用户名: 密码: 验证码:
汽车防抱死制动试验系统动态检测的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
汽车的制动性能直接关系到汽车的行驶安全。随着汽车保有量的增加和行驶速度的不断提高,人们对汽车的安全性能越来越重视。ABS(Anti-lock Braking System,防抱死制动系统)作为一项成熟的汽车主动安全性技术,已经得到广泛的应用与推广。因此对ABS性能的检测就显得尤为重要。
     由于惯性的影响,汽车在制动时,前后轴载荷会发生转移。目前对ABS系统的研究大都考虑了汽车行驶惯性的影响。但在滚筒试验台上检测时,汽车质心速度为零,是一种静态检测。那么这样的试验系统采集的实验数据就会有一定的偏差。本文探讨解决ABS滚筒实验台不能模拟实际制动动态过程这一问题的方法。
     为了使研究具有更可靠的理论依据,本文对汽车制动进行分析时考虑了以往在汽车制动动力学分析时忽略的:滚动阻力偶矩、车轮等旋转部件减速时产生的惯性力偶矩,建立了有别于其它文献的汽车制动动力学模型,对汽车制动时的轴荷转移进行了分析研究。以自行研制的ABS制动试验台为主要研究对象,对ABS滚筒试验台的制动进行了动力学分析,并建立了滚筒试验台制动模型。
     在对汽车制动理论研究的基础上提出了ABS试验台动态检测的工作原理及总体方案:在ABS滚筒试验台上增加一个液压载荷调节系统,通过单片机控制与减压阀相联的步进电机来控制载荷调节系统液压缸的压力,使试验台制动时载荷的变化与实际的情况更加接近,从而实现ABS制动的动态检测。提出了ABS试验台动态检测控制系统的总体结构,阐述了控制系统的主要工作流程。推导了动态检测控制系统中车辆加速度与车轮角加速度的测量算法。
     对ABS试验台动态检测方案、汽车道路制动过程以及滚筒试验台制动过程进行了仿真,把仿真结果与实验结果进行对比,分析误差产生的原因,从而验证了本文所建的模型是正确、合理的。
     本文对汽车制动过程以及滚筒试验台制动的研究,为进一步改进ABS滚筒试验台的检测性能提供了理论参考依据。本文提出的ABS试验台动态检测原理为解决ABS滚筒试验台不能进行动态检测的问题提供了新的思路,具有一定的实用价值。
Vehicle braking performance is directly related to the traffic safety. With the increase of vehicle population and constantly improvement of the vehicle speed, more and more attention is paid to the traffic safety. As a mature active safety technology, the ABS (Anti-lock Braking System) has been wildly promoted and applied. Therefore, it is very significant to test the ABS performance.
     Because of inertia, the front and rear axle load will shift when a vehicle braking. The studies on ABS are mostly taken account of the impact of vehicle inertia. However, the speed of vehicle centroid is zero when a vehicle testing on a roller test-bed. It’s a static testing. Therefore, the experimental data collected by such a test system definitely contain a certain deviation. This paper study a way to solve the problem that the ABS roller test-bed cannot simulate the dynamic process of actual braking.
     In order to provide a more reliable theoretical basis for the study, taking into account the factors previously neglected: rolling resistance moment and inertia moment which results from slow-down of the wheel and other rotating parts, a dynamic analysis of vehicle braking is conducted, and vehicle braking models which differ from other papers and books are found, and the axle load shift is studied. With the self-developed ABS test-bed as study objects, a dynamic analysis of ABS roller test-bed braking process is conducted, and braking models of the test-bed are found.
     On the basis of theoretical study on vehicle braking, a general technique scheme and working principle of dynamic test in ABS test-bed is proposed: A hydraulic system for on-load regulation is appended to ABS roller test-bed. The relief pressure valves in the hydraulic system are connected to step motors, which is controlled by micro-controller unit (MCU). So the MCU can control the hydraulic cylinder pressure to realize dynamic test for ABS braking performance. A configuration of the control system for dynamic test in ABS test-bed is proposed, and the main workflow of the control system is expatiated. The measurement algorithm of vehicle acceleration and angular acceleration is deduced.
     The scheme of dynamic test in ABS test-bed, vehicle and test-bed braking process are simulated. The simulation results are compared with experiment data, and the reasons for the deviation are analyzed. The result shows that models found in this paper are correct and logical.
     In this paper, the study on vehicle and ABS roller test-bed braking process provide theoretical references for further improving the test performance of the ABS test-bed. The general technique scheme to dynamic test in ABS test-bed which is proposed on this paper provides a new way to solve the problem that ABS roller test-bed cannot test dynamically. It has certain practical value.
引文
[1]魏朗,郭荣庆. ABS道路试验项目及评价方法分析[J].山东交通学院学报, 2002年, 10(2): 31-35.
    [2]王维,刘建农,何光里.汽车制动性检测[M].北京:人民交通出版社, 2005年: 128-179.
    [3]陈勇,孙逢春.汽车测试技术[M].北京:北京理工大学出版社, 2008年.
    [4] H. Decker, J. Wrede. A Proposal for Classification of Electronically Controlled Breaking System for Commercial Vehicle [R]. XI International Heavy Vehicle Conference, Budapest, September 1994.
    [5]刘少林,许沧栗,黄德中.汽车ABS滚筒式惯性检测台架的设计[J].机电工程, 2004, 21(6): 16-20.
    [6]华文林.滚筒式制动试验台检测汽车制动性能真实性探讨[J].黄石高等专科学校学报, 2004, 19(2): 23-25.
    [7] National Highway Traffic Safety Administration. Federal Motor Vehicle Safety Standards [S]. Hydrsulic Brake System. Passenger Car Brake Systems(FMVSS 135). Detroit: Federal Register. 1985: 34-38.
    [8]黄孝慈.影响制动性能检测关键因素的分析研究[D].哈尔滨:东北林业大学, 2006年.
    [9]林波,夏群生,何乐. ABS液压混合仿真试验台的研究与应用[J].清华大学学报, 2002, 42(2): 262-265.
    [10]郭孔辉,丁海涛,刘潥.汽车ABS混合仿真试验台的开发与研究[J].中国机械工程, 2000, 11(12): 1417-1421.
    [11]刘开封.机械惯量电模拟方法在汽车ABS检测中的应用研究[D].长春:吉林大学交通学院, 2005年.
    [12]魏胜.汽车ABS测试系统的开发与试验研究[D].长春:吉林工业大学, 2005.
    [13]梅凤祥.工程力学(下册)[M].北京:高等教育出版社, 2003年.
    [14] (美)Thomas D. Gillespie著,赵六奇,金达峰译.车辆动力学基础[M].清华大学出版社, 2006年.
    [15]哈尔滨工业大学理论力学教研组.理论力学(上册)[M].高等教育出版社, 1997年,第五版: 229.
    [16]刘景辉.轿车制动系建模与仿真及ABS控制策略[J].上海:上海交通大学机械与动力学院, 2007年.
    [17] GB/T 15089-2001《机动车辆及挂车分类》[S].
    [18]苏周成.车辆转弯制动稳定性动力学控制研究[D].重庆:重庆大学, 2007年.
    [19]程军,瞿宏敏.分离附着系数路况下防抱制动控制的研究[J].汽车研究与开发,1996年第1期: 8-12.
    [20] [日]ABS株式会社.汽车制动防抱死装置(ABS)构造与原理[M].北京:机械工业出版社, 2005年: 35.
    [21]喻凡,林逸.汽车系统动力学[M].北京:机械工业出版社, 2005年: 18.
    [22]杨桂通.弹塑性力学引论[M].北京:清华大学出版社, 2004年: 208.
    [23]宋健,陈在峰.制动器耗散功率最大为目标的ABS控制方法[J].清华大学学报, 1997, 37(12): 95-98;
    [24]程军.汽车防抱死制动系统的理论与实践[M].北京:北京理工大学出版社, 1999.
    [25]瞿宏敏,程军.汽车动力学模拟中的轮胎模型述评[J].汽车技术, 1996年,第7期: 1-8.
    [26] Pacejka H B. Tire and vehicle dynamics[M]. SAE International, 2005, 2nd Edition.
    [27]张长冲. ESP—汽车电子稳定性仿真研究[J].济南:山东大学, 2007年.
    [28]雷雨成.汽车系统动力学及仿真[M].北京:国防工业出版社, 1997年: 106-127.
    [29]安永东,杜嘉勇,罗萌.基于Simulink的汽车ABS建模仿真[J].黑龙江工程学院学报(自然科学版), 2008, 22(2): 40-43.
    [30]曾军,方厚辉.神经网络PID控制及其MATLAB仿真[J].现代电子技术, 2004, 69(2): 51-55.
    [31]黄忠霖.控制系统MATLAB计算及仿真[M].北京:国防工业出版社, 2004年.
    [32]薛定宇.基于MATLAB/Simulink的系统仿真技术的与应用[M].北京:清华大学出版社, 2002年.
    [33]陈建元.传感器技术[M].北京:机械工业出版社, 2008.
    [34] William F Milliken, Douglas L Milliken. Race Car Vehicle Dynamics[M]. SAE press, 1995.
    [35] [德] H-P威鲁麦特.车辆动力学模拟及其方法[M].北京:北京理工大学出版社, 1998年.
    [36] M.米奇克(著),陈萌三(译).汽车动力学[M].北京:人民交通出版社, 1992年.
    [37] William M F, Whitcomb D W. General introduction to a program of dynamic research [M]. Proceedings of IMechE. Automobile Division, 1957: 367-391.
    [38] Gordon T. Vehicle dynamics lecture notes [Z]. University of Michigan, Ann Arbor, 2004.
    [39]张景绘.动力学系统建模[M].北京:国防工业出版社, 2001年.
    [40] Wallentowitz H. Longitudinal dynamics of vehicle [Z]. Lecture Note, Institute Fur kraftfahrwesen Aachen, 2001;
    [41] B.Sc.Jia Guo. Implementation of an Electronic Stability Program ESP in the Simulation Environment IPG CarMaker [D]. University Duisburg-Essen: 2006;
    [42]周云山,钟勇.汽车电子控制技术[M].北京:机械工业出版社, 2004.
    [43]刘晶郁,李晓霞.汽车安全与法规[M].北京:人民交通出版社, 2005.
    [44]周志立,徐斌,卫尧.汽车ABS原理与结构[M].机械工业出版社, 2005.
    [45]余志生.汽车理论[M].北京:机械工业出版社, 2003年.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700