用户名: 密码: 验证码:
节水冷却塔与双效塑料溴化锂制冷机系统的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
溴化锂吸收式制冷机以各种低温热源为动力进行制冷,因其具有耗电少、对环境无污染无破坏、无爆炸危险、冷量调节范围广、适应性强等特点,被国际社会公认为最具有发展前景的制冷机。在当前国际社会禁止使用氟利昂的条件下,溴化锂吸收式制冷机更具发展优势。溴化锂制冷机的工质为溴化锂溶液,它是强碱性的腐蚀性介质,易对溴化锂制冷机组造成腐蚀。所以,腐蚀问题一直是制约溴化锂制冷机发展的一大瓶颈,本文提出双效塑料溴化锂制冷机,用塑料换热器代替传统的金属换热器,拟实现以塑料替代铜,解决溴冷机的腐蚀问题,同时减轻溴冷机组重量,降低吸收式制冷机制造成本。本文设计了一台制冷量为50 KW的双效塑料溴化锂制冷机组,机组的低温溶液换热器为掺石墨的聚丙烯塑料换热器。文章对双效塑料溴化锂制冷机组进行了系统计算和结构设计,尤其是塑料换热器的换热系数、流动阻力等关键参数进行了详细的计算和校核,并对其结构尺寸进行了优化设计。经过计算,换热器的传热系数为229.16 W/(m2·k),双效塑料溴化锂制冷机组的理论COP可达1.27。文章在绘制完机组的整套图纸后,对机组进行加工,搭建了一个双效塑料溴化锂制冷机实验台,并对实验系统进行了气密性检验和初步的调试试验。初步调试结果表明,本课题双效塑料溴化锂制冷机组可以运转,机组初步调试的COP为0.68。
     湿式冷却塔广泛应用于国民经济的诸多领域,如电力、石油、化工、钢铁等,其耗水量巨大。我国却是一个严重缺水的国家,传统的湿式冷却塔巨大的耗水量不符合我国经济社会长远发展的要求,因此开发节水型湿式冷却塔势在必行。本文提出一种新型的节水冷却塔——盐水冷却塔,它可以通过调节盐水浓度来抑制水的蒸发,从而实现节水的目的。盐水冷却塔对缓解我国乃至世界日益严重的水危机,满足我国节水节能的重大需求,有重大战略意义!本文对盐水冷却塔进行了热力计算,盐水冷却塔的冷却载荷为371584.63kJ/h,所需的风量为44775.85 kg/h。在热力计算的基础上对盐水冷却塔进行了结构设计。本文盐水冷却塔采用双盘结构,可以根据条件对盐水浓度进行调节,以达到最佳的节水效果。
The Lithium Bromide-water absorption chiller can driven by a variety of low temperature heat source, because of its low electricity consumption, no environmental pollution, no risk of explosion, wide range of cold adjustment, strong adaptability and other Advantages,was recognized the most promising refrigerator by the international community. Under the condition of prohibit to use freon, the lithium bromide absorption chiller has its greater future.the work medium of The Lithium Bromide-water absorption chiller is Lithium Bromide-water,which is a strong alkaline corrosive media, easily erode the lithium bromide chiller. Therefore, the corrosion problems greatly limited the development of lithium bromide chiller.This paper proposes double-effect plastic lithium bromide chiller,use plastic heat exchanger instead of metal heat exchanger intended to achieve using plastic instead of copper to solve the corrosion problems of lithium bromide refrigerator, meanwhile reducing the weight and the manufacturing cost of the lithium bromide chiller.This paper design a double-effect plastic lithium bromide chiller,its refrigerating capacity is 50 KW. We use plastic heat exchanger instead of the Low temperature solution heat exchanger in the chiller unit.The raw material of plastic heat exchanger is polypropylene contains graphites.Paper conduct the thermodynamic calculation and structure design of the double-effect plastic lithium bromide chiller, especially of plastic heat exchanger,and Optimization its structure.The result of calculation shows,the heat transfer coefficient of plastic heat exchanger is 229.16 W/(m2·k), Theoretical COP of double-effect plastic lithium bromide chiller is 1.27.After draw the whole drawing sheets, manufactured the chiller unit,We build a test bench of double-effect plastic lithium bromide chiller,then we carried out the gas tightness detection and debugging of the double-effect plastic lithium bromide chiller. The result of debugging shows, the chiller unit can work on the rails, The COP of unit in Initial debugging phase is 0.68.
     Wet cooling tower is widely used in many fields of national economy, such as electricity, petroleum, chemical, steel and so on,its water consumption is very huge. China is a serious water shortage country,the traditional wet cooling towers can not meet the requirement of long-term development of economy and society. Although dry cooling tower can saving the water, but the cost is too high,and the cooling effect is too poor in summer, therefore the development of water-saving wet cooling towers is imperative. This paper innovative presented a new water-saving cooling tower, salt-water cooling tower, It can be suppress water evaporation by adjusting the salt water concentration, thus achieve the object of saving water. The salt-water cooling tower provide a new way for develop related industry in water deficient area,it has great strategic significance to alleviate the China or even the worldwide growing water crisis. This paper carried out the thermodynamic calculation of Salt-water cooling towers,the cooling load is 371584.63 kJ/h,the air volume needed is 44775.85 kg/h. On the basis of theoretical calculation,paper designed the structure of Salt-water cooling towers.The Salt-water cooling towers use double tank structure,so it can adjust the concentration of solution to save more water.
引文
[1]胡亚才,张雪东,王建平,等.塑料换热技术在溴化锂吸收式制冷机上的应用展望[J],科技报道,2005,1:44-48.
    [2]张雪东.采用塑料管的溴化锂吸收式制冷机的理论与实验研究[D].杭州:浙江大学,2005.
    [3]欧阳录春,谢雪梅,俞卫刚,等.塑料换热器在溴化锂吸收式制冷机中的应用[J],暖通工程,2005,35(3):65-68.
    [4]禹志强,吴铁晖,吴裕远,等.氨-水和氨-水-溴化锂在吸收式制冷机中的对比实验研究[J],西安交通大学学报,2009,43(3):46-69.
    [5]周贵斌,李景富,薛兴.RFW系列高效蒸汽型溴化锂制冷机组介绍[J],制冷空调,2009,126(30):35-37.
    [6]王林,张国强,王展,等.溴化锂溶液绝热吸收水蒸气的传质强化研究[J].湖南大学学报(自然科学版),2008,35(7):16-20.
    [7]尹洪超,靳兵,赵亮.溴化锂水溶液的结晶控制及应用对策[J].能源技术,2008,29(1):45-47.
    [8I.陈光明,冯仰浦,王剑锋.一个用太阳能驱动的新型吸收制冷循环[J].低温工程,1999,1:50-54.
    [9]吴嘉峰,陈亚平,施明恒.太阳能溴化锂吸收式制冷循环的改进[J].工程热物理学报,2007,28(1):21-23.
    [10]尹洪超,靳兵,赵亮.溴化锂水溶液的结晶控制及应用对策[J].能源技术,2008,29(1):45-47.
    [11]石程名,宫世吉,徐灿君,等.竖管内溴化锂溶液降膜发生实验研究[J],制冷学报,2008,29(3):43-46.
    [12]李芳,王景刚,刘金荣.热管技术应用于冷却塔节水的理论分析[A].制冷空调新技术进展——第三届制冷空调新技术研讨会论文集[C].杭州:中国制冷学会,2005:445-449.
    [13]Gershon Grossman, Joseph R. Bourne, Jonathan Ben-Dror, etc. Design improvements in LiBr absorption chillers for solar applications [J]. Journal of Solar Energy Engineering,1981,103(1):56-61.
    [14]Ibrahim Dincer,Mustafa Edin, Engin Ture. Investigation of thermal performace of a solar powered absorption refrigeration system. [J]. Enery Conversion and Management,1996,37 (1):51-58.
    [15]Z.F.Li, K. Sumathy,. Performance of chiller in a solar absorption air conditioning system with partitioned hot water storage tank[J]. Journal of Solar Energy Engineering,2001,123:48-49.
    [16]Arif Ileri. Yearly simulation of a solar-aided R22-DEGEME absorption heat pump system[J]..Solar Enery,1995,55 (4):255-265.
    [17]Alan Benefiel, John S.Manlbetsch, Michael N. Difilippo. Water Conservation Options for Wet-cooled Power Plants [A].CEC/EPRI Advanced Cooling Strategies/Technoligies Conference[C]. Sacramento, California, USA,2005.
    [18]R. J. Romero, W. Rivera, I. Pilatowsky, etc. Comparision of the modeling of a solar absorption system for simultaneous cooling and heating operating with an aqueous ternary hudroxide and with water/lithium bromide[J]. Solar Energy Materials and Solar Cells,2001,70:301-308.
    [19]Grassie SL,Sheridan NR.Modeling of a solar-powered absorption air-condit ioning system with refrigerant storage [J].Solar Enery,1997,19:691-700.
    [20]I. Pilatowsky, W. Rivera, R. J. Romero. Performance evaluation of a monomethyl amine-water solar absorption refrigeration system for milk cooling purpos es[J]. Applied Thermal Engineering,2004,24:1103-1115.
    [21]Sheridan N. R, Kanshik SC. A novel latent heat storage for solar space heating sys tems:refrigerant storage[J]. Applied Energy,2003,9:165-172.
    [22]M. Mazloumi,M. Naghashzadegan, K. Javaherden. Simulation of solar lithium bro mide-water absorption cooling system[J]. Energy Conversion and Management, 2008,49(10):2820-2832.
    [23]戴永庆等.溴化锂吸收式制冷技术及应用[M].北京:机械工业出版社,1996:1-277.
    [24]杨世铭,陶文铨.传热学(第三版)[M].北京:高等教育出版社,1998:21-49,313-355.
    [25]朱聘冠.换热器原理及计算[M].北京:清华大学出版社,1987:02-304.
    [26]赵振国.冷却塔[M].北京:中国水利水电出版社,1996:17-352.
    [27]赵顺安.海水冷却塔[M].北京:中国水利水电出版社,2007:36-108.
    [28]芩可法.锅炉燃烧试验研究方法及测量技术[M].北京:水利电力出版社,1987:131-168.
    [29]GB/T 18431-2001,蒸汽和热水型溴化锂吸收式冷水机组[S].北京:中国标准出版社,2004.
    [30]SJ/T 31444-1994,蒸汽双效溴化锂吸收式制冷机完好要求和检查评定方法[S].北京:中国电子工业出版社,1994.
    [31]曹辉玲,王树鹏.大容器的检漏技术[J].真空电子技术,2005,06:61-65.
    [32]贺云根.塑料管单效溴化锂吸收式制冷机实验研究及静态仿真模型[D].杭州:浙江大学,2006.
    [33]张雪东.采用塑料管的溴化锂吸收式制冷机的理论与实验研究[D].杭州:浙江大学,2005.
    [34]姜周曙,王如竹.吸附-系数复叠式三效制冷循环[J].化工学报,2002,6(53):566-571.
    [35]郑飞,陈光明.溴化锂水溶液绝热吸收过程实验研究[J].太阳能学报,2002,23(2):166-170.
    [36]何耀东.空调用溴化锂吸收式制冷机[M].北京:中国建筑工业出版社,1993:55-59.
    [37]李小平,路震.两种串联型三效溴化锂吸收式制冷循环的比较分析[J].流体机械,2001(29):50-52.
    [38]肖尤明,徐烈,李志伟,等.汽车空调余热溴化锂吸收式制冷装置的研究[J].制冷学报,2004,(1):22-26.
    [39]蒋桂忠,蔡祖恢.活性介质对溴化锂水溶液吸收过程强化机理的研究进展[J].上海理工大学学报,2001(30):14-21.
    [40]吕扬.冷却塔水损失变化规律及节水方法的研究[D].济南:山东大学,2009.
    [41]文先太,梁彩华,张小松.空调冷却塔变流量的优化研究[J].流体机械,2009,37(11):79-83.
    [42]翟培强.火电厂循环冷却塔耗水量影响因素分析[J].电站辅机,2005,95(4):27-30.
    [43]H. J.Martin, GR.Miller. A Zero Discharge Steam Electric Power Generating Station[J]. Journal AWWA,1986, (5):57-59.
    [44]S.D.Strauss. Water Management for Reuse Recycle[J]. Power,1991, (5):16-18.
    [45]L. C. Webb, K. R. Weiss. True Zero Discharge:Water and Wastewater Design Considerations[J]. Power Engineering,1989,93 (7):36-39.
    [46]T. H. Humphris. The Use of Sewage Effluent as Power Station Cooling Water[J]. Water research,1997, (11):217-223.
    [47]Alan, John S. Maulbetsch,Michael N. Difilippo. Water Conservation Options for Wet-cooled Power Plants [A]. CEC/EPRI Advanced Cooling Strategies/Technologies Conference[C].2005, Sacramento, California,USA.
    [48]R. Benedeto,A.J. Freedman, D. Boschetti, GF. Hays. Cooling Tower & Secondary Wa ste Makeup:Four Years'Operating Experience[J]. IWC-99-42:331-343.
    [49]唐受印,戴友芝.水处理工程师手册[M].北京:化学工业出版社,2004.
    [50]何适生.热工参数测量及仪表[M].北京:水利电力出版社,1990.
    [51]王佩璋.我国火电空冷技术的发展概况及特点[J].热力透平,2006,35(4):224-228.
    [52]杨昭,郁文红,吴志光.火力发电厂冷却塔除雾收水的热力学分析[J].天津大学学报,2004,37(9):774-777.
    [53]姜培正.过程流体机械[M].北京:化学工业出版社,2001:144-190.
    [54]毕明树.工程热力学[M].北京:化学工业出版社,2001:52-54.
    [55]鲍其鼐.论节约工业冷却用水的关键[J].化工技术经济,2003,21(11)22-24.
    [56]王天正,王佩璋.自然通风冷却塔内加装高压静电吸附收水装置的节水技术[J].中国电力,1995,28(9):65-67.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700