用户名: 密码: 验证码:
崇明东滩盐沼近底层水流与悬沙变化过程研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着长三角城市的快速发展,长江河口潮滩盐沼潜在的可利用资源以及生态环境效益越来越被人们所关注,对其研究也逐渐受到专家学者们的重视。潮滩盐沼受海陆交互作用影响,潮流水动力作用强烈,泥沙输移和物质交换频繁。它不仅起着保护海岸带的屏障作用,同时对环境变化的响应也十分敏感。盐沼近底层是潮滩泥沙发生悬浮、沉降、交换最直接的场所,其水流泥沙的输移机制是潮滩冲淤和物质循环研究的热点问题。
     本文以长江口崇明东滩盐沼区作为研究区域,选择了春季(5月)和夏季(7-8月)为观测期,通过实测潮流水位、近底三维流速、近底悬沙浓度及平均粒径等多项指标,对潮汐过程中盐沼植物海三棱藨草作用下近底层的水流及悬沙特征变化情况进行了研究,获得以下主要结论:
     (1)根据春夏两季实测数据,盐沼近底层潮流的平均水平流速总体较小,为3.24cm/s-7.29cm/s,明显小于垂线平均流速(11.75cm/s);大潮流速大于小潮,约其1.5-2.1倍;涨潮平均流速(5.73 cm/s)多大于落潮(4.03cm/s)。大潮涨落潮阶段分别形成一个向岸和离岸流速的峰值阶段,其中向岸流速峰值阶段更为明显;小潮涨落潮的峰值阶段不显著,流速基本在潮流中期较大。利用Vectrino流速仪实测的三维流速数据,通过TKE法计算得到近底层水流紊动能量及近底剪切应力,大潮平均近底剪切应力(1.2N/m~2)大于小潮(0.7N/m~2)。大、小潮近底剪切应力在过程图上分别呈现“双峰”及“单峰”变化,其中大潮涨急和落急阶段的流速和近底剪切应力都较大,但涨潮近底剪切应力(1.33N/m~2)略大于落潮(1.08N/m~2)。小潮近底剪切应力随潮位升高而增大,较大值一般出现在潮流中期。
     (2)利用Solitax sc100浊度仪测量盐沼近底层潮流浊度值,再通过现场泥沙标定方法获得悬沙浓度变化数据。春季潮周期的平均悬沙浓度为2.45g/L,涨潮阶段的平均悬沙浓度(2.64g/L)大于落潮阶段(2.25g/L);夏季潮周期的平均悬沙浓度为0.8g/L,涨潮阶段的平均悬沙浓度(0.79g/L)略小于落潮阶段(0.8g/L)。
     利用LS 13 320激光衍射粒度分析仪对潮周期同步采集水样中的悬沙粒度进行测量。盐沼近底层悬沙颗粒总体较细,平均粒径为15.2μm,大潮周期平均粒径(16.6μm)大于小潮周期(13.8μm);悬沙级配中细粉砂和粘土含量最大,占总体积的69.9%。
     (3)通过回归分析发现,盐沼近底层剪切应力(或紊动能量)与水平流速呈显著正相关,相关系数R2介于0.57~0.83。未发现盐沼近底层悬沙浓度与水平流速之间存在显著的直接相关关系,但在大潮周期高水位阶段,潮流流速较小,近底层悬沙浓度出现峰值,说明大潮高水位阶段上层悬沙沉降作用明显。盐沼近底层的悬沙粒径变化与水平流速存在正相关,两季相关系数R2分别为0.77和0.66。悬沙平均粒径在潮周期内的变化与流速变化类似:在大小潮周期中,平均粒径多呈现“双峰”和“单峰”变化。悬沙级配中以中粗粉砂为主的粗颗粒泥沙含量变化对流速的响应明显。
     (4)通过两季大小潮周期各项数据的比较,春季滩面盐沼植被海三棱藨草的高度(13.9cm)和密度(1056株/m~2)均明显小于夏季(21cm、1854株/m2),而春季盐沼近底层的平均流速(5.47cm/s)、剪切应力(1.27N/m~2)、悬沙浓度(2.45g/L)和平均粒径(20μm)均大于夏季潮周期平均值(4.56cm/s、0.79N/m~2、0.8g/L、12.6μm)。结果表明随植株生长,盐沼植被的缓流、消能以及对悬沙粘附和拦截作用逐渐增强。
With the rapid development of cities in Yangtze River Delta, the potential of available resources and environmental benefits of salt marshes in Yangtze River Estuary are getting more and more concern by experts and scholars. Tidal Flat salt marshes were influenced by the interaction between the land and sea. Tide hydrodynamics played an important role during the morph dynamic process of the tidal flat. The sediment transport and material exchange occurred frequently during the process. Salt marsh not only plays a role of barrier to protect the coastal zone, but also sensitively responds to the environment changes. The bottom of salt marshes is the main place where sediment suspension, settlement and exchange happen. The flow and sediment transport mechanism is the hot issue on tidal beach erosion and deposition and material circulating.
     In this paper, a salt marshes area of Chongming Dongtan in the Yangtze River Estuary was the study area and the observation periods were spring (in May) and summer (in July and August). There were several main indicators, such as tide water level, near-bottom current velocity, near-bottom sediment concentration and sediment grain size. The process of the near-bottom water and sediment changes in salt marshes were studied. Main conclusions were drawn as follows.
     (1) According to the measured data in spring and summer, near-bottom average current velocity in the salt marshes was generally low, which was between 3.24cm/s and 7.29cm/s. The near-bottom average current velocity value was less than that of the average upper velocity which was 11.75cm/s. The average velocity of spring tide was 1.5 to 2.1 times than that of neap tide. The average velocity of flood tide about 5.73cm/s was faster than that of ebb tide about 4.03cm/s. There is a shoreward flow and an offshore flow at the peak phases in the flood tide and ebb tide of spring tide. The peak phase of the velocity to shore stage was more obvious than that of offshore flow. The peak phase in neap tide was not obvious. The flow velocity was fast in medium-term tide.
     The three-dimensional velocity data were measured by the Vectrino Velocimeter. The near-bottom turbulence energy and shear stress were measured by TKE method. The average near-bottom shear stress of spring tide about 1.2N/m~2 was stronger than that of neap tidal about 0.7N/m~2. There was a "bimodal" feature in spring tide and a "single-peak" feature in neap tide. In spring tide, the near-bottom velocity and the near-bottom shear stress were stronger whereas the near-bottom shear stress of flood tide about 1.33N/m~2 was slightly stronger than that of ebb tide about 1.08N/m~2. In neap tide, near-bottom shear stress would increase with the rise of tidewater. The maximum value would occur in medium-term tide.
     (2) Near-bottom turbidity values were measured by the Solitax sc100 Turbiditor in salt marshes, and suspended sediment concentration data were obtained through the scene of sediment calibration method. During tide periods in the spring, the average concentration of suspended sediment was 2.45g/L, and the average suspended sediment concentration of flood tide stage (2.64g/L) was more than that of ebb tide stage (2.25g/L). During tidal cycles in summer, the average concentration of suspended sediment was 0.8g/L, and the average suspended sediment concentrations of flood tide stage (0.79g/L) was slightly less than that of ebb tide stage (0.8g/L).
     Suspended sediment particles were measured by LS 13 320 Laser Diffraction Particle Size Analyzer. In the near-bottom salt marshes, the overall average diameter of suspended sediment particles was slender, which was about 15.2μm. The average particle size of suspended sediment of flood tide (16.6μm) was rougher than that of ebb tide (13.8μm). In the distribution of grain size, the percentage of fine sand and clay was the greatest, which occupied about 69.9% of the total volume.
     (3) It was showed in the regression analysis that the near-bottom shear stress (or turbulent energy) in salt marshes was positively correlated with the level velocity, and the correlation coefficient R~2 ranged from 0.57 to 0.83. No direct correlation between the near-bottom suspended sediment concentration and flow velocity in salt marshes was found. However, the near-bottom suspended sediment concentration had a peak phase and the level velocity was small in the high water level stage of flood tide, which showed that upper suspended sediments settled obviously. There was a positive correlation between near-bottom suspended sediment particle size and the level velocity in salt marsh. The correlation coefficients R2 of two seasons were respectively 0.77 and 0.66. The average particle size changes of suspended sediment in the tidal cycle were similar to the velocity changes: There was a "bimodal" feature in spring tide and a "single-peak" feature in neap tide. In the distribution of grain size, the coarse silt had a great impact on water velocity.
     (4) According to compared data of the spring and summer, the height and density of saltmarsh vegetation on observation site in spring were significantly less than that of saltmarsh vegetation in summer. The values of average flow rate, shear stress, suspended sediment concentrations and particle size of near-bottom salt marsh in spring were all higher than those of the average values in summer tidal cycle. The results showed that with the growth of vegetation, salt marsh vegetation slowing flow, dissipating energy, and suspended sediment intercepting would gradually be strengthened.
引文
[1]. Amos C L, Bergamasco A, Umgiesser G, et al. The stability of tidal flats in Venice Lagoon—the results of in-situ measurements using two benthic, annular flumes [J]. Journal of Marine Systems, 2004, 51: 211-241.
    [2]. Bassoullet et al. Sediment transport over an intertidal mudflat: field investigations and estimation of fluxes within the “Baie de Marennes-Olerona” (France) [J]. Continental Shelf Research, 2000, 20: 1635-1653.
    [3]. Beverly Z, Packard, Akira K, et al. Brotz Suspended sediment transport on a temperate, microtidal mudflat, the Danish Wadden Sea [J]. Marine Geology, 2001, 173(1-4): 69-85.
    [4]. Black, Kevin S. Suspended Sediment Dynamics and Bed Erosion in the High Shore Mudflat Region of the Humber Estuary, UK [J]. Marine Pollution Bulletin, 1999, 37:122-133.
    [5]. Brigit J S. The effect of different hydrodynamic conditions on the morphodynamics of a tidal mudflat in the Dutch Wadden Sea [J]. Continental shelf research, 2000, 20(12-13): 1461-1478.
    [6]. Christiansen T, Wiberg P L, Milligan T G. Flow and sediment transport on a tidal salt marsh surface [J]. Estuarine, Coastal and Shelf Science, 2000, 50: 315-331.
    [7]. Dyer K R, Christie M C, Feates N, et al. An Investigation into Processes Influencing the Morphodynamics of an Intertidal Mudflat, the Dollard Estuary, The Netherlands: Hydrodynamics and Suspended Sediment [J]. Estuarine, coastal and shelf science, 2000, 50(5): 607-625.
    [8]. Deloffre J, Verney R, Lafite R, et a1. Sedimentation on intertidal mudflats in the lower part of macrotidal estuaries: Sedimentation rhythms and their preservation [J]. Marine Geology, 2007, 241(1-4):19-32.
    [9]. Davidson-Arnott R G D, Van Proosdij D, Ollerhead J, et al. Hydrodynamics and sedimentation in salt marshes: examples from a macrotidal marsh, Bay of Fundy [J]. Geomorphology, 2002, 48: 209-223.
    [10]. Deloffre J, Lafite R, Lesueur P, et a1. Controlling factors of rhythmic sedimentation processes on an intertidal estuarine mudflat — Role of the turbidity maximum in the macrotidal Seine estuary, France [J]. Marine Geology, 2006, 235(1-4):151-164.
    [11]. Fettweis M, Sas M, Monbaliu J. Seasonal, neap-spring and tidal variation of cohesive sediment concentration in the Scheldt Estuary, Belgium [J]. Estuarine, Coastal and Shelf Science, 1998, 47: 21-36.
    [12]. Gouleau D, Jouanneau J M. Short- and long-term sedimentation on Montportail - Brouage intertidal mudflat, Marennes-Oléron Bay (France) [J]. Continental shelf research, 2000, 20(12-13): 1513-1530.
    [13]. Galperin B, Kantha L H, et al. A quasi-equilibrium turbulent energy—model for geophysicalflows [J]. Journal of the Atmospheric Sciences, 1988, 45(1): 55-62.
    [14]. Green M O, Black K P, Amos C L. Control of estuarine sediment dynamics by interactions between currents and waves at several scales [J]. Marine Geology, 1997, 144: 97-116.
    [15]. Herman R, Ronald V D H. Temporal variations in concentration and transport of suspended sediments in a channel-flat system in the Ems-Dollard estuary [J]. Continental shelf research, 2000, 20(12-13): 1479-1493.
    [16]. Hir P Le. Characterization of intertidal flat hydrodynamics [J]. Continental shelf research, 2000, 20(12-13): 1433-1459.
    [17]. Kim S C, Friedtichs C T, et al. Estimating bottom stress in tidal boundary layer from Acoustic Doppler Velocimeter data [J]. Journal of Hydraulic Engineering, 2000, 126(6): 399-406.
    [18]. Ke X K, Collins M B, Poulos S E. Velocity structure and sea bed roughness associated with intertidal (sand and mud) flats and saltmarshes of the Wash, U.K [J]. Journal of Coastal Research, 1994, 10(3): 702-715.
    [19]. Leonard L A, Croft A L. The effect of standing biomass on flow velocity and turbulence in Spartina alterniflora canopies [J]. Estuarine, Coastal and Shelf Science, 2006, 69: 325-336.
    [20]. Langlois E, Bonis A, Bouzillé J B. Sediment and plant dynamics in saltmarshes pioneer zone: Puccinellia maritima as a key species [J]. Estuarine, Coastal and Shelf Science, 2003, 56: 239-249.
    [21]. Leonard A, Reed D J. Hydrodynamics and sediment transport through tidal marsh canopies [J]. Journal of Coastal Research, 2002, 36:459-469.
    [22]. Moller I, Spencer T. Wave dissipation over macro-tidal saltmarshes: Effects of marsh edge typology and vegetation change [J]. Journal of Coastal Research, 2002, 36: 506-521.
    [23]. Moller I, Spencer T, French J R, et a1.Wave transformation over salt marshes: A field and numerical modeling study from North Norfolk, England[J].Estuarine, Coastal and Shelf Science, 1999, 49(13): 4l1-426.
    [24]. Moller I, Spencer T, French J R. Wind wave attenuation over saltmarsh surfaces: preliminary results from Norfolk, England. Journal of Coastal Research, 1996, 12(4): 1009-1016.
    [25]. Pritchard D, Hogg A J, Roberts W. Morphological modeling of intertidal mudflats: the role of cross-shore tidal currents [J]. Continental Shelf Research,2002, 22: 1887-1895
    [26]. Richard M, Gorman, Cameron G. Neilson Modeling shallow water wave generation and transformation in an intertidal estuary [J]. Coastal Engineering, 1999, 36(3): 197-217.
    [27]. Roberts W, Hir P Le, Whitehouse R J S. Investigation using simple mathematical models of the effect of tidal currents and waves on the profile shape of intertidal mudflats [J]. Continental shelf research, 2000, 20(10-11): 1079-1097.
    [28]. Shi Z, Zhang S Y, Hamilton L J. Bottom fine sediment boundary layer and transport processes at the mouth of the Changjiang Estuary, China [J]. Journal of Hydrology, 2006, 327: 276-288.
    [29]. Shi Z, Pethick J S, Burd F, et al. Velocity profiles in a salt marsh canopy [J]. Geo-MarineLetters, 1996, 15: 319-323.
    [30]. Shi Z, Pethick J S, Pye K. Flow structure in and above the various heights of a saltmarsh canopy: a laboratory flume study [J]. Journal of Coastal Research, 1995, 11: 1204-1209.
    [31]. Soulsby R L, and Dyer K R. The form of the near-bed velocity profile in a tidally accelerating flow [J]. Journal of Geophysical Research, 1981, 86: 8067-8074.
    [32]. Stapleton K R, Huntley D A. Seabed stress determination using the inertial dissipation method and the turbulent kinetic energy method [J]. Earth Surface Processes and Landforms, 1995, 20(9): 807-815.
    [33]. Thompson C L E, Amos C L, Umgiesser G. A comparison between fluid shear stress reduction by halophytic plants in Venice Lagoon, Italy and Rustico Bay, Canada - analyses of in situ measurements [J]. Journal of Marine Systems, 2004, 51: 293-308.
    [34]. Uncles R J, Stephens J A. Nature of the turbidity maximum in the Tamar Estuary, U.K. [J]. Estuarine, Coastal and Shelf Science, 1993, 36: 413-431.
    [35]. Uncles R J, Stephens J A. Observations of currents, salinity, turbidity and intertidal mudflat characteristics and properties in the Tavy Estuary, UK [J]. Continental shelf research, 2000, 20(12-13): 1531-1549.
    [36]. Valéria da S Quaresma, Alex C Bastos and Carl L Amos. Sedimentary processes over an intertidal flat: A field investigation at Hythe flats, Southampton Water (UK) [J]. Marine Geology, 2007, 241(1-4):117-136.
    [37]. Vinzon S B, Mehta A J. Boundary layer effects due to suspended sediment in the Amazon River estuary [A]. MeAnally W H, Mehta A J. Coastal and Estuarine Fine Sediment Processes[C]. The Netherlands: Elsevier Science B-V. 2001. 359-372.
    [38]. Whitehouse R J S, Bassoullet P. The influence of bedforms on flow and sediment transport over intertidal mudflats [J]. Continental shelf research, 2000, 20(10-11): 1099-1124.
    [39]. Wang F C, Lu T S, Sikors W B. Intertidal marsh suspended sediment transport processes, Terrebnne Bay, Louisiana, U.S.A. [J]. Journal of Coastal Research, 1993, 9(1):209-220.
    [40]. 陈华,王东启,陈振楼,等. 崇明东滩海三棱藨草生长期沉积物有机碳含量变化[J]. 环境科学学报,2007,27(1): 135-142.
    [41]. 陈吉余,程和琴,戴志军. 滩涂湿地利用与保护的协调发展探讨——以上海市为例[J]. 中国工程科学,2007,9(6): 11-17.
    [42]. 陈沈良,谷国传,虞志英. 长江口南汇东滩淤涨演变分析[J]. 长江流域资源与环境,2002,11(3): 239-244.
    [43]. 陈沈良,谷国传,李玉中. 南汇近岸水域近底层泥沙运动和边滩沉积[J]. 东海海洋,2003,21(4): 15-25.
    [44]. 陈卫跃. 潮滩泥沙输移及沉积动力环境——以杭州湾北岸、长江口南岸部分潮滩为例[J]. 海洋学报,1991,13(6):813-821.
    [45]. 陈中义. 长江口海三棱藨草的生态价值及利用与保护[J]. 河南科技大学学报(自然科学报),2005,26(2): 64-67.
    [46]. 程鹏,高抒. ADCP 测量悬沙浓度的可行性分析与现场标定[J]. 海洋与湖沼,2001,32(2): 168-176.
    [47]. 曹文洪,舒安平. 潮流和波浪作用下悬移质挟沙能力研究述评[J]. 泥沙研究,1999 (5): 74-80.
    [48]. 戴志军,陈吉余,程和琴,等. 南汇边滩的沉积特征和沉积物输运趋势[J]. 长江流域资源与环境,2005,14(6): 735-739.
    [49]. 付桂,李九发,应铭等. 长江河口南汇嘴潮滩近期演变分析[J]. 海洋通报,2007,26(2): 105-112.
    [50]. 郭纪捷,任来法,李允武. 声学悬浮泥沙观测数据现场标定研究[J]. 海洋学报,1998,20(5): 120-125.
    [51]. 高建华,汪亚平,王爱军,等. ADCP 在长江口悬沙输运观测中的应用[J]. 地理研究,2004,23(4): 455-462.
    [52]. 郝嘉凌,宋志尧,严以新. 河口海岸近底层潮流速分布模式初步研究[J]. 泥沙研究,2006(1): 25-31.
    [53]. 贺宝根,王初,周乃晟,等. 长江口潮滩浅水区域流速和含沙量的关系初析[J]. 泥沙研究,2004(5): 56-61.
    [54]. 贺松林,劳治声,陈全. 上海芦潮港岸滩冲淤动态及原因探究[J]. 东海海洋,1996,14(2):19-25.
    [55]. 李华,杨世伦. 潮间带盐沼植物对海岸沉积动力过程影响的研究进展[J]. 地球科学进展,2007,22(6): 583-591.
    [56]. 刘清玉,戴雪荣,何小勤. 崇明东滩表层沉积物的粒度空间分布特征[J]. 上海地质,2003(4): 5-8.
    [57]. 梅雪英,张修峰. 崇明东滩湿地自然植被演替过程中储碳及固碳功能变化[J]. 应用生态学报,2007,18(4): 933-936.
    [58]. 秦晓怡,贺宝根. 盐沼水-沉积物-植物界面流速研究进展[J]. 海岸工程,2007,26(1): 64-71.
    [59]. 任杰,贺宝根. 盐沼水-沉积物-植物界面泥沙输移过程研究进展概述[J]. 科技信息,2007(16): 21,33
    [60]. 时钟. 海岸盐沼冠层水流平均流速分布的实验研究[J]. 海洋工程,2001,19(3): 51-59.
    [61]. 时钟. 长江口细颗粒泥沙过程[J]. 泥沙研究,2000,(6): 72-81.
    [62]. 时钟. 河口海岸底部边界层和细颗粒泥沙过程[J]. 海洋科学,2000,24(11): 26-30.
    [63]. 时钟. 海岸河口高潮滩盐沼边界层沉积动力研究[J]. 海洋科学,2000,24(7): 56.
    [64]. 时钟. 长江口底部边界层和细颗粒泥沙过程[J]. 海洋科学,2000,24(4): 56.
    [65]. 时钟,凌鸿烈. 长江口细颗粒悬沙浓度垂向分布[J]. 泥沙研究,1999,(2): 59-64.
    [66]. 时钟,杨世伦,缪莘. 海岸盐沼泥沙过程现场实验研究[J]. 泥沙研究,1998 (4): 28-35.
    [67]. 时钟,张淑英,Hamilton L J. 河口近底细颗粒悬沙运动的声散射观测[J]. 声学学报,1998,23(3): 221-227.
    [68]. 时钟,周洪强. 长江口深水航道北槽口外悬沙浓度垂向分布[J]. 上海交通大学学报,1997,32(11): 30-35.
    [69]. 杨世伦. 长江三角洲潮滩季节性冲淤循环的多因子分析[J]. 地理学报,1997,52(2): 123-130.
    [70]. 时钟. 海岸盐沼植物单向恒定水流流速剖面[J]. 泥沙研究,1997,9(3): 82-88.
    [71]. 时钟,陈吉余,虞志英. 中国淤泥质潮滩沉积研究的进展[J]. 地球科学进展,1996,11(2): 555-561.
    [72]. 时钟,K Pye,陈吉余. 潮滩盐沼物理过程的研究进展综述[J]. 地球科学进展,1995,10(6): 19-27.
    [73]. 时钟,陈吉余. 盐沼的侵蚀、堆积和沉积动力[J]. 地理学报,1995,50(6): 562-567.
    [74]. 万新宁,李九发,何青,等. 国内外河口悬沙通量研究进展[J]. 地球科学进展,2002,17(6): 864-870
    [75]. 汪亚平,高抒,李坤业. 用 ADCP 进行走航式悬沙浓度测量的初步研究[J]. 海洋与湖沼,1999,30(6): 758-763.
    [76]. 汪亚平,高建华,潘少明. 长江河口区边界层参数的观测与分析[J]. 海洋地质动态,2006,22(7): 16-20.
    [77]. 徐福敏,严以新,茅丽华. 长江口九段沙下段冲淤演变水动力机制分析[J]. 水科学进展,2002,13(2): 166-171.
    [78]. 谢东风,范代读,高抒. 崇明岛东滩潮沟体系及其沉积动力学[J]. 海洋地质第四纪地质,2006,26(2): 9-16.
    [79]. 于东升. 长江口泥沙输移分析[J]. 水运工程,2006,(2): 59-64.
    [80]. 余佳,许世远,陈振楼. 上海滨岸潮滩近 10 年冲淤变化[J]. 福建地理,2000,(3): 23-25,38.
    [81]. 朱骏,杨世伦,谢文辉. 潮间带短期冲淤过程的横向差异及其定量的表达——以长江口南汇滨海岸段的观测分析为例[J]. 地理研究,2001,20(4): 423-430.
    [82]. 杨世伦,时钟,赵庆英. 长江口潮沼植物对动力沉积过程的影响[J]. 海洋学报,2001,23(4): 75-80.
    [83]. 杨世伦,谢文辉,朱骏,等. 大河口潮滩地貌动力过程的研究——以长江口为例[J]. 地理学与国土研究,2001,17(3): 44-48.
    [84]. 杨世伦,姚炎明,贺松林. 长江口冲积岛岸滩剖面形态和冲淤规律[J]. 海洋和湖沼,1999,30(6): 764-769.
    [85]. 杨世伦,陈吉余. 试论植物在潮滩发育演变中的作用[J]. 海洋与湖沼, 1994, 15(6): 631-635.
    [86]. 周济福,曹文洪,等.河口泥沙研究的进展[J].泥沙研究,2003 (6): 75-81
    [87]. 赵冲久,秦崇仁,黄明政. 波流共同作用下近底高含沙水层流速的探讨[J]. 水道港口,2005,26(1): 12-16
    [88]. 庄武艺,谢佩尔. 海草对潮滩沉积作用的影响[J]. 海洋学报,1991,13(2):230-23.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700