signal Processing, 2004, vol.52, No.1, pp.202-213.
    [113] Jie Gao, Ozdural O.C., Ardalan S.H., Huaping Liu, “Performance modeling of MIMO OFDM systems via channel analysis”, IEEE Trans. Wireless Communications, vol.5, No.9, pp.2358-2362, Sep.2006.
    [114] Helmut Bolcskei, “Principles of MIMO-OFDM Wireless Systems”, Chapter in CRC Handbook on Signal Processing for Communications, M. Ibnkahla, Ed., 2004.
    [115] Roh, J.C, and Rao, B.D: “Adaptive modulation for multiple antenna channels”, Pro. 36th Asilomar Conf. on Signals, Systems, and Computers 2002, Pacific Grove, CA, USA, Nov.2002
    [116] Zhou,S., and Giannakis,G.B.: “Adaptive modulation for multi-antenna transmissions with channel mean feedback”, IEEE Trans. Wireless Communication, vol.3, No.5, pp.1626-1636, Sep.2004.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700