用户名: 密码: 验证码:
渭河咸阳段沉积物重金属污染研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着我国经济的快速发展和城市化进程加速,我国城市区域内的河流污染愈来愈严重。在污染河流的众多污染物当中,重金属由于其毒性和持久性而成为影响河流较严重的一类。沉积物作为水环境中重金属的主要蓄积库,反映了水体受重金属的污染状况。研究沉积物中重金属的含量及水平分布可以判断研究区受污染的程度及污染来源,了解重金属的扩散范围;研究重金属在沉积物柱状样不同层位的含量分布,则可了解所研究区域重金属的污染历史;把重金属含量与未污染区背景值进行对照,可反映出不同历史阶段人类活动对所研究区域重金属输送量的变化情况。
     本研究以渭河咸阳段为研究区域,经过详细调查、采样和实验分析,首次系统地研究了渭河咸阳段沉积物的理化性质(pH值、电导率、CaCO_3、磁化率、粒径、烧失量)。用X-Ray荧光光谱仪测量了沉积物中Cu、Cr、Pb、Zn、Mn和Ni元素的全量;采用BCR四步连续提取法提取了沉积物中重金属Cu、Cr、Pb、Zn、Mn和Ni的四种形态,并用原子吸收分光光度计火焰法分析测定了渭河咸阳段表层和柱状沉积物样品中这六种重金属元素的赋存形态;通过相关分析研究了重金属之间、重金属全量与形态之间以及重金属与各理化指标间的相互关系,以期为渭河流域资源合理开发与防治重金属污染提供参考依据。本研究的主要结论如下:
     1.理化指标分析结果显示:渭河咸阳段沉积物为碱性沉积物,质地类型主要为沙粒。各项理化指标的均值分别为:pH值8.041,电导率416μs/cm,烧失量为4.160%,低频磁化率(x_(LF))为83.22×10~(-8)m~3/kg,高频磁化率(x_(HF))为82.18×10~(-8)m~3/kg,频率磁化率(x_(fd))为1.31%,黏粒为4.67%,粉沙粒为39.81%,沙粒为55.53%,CaCO_3为91.40g/kg。
     2.从整个研究河段来看,渭河咸阳段表层沉积物中Cr、Cu、Pb和Zn四种元素重金属含量的平均值均高于研究区环境背景值,其中Cr和Pb平均含量较高,分别高出环境背景值32.9%和34.3%,Cu高出环境背景值16.7%,Zn略高于环境背景值,超出6.2%。Mn和Ni的平均含量低于环境背景值,说明整体上这两种元素的人为累计量相对较小,但在某些断面仍表现出高富集现象,所以也需引起注意。渭河咸阳段表层沉积物重金属元素的平均含量从大到小依次为:Mn>Cr>Zn>Cu>Ni>Pb。在空间分布上,各表层沉积物中重金属元素含量上总体均呈先升高再降低的趋势,各重金属元素的高值区均位于渭河咸阳段中游至下游段,渭河咸阳段各采样断面的重金属累积叠加值由高到低依次为:断面2>断面3>断面4>断面5>断面1。渭河咸阳段柱状沉积物的垂向分布上,总体上各个断面的大部分重金属元素平均含量呈波折多峰型分布,总量自上而下呈现逐渐变小的趋势,这表明研究河段的重金属污染在近些年有加剧的趋势。Cr在各断面上明显地呈不规则的锯齿状多峰分布特征,即随深度出现一至多个含量明显偏高的峰值,这可能与Cr的沉积后再迁移过程有关。Cu、Ni和Zn在每一个断面中有相似的垂向变化特征,这表明它们很可能相同来源。各段面Mn和Pb的垂向变化规律不明显。
     3.渭河咸阳段表层沉积物中重金属形态分析结果显示:总体上各重金属元素的主要赋存形式均是残渣态。各重金属元素的不同形态在不同条件下迁移转换的顺序分别是:在乙酸的弱酸性环境中:Mn(38.49%)>Pb(27.66%)>Ni(13.3%)>Zn(9.09%)>Cu(7.93%)>Cr(0.00%);在还原环境中:Cu(26.36%)>Pb(12.81%)>Zn(11.81%)>Mn(11.71%)>Ni(7.23%)>Cr(0.00%);在氧化性的环境中:Ni(13.09%)>Cu(7.47%)>Zn(5.42%)>Pb(5.14%)>Mn(3.96%)>Cr(2.61%)。在整个环境介质中,整体发生迁移转化的顺序是:Mn(54.16%)>Pb(45.61%)>Cu(41.76%)>Ni(33.62%)>Zn(26.32%)>Cr(2.61%)。柱状沉积物重金属形态分析结果显示:总体上各柱样中Cu、Cr、Pb、Zn、Mn和Ni的四种形态含量随深度均呈波折型分布,大多数重金属在乙酸提取态中表现出浅层含量高于深层,而在残渣态中则深层含量明显高于浅层,可还原态和可氧化态随深度变化趋势不明显。各断面大多数重金属的“非稳态”含量所占总量的比率也表现出上浅层高于深层,这与上述结论基本一致。
     4.重金属各元素之间的相关分析表明:Cr仅与Pb呈显著性相关,与其它4种重金属的相关性不显著,Cu、Zn、Pb、Mn、Ni五种重金属两两之间呈极显著性相关关系。重金属的“非稳态”与总量之间的相关分析表明:六种重金属这两项指标之间均呈显著的正相关关系。重金属的全量、赋存形态、“非稳态”分别与理化指标之间的相关分析表明:理化指标中Ec值、LOI、低频磁化率(x_(LF))、高频磁化率(X_(HF))、CaCO_3、黏粒和粉粒与各种金属的多数形态之间均显示出很好的相关性,表明这7种理化指标是影响渭河咸阳段沉积物中重金属赋存形态的主要因素;重金属中Pb、Cu、Ni、Mn和Zn与上述7种理化指标之间均呈极显著性正相关关系,也表明这7种理化指标是影响渭河咸阳段沉积物中重金属富集的主要因素;同时,“非稳态”也与这7种理化指标显示出很好的相关性,相关性结果基本一致。
     5.利用次生相与原生相的分布比值评价研究区域的结果显示:渭河咸阳段表层沉积物中Mn、Pb、Cu分别存在着轻度污染,其它元素不存在污染。Mn在四个断面(断面2、断面3、断面4和断面5)都存在污染,其中在断面2的次生相与原生相分布比值显示最高,达140%;Pb在两个断面(断面3和断面4)都存在污染,其中在断面4的次生相与原生相分布比值显示最高,达116%;Cu仅在断面3存在污染,次生相与原生相分布比值为116%。断面3的污染元素最多(Mn、Pb和Cu),断面4有两种污染元素(Mn和Pb),断面2和断面5的均存在Mn污染。
     6.从研究区域重金属分布位置看,重金属富集在断面2和断面3比较高,这说明这一段渭河沉积物重金属受污染源影响较大,其它断面变化不大,这表明主要受沉积物成土母质特点等自然因素影响,而Cr、Pb、Cu、Zn、Mn和Ni这六种重金属之间的相关性都很好,因此,可以得出结论:总体看渭河咸阳段沉积物中重金属含量是受沉积物母质及污染源的综合影响。
With the rapid development of economy and acceleration of urbanization process,the pollution of China's urban areas' river is becoming more and more serious.Among the various contaminates, heavy metals have become more serious due to their toxicity and persistence.As the main accumulation of heavy metals in the water environment,sediments reflect the heavy-metal contamination of the water.We can determine the level of contamination and pollution sources in the research areas and know the spread of heavy metals according to studying contents and horizontal distribution of heavy metals in the sediment.Of course,we may know the history of heavy metals pollution in the research areas by way of studying their contents of core sediments in different vertical positions.Compared heavy metals contents of the core sediments with the background in non-contaminated areas,it reflects the change condition of human activities on the transportation amounts of heavy metals in different historical periods.
     Xianyang section of Wei River is regarded as the research-area in this thesis.According to full investigation,collecting samples and experimental analysis,it systematically studies the physical-chemical characteristics(pH value,conductivity,CaCO_3,susceptibility,particle size,loss on ignition) of this area for the first time.Total contents of Cu,Cr,Pb,Zn,Mn and Ni are determined by X-Ray fluorescence spectrograph.Chemical extractions of Cu,Cr,Pb,Zn,Mn and Ni in all of the sediments are studied by BCR four-step sequential extraction method.Also determined the fractionations of the six heavy metals in the area's samples by flame atomic absorption spectrometry (AAS).Through analyzing the interconnection between the heavy metals,heavy metals contents and their fractionation,as well as physical-chemical indicators of heavy metals,we want to provide a scientific reference for rational development of resources and prevention of heavy metals pollution in the Wei River.The main conclusions of this study are as follows:
     1.The results of analyzing physic-chemical indicators show that:the sediments of Xianyang section of Wei River are of alkaline.The sediments texture type is mainly the sand particle.The average value of various physic-chemical indexes is respectively:the pH value is 8.041,conductivity is 416μs/cm,loss on ignition is 4.160%,the low-frequency magnetic susceptibility(x_(LF)) is 83.22×10-8m3/kg,the high-frequency magnetic susceptibility(x_(HF)) is 82.18×10-8m3/kg,the frequency magnetic susceptibility(x_(fd)) is 1.31%,the clay content is 4.67%,the silty sand content is 39.81%,and the sand particle content is 55.53%,CaCO_3 is 91.40g/kg.
     2.Through the entire research river,the average contents of four heavy metals(Cr,Cu,Pb and Zn) in surface sediment from Xianyang section of Wei River are higher than environmental background value of the research area.The average contents Cr and Pb are higher than environmental background being worth 32.9%and 34.3%,The average content of Cu is higher than environmental background being worth 16.7%,The average content of Zn is a little higher than environmental background being worth 6.2%.The average contents of Mn and Ni are lower than environmental background,which shows that accumulated amounts of this two elements from man-made is relatively less on the entirety,however,some sections also show high concentration. Therefore,we also need some attention.The average contents of heavy metals in surface sediment from Xianyang section of Wei River are in the following order:Mn>Cr>Zn>Cu>Ni>Pb.On the space distribution,the average contents of heavy metals in surface sediment assume that the trend rising first to reduce again,most of high value areas are located in the middle to lower sections of research area.The cumulative values of research sections are in the following order:section 2>section 3>section 4>section 5>section 1.The average contents of most heavy metals in each section are of twists and turns on the vertical distribution of core sediment from Xianyang section of Wei River.The total contents display the gradually changeable small trend from above to below,which indicates that heavy metals pollution in research area are aggravated in recent years.Cr assumes the jagged and irregular multi-peak distribution characteristic obviously in all sections,one or more significantly high peaks emerge with depth,which may be related to the deposition of Cr after the migration process.Cu,Ni and Zn in each section have the similar vertical distribution characteristic, which indicates them probably having the similar source.The vertical distribution characteristic of Mn and Pb in each section is not obvious.
     3.The results of analyzing fractionation of heavy metals in surface sediment from Xianyang section of Wei River shows that:In general the main fractionation of heavy metals is residual state. Each heavy metal in different forms under different relocation conditions are in the following order: in the acid extractable fractionations:Mn(38.49%)>Pb(27.66%)>Ni(13.3%)>Zn(9.09%)>Cu (7.93%)>Cr(0.00%);in the reducible fractionations:Cu(26.36%)>Pb(12.81%)>Zn(11.81%)>Mn(11.71%)>Ni(7.23%)>Cr(0.00%);in the oxidable fractionations:Ni(13.09%)>Cu (7.47%)>Zn(5.42%)>Pb(5.14%)>Mn(3.96%)>Cr(2.61%);In the environmental media, the overall migration and transformations is in the following order:Mn(54.16%)>Pb(45.61%)>Cu(41.76%)>Ni(33.62%)>Zn(26.32%)>Cr(2.61%).The result of analyzing fractionation of heavy metals in core sediment from Xianyang section of Wei River shows that:The vertical distribution of four fractionations of Cu,Cr,Pb,Zn,Mn and Ni are of twists and turns,most of heavy metals fractionations in shallower part are higher than deep part in the acid extractable fractionations, but it turns out just the opposite in the residual fractionation,the vertical distribution trend of oxidable and residual fractionations are not obvious.In most of sections,it shows that the proportion of "labile" fractionation in total contents in shallower part is higher than in deep part,which is basically the same as the above conclusions.
     4.The interconnection analysis among the heavy metals shows that:Cr has a positive relation to Pb,no relation to other four heavy metals.There are significantly positive correlations among five heavy metals(Cu,Zn,Pb,Mn and Ni).The correlation analysis between "labile" fractionation and total contents displays:There are significantly positive correlations between every two indicators in six heavy metals.The correlation analysis between total contents of heavy metals,fractionation, "labile" fractionation with physic-chemical indexes displays:most of the heavy metals fractionation shows significantly correlation with conductivity,loss on ignition,low-frequency magnetic susceptibility(x_(LF)),high-frequency magnetic susceptibility(x_(HF)),CaCO_3,the clay and the silty sand.The above phenomenon reflects that seven physic-chemical indexes are the main factors of influencing fractionations for heavy metals in sediment from Xianyang section of Wei River;Pb, Cu,Ni,Mn and Zn have significantly positive relation to the seven physic-chemical indexes,which also shows that seven physic-chemical indexes are the main influencing factors for heavy metals in sediment from Xianyang section of Wei River;At the same time,"labile" fractionation also shows significantly correlation with seven physic-chemical indexes,which is basically the same as other conclusions.
     5.The result of evaluating research area by using Ratio of Secondary Phase in surface sediments of beavy mental displays:Apart from light pollution of Mn,Pb and Cu,other heavy metal elements have no pollution in surface sediments of Xianyang section of Wei River.The pollution of Mn exists in four sections(section 2,section 3,section 4 and section 5).The RSP value of section 2 is the highest,amounting to 140%.The pollution of Pb exists in two sections(section 3 and section 4).Tbe RSP value of section 4 is the highest,amounting to 116%.The pollution of Cu exists in section 3.The RSP value is 116%.There are three pollution elements(Mn,Pb and Cu) in section 3. There are two pollution elements(Mn and Pb) in section 4.The pollution of Mn exists section 2 and section 5.
     6.According to the distribution region of heavy metals in research area,there are high concentration in section 2 and section 3.It reflects that the content of heavy metals is affected significantly by pollution sources in the sediment from this section of Wei River.Others have little change,which indicates that the sediment is mainly affected by natural factors,such as soil parent material characteristics.Moreover,there are significantly positive correlation among six heavy metals(Cr,Pb,Cu,Zn,Mn and Ni).So it can be concluded that:the content of heavy metals in sediment from XianYang section of Wei River is affected by parent material and pollution sources of the sediment.
引文
[1]周宇.悲愤呐喊的中国河流[J].绿色中国,2006,21(11):14-25.
    [2]Owen.R.B,Sandhu.N.Heavy Metal Accumulation and Anthropogenic Impacts [J].Mar Pollut Bull,2000,40(2):174-180.
    [3]周怀东,彭文启,等.水环境与水环境修复[M].北京:化学工业出版社,2005.
    [4]胡必彬.我国十大流域片水污染现状及主要特征[J].重庆环境科学.2003,25(6):15-17.
    [5]赵璇,吴天宝,叶裕才.我国饮用水源的重金属污染及治理技术深化问题[J].给水排水.1998,24(10):22-25.
    [6]张锦瑞,郭春丽.环境保护与治理[M].北京:中国环境科学出版社,2004.
    [7]Salomons.W,De Rooij.N.M,et al.Sediments as a Source for Contaminants [J].Hydrobiologia,1987,149:13-30.
    [8]Wilcher.L.S.Proceedings of the Third National Conference on Water Quality Standards for the 21st Centre[C].Las Vegas Nevada,1992:7-13.
    [9]Calmanl.W,Alf.W,Forster.U.Sediment Quality Assessment:Chemical and Biological Approaehes.In:Calmano W,Forste,U.Sediment and Toxiesubstance:Environmental Effects and Ecotoxity[M[.Berlin:Springer,1995.
    [10]Taylor.S.E,Bireh.G..F.The Environmental Implications of Readily Resuspended Contaminated Estuarine Sediments[J].The 30th International Geological Congress Abstraet,Beijing,1996(3):424-429.
    [11]Santsehi P.H,Hoehener.P,BenoitG.etal.Chemieal Proeesses at the Sediment Water Interfaee[J].Mar.Chem,1990,30(13):269-315.
    [12]Solivares-Rieumont,D.L.Lima,et al.Assessment of Heavy Metal Levels in Almendares River Sediments-Havanacity,Cuba[J].Water Research,2005,39(16):3945-3953.
    [13]徐争启.攀枝花市区水系沉积物中重金属元素地球化学研究[D].成都理工大学,2005.
    [14]Quevauviller.P.Requirements for Production and Use of Certified Reference Materials for Speciation Analysis:A European Commission Perspective[J].Spectrochimica Acta Part B,1998,53:1261.
    [15]金相灿,徐南妮,吴淑岱,等.湘江水体系中悬浮沉积物对镉、铜、砷和汞的吸 附特征研究.环境科学与技术[J],1986,(2):2-6.
    [16]陈静生,王飞越,宋吉杰,等.中国东部河流沉积物中重金属含量与沉积物主要性质的关系.环境化学[J],1996,15(1):8-14.
    [17]王连生,郁亚娟,黄宏,等.淮河沉积物中重金属的测定和评价方法[J].环境科学研究,2003,16(3):26-28.
    [18]周福来,严家平.淮河淮南段河道沉积物中几种重金属元素模拟淋溶实验研究[J].能源环境保护,2004,(04):20-23.
    [19]王海,王春霞,王子健,等.太湖表层沉积物中重金属的形态分析[J].环境化学,2002,21(5):430-435.
    [20]王新伟,何江,李朝生,等.黄河包头段沉积物中生物可给态重金属分布研究[J].环境科学研究,2002,15(1):20-23.
    [21]何江,李朝生,王新伟.多离子体系中黄河沉积物对重金属的竞争吸附研究[J].沉积学报,2003,21(3):500-505.
    [22]何江,王新伟,李朝生.黄河包头段沉积物中重金属离子的形态转化及释放研究[J].南京大学学报(自然科学版),2003,39(6):739-744.
    [23]何江,王新伟,李朝生,等.黄河包头段水.沉积物系统中重金属的污染特征[J].环境科学学报,2003,23(1):53-57.
    [24]陈瑞生,黄玉凯,高兴斋,等.河流重金属污染研究[M].中国环境科学出版社,1988.
    [25]陈静生,周加义.中国水环境重金属研究[M]北京:中国环境科学出版社,1992.
    [26]金相灿.沉积物污染化学[M].北京:中国环境科学出版社,1992.
    [27]Lamy I.A Soil Cadmium Mobility as a Consequence of Sewage Sludge Disposal[J].Environ Qual.1993,22:731-737.
    [28]Stumm.W,Brauner.P.A.Chemical Oceanography.Ch.3[M].New York:Academic Press,1975.173-279.
    [29]汤鸿宵.试论重金属的水环境容量[J].中国环境科学,1985,5(5):38-43.
    [30]戴树桂.环境分析化学的一个重要方向—形态分析的发展[J].上海环境科学,1992,11(11):20-27.
    [31]袁东星,王小如.化学形态分析[J].分析测试通报,1992,11(4):1-9.
    [32]周天泽.无机微量元素形态分析方法学简介[J].分析实验室,1991,10(3):44-50.
    [33]Templetion D M,Ariese F,Comelis R,et al.IUPAC Guidelines for Terms Related to Speciation of Trace Elements[J].Pure Appl Chem.2000, 72(8):1453-1470.
    [34]Michallke B.The Coupling of LC to ICP-MS in Element Speciation-Part Ⅱ:Recent Trends in Application[J].Trends Anal Chem,2002,21(2):154-165.
    [35]黄志勇,吴熙鸿,胡广林,等.高效液相色谱/电感耦合等离子体质谱联用技术用于元素形态分析的研究进展[J].分析化学,2002,30(11):1387-1393.
    [36]陈静,周黎明,曲刚莲.HPLC联用技术在环境砷形态分析上的应用[J].环境科学与技术,2003,26(2):60-66.
    [37]王学军,陈静生.土壤、沉积物中微量重金属形态分配预测初步研究[J].环境化学,1993,12(4):245-250.
    [38]李广玉,鲁静,何拥军.天然水化学组分存在形式的研究理论基础及其应用进展[J].海洋地质动态,2004,20(4):24-27.
    [39]Van Herck P,Van der Bruggen B,Vogels G,et al.Application of Computer Modeling to Predict the Leaching Behaviour of Heavy Metals From MSW Fly Ash and Comparison with a Sequential Extraction Method[J].Waste Management,2000,20:203-210.
    [40]Cristine Gleyzes,Sylvainer Tellier,Michel Astruc.Fractionation Studies of Trace Elements in Contaminated Soils and Sediments:a Review of Sequential Eatraction Procedures[J].Trends in Analytical Chemistry,2002,21(6-7):451-467.
    [41]Tessier.A,Campbell P.G.C,Bisson.M.Sequential Extraction Procedure for the Speciation of Particulate Trace Metals[J].Anal.Chem,1979,51:844-851.
    [42]Quevauviller.P,Ure.A.Conclussions of the Workshop:Harmonization of Leaching/Extraction Tests for Environmental Risk Assessment[J].Sci.Total Environ,1996,178:133-139.
    [43]Chao.T.T.Use of Partial Dissolution Techniques in Geochemical Exploration [J].Geochem Expl,1984,20:77-90.
    [44]Mesuere.K,Martin.R.E,Fish.W.I.Dentification of Copper Contamination in Sediments by a Microscale Partial Extraction Technique[J].Environ Qual,1991,20:114-118.
    [45]Tessier.A,Campbell.P.G.C.Comment on"Pitfalls of Sequential Extraction"[J].Water Res,1991,25(1):115-117.
    [46]Rauret G,Rubio R,Lopez-Sanchez J F.Optimization of Tesiier Procedure for Metal Solid Speciation in River Sediments[J].Internatinoal Journal of Environmental Analytical Chemistry,1989,36(2):69-83.
    [47]Rauret G,Lopez-Sanchez J F,Sahuquillo A,et al.Improvement of the BCR Three-Step Sequential Extraction Procedure Prior to the Certification of New Sediment and Soil Reference Materials[J].Journal of Environmental Monitoring,1999,1:57-61.
    [48]Ross A Sutherland,Filip M G Tack.Determination of Al,Cu,Fe,Mn,Pb and Zn in Certified Reference Materials Using the Optimized BCR Sequential Extraction Procedure[J].Analytica Chimica Acta,2002,454:249-257.
    [49]Katherine F Mossop,Christine M Davidson.Comparison of Original and Modified BCR Sequential Extraction Procedures for the Fractionation of Copper,Iron,Lead,Manganese and Zinc in Soils and Sediments [J].Analytica Chimica Acta,2003,478:111-118.
    [50]王美青,章明奎.杭州市城郊土壤重金属含量和形态的研究[J].环境科学学报,2002,22(5):603-608.
    [51]霍文毅,黄风茹,陈静生,等.河流颗粒物重金属污染评价方法比较研究[J].地理科学,1997,17(1):81-86.
    [52]M(u|¨)ller G.Index of Geoaccumulation in Sediments of the Rhine River[J].Geojournal,1969,2:108-118.
    [53]Hacanson L.An Ecological Risk Index for Aquatic Pollution Control-A Sedimentological Approach[J].Water Research,1980,14:975-1001.
    [54]Huang K M,Lin Saulwood.Consequences and Implication of Heavy Metal Spatial Variations in Sediments of the Keelung River Drainage Basin,Taiwan[J].Chemosphere,2003,53(9):1113-1121.
    [55]霍文毅,陈静生.我国部分河流重金属水-固分配系数及在河流质量基准研究中的应用[J].环境科学,1997,18(4):10-14.
    [56]何江,王新伟,李朝生,等.黄河包头段水-沉积物系统中重金属的污染特征[J].环境科学学报,2003,23(1):53-58.
    [57]范文宏,陈静生,洪松,等.沉积物中重金属生物毒性评价的研究进展[J].环境科学与技术,2002,25(1):36-39.
    [58]Benson W H,Giulio R T D.Biomarkers in Hazard Assessments of Contaminated Sediments.Burton G A Jr.Sediment Toxicity Assessment[C].Chelsea Michigan:Lewis Publishers,1992.241-266.
    [59]Chernoff H.The Use of Face to Represent Points in K-dimensional Space Graphically[J].J.Am.Statist.Assoc,1973(68):361-368.
    [60]Toro D.AVS Predicts the Acute Toxicity of Cd and Ni in Sediments[J].Environment Science Technology,1992,26:96-101.
    [61]董生荣,等.咸阳市水资源评价及开发利用现状分析[R].咸阳市水政水资源管理办公室,2001.
    [62]陈渝.渭河咸阳段水质分析及污染治理策略[J].水资源与(?)工程学报,2005,16(2):55-58.
    [63]陈亚萍.陕西关中段渭河水质评价及污染治控制对策[J].杨凌职业技术学院学报,2005,4(3):14-16.
    [64]赵串串,马宏瑞,杨晓阳,刘兰涛.渭河咸阳段水环境有机污染负荷与环境容量分析[J].环境科学与技术,2008,31(8):65-67.
    [65]史兴民,万正耀,师静.渭河咸阳段近代洪水沉积物粒度特征分析[J].水土保持通报,2008,28(3):71-76.
    [66]刘秀花,白峰青,杨丁.渭河咸阳段水污染协同控制应用研究[J].水文,2004,24(6):10-13.
    [67]奚旦立,孙裕生,刘秀英.环境监测[M].第三版.北京:高等教育出版社,2004.
    [68]R.Salmirren,T.Tarvainen.The Problem of Defining Geochemical Baseline.A Case Study of Selected Elements and Geological Materials in Finland[J].Journal of Geochemical Exploration,1997,60(1):91-98.
    [69]B.P.L.Goh,L.M.Chou.Heavy Metal Levels in Marine Sediments of Singapore [J].Environmental Monitoring and Assessment,1997,44(1-3):67-80.
    [70]S.P.Singh,F.M.Tack,M.Heavy Metal Fractionation and Extractability in Dredged Sediment Derived Surface Soil[J].Water,Air,and Soil Pollution,1998,102(3-4):313-328.
    [71]C.Luczak,M.A.Janquin,A.Kupka.Simple Standard Procedure for the Routine Determination of Organic Matter in Marine Sediment[J].Hydrobiologia,1997,345(1):87-94.
    [72]J.I.Santisteban,R.Mediavilla,E.Lopez-Pamo,et al.Loss On Ignition:a Qualitative or Quantitative Method for Organic Matter and Carbonate Mineral Content in Sediments[J].Journal of Paleolimnology,2004,32(3):287-299.
    [73]A.Beaudoin.A Comparison of Two Methods for Estimating the Organic Content of Sediments[J].Journal of Paleolimnology,2003,29(3):387-390.
    [74]袁旭音,陈骏,季峻峰,等.太湖现代沉积物的物质组成和形成条件分析[J].南京大学学报(自然科学版),2002,38(6):756-765.
    [75]朱光伟,秦伯强,高光,等.灼热对沉积物烧失量及铁、磷测定的影响[J].分析实验室,2004,23(8):72-76.
    [76]刘子亭,余俊清,张保华,等.烧失量分析在湖泊沉积与环境变化研究中的应用[J].盐湖研究,2006,14(2):67-72.
    [77]鲍士旦.土壤农化分析.北京:中国农业出版社,1999:30-33,201-205.
    [78]朱礼学,邓泽锦.土壤pH值及CaCO_3在多目标地球化学调查中的研究意义.[J].物探化探计算技术,2001,23(2):140-143.
    [79]Moustakas NK,Barouchas PE.Free Oxide Distribution in Poorly and Well Drained Soils Developed on Calcareousalluvial Deposits[J].Pedosphere,2003,13(4):345-351.
    [80]刘秀明,王世杰,冯志刚,孙承兴.石灰土物质来源的判别—以黔北、黔中几个剖面为例[J].土壤,2004,36(1):30-36.
    [81]郭玉文,加藤诚,宋菲,张玉龙,曾思伟,王得楷.黄土高原黄土团粒组成及其与碳酸钙关系的研究[J].土壤学报,2004,41(3):362-368.
    [82]赵景波.黄土中古土壤CaCO_3淀积层及其意义[J].西安工程学院学报,1998,20(3):46-49.
    [83]赵景波.风化淋滤带地质新理论—CaCO_3淀积深度理论[J].沉积学报,2000,18(1):29-35.
    [84]胡雪峰,鹿化煜.黄土高原古土壤成土过程的特异性及发生学意义[J].土壤学报,2004,41(5):669-675.
    [85]谭红兵,马海州,张西营.碳酸盐研究与其记录的环境变化[J].盐湖研究,2003,11(4):20-27.
    [86]黎彤.中国陆壳及其沉积层和上陆壳的化学元素丰度[J].地球化学,1994,23(2):140-145.
    [87]雷凯.渭河西安段水体及水系沉积物重金属环境地球化学研究[D].陕西师范大学,2008.
    [88]王利军.宝鸡市街尘、土壤及渭河沉积物重金属污染研究[D].陕西师范大学,2008.
    [89]徐争启,倪师军,张成江,等.金沙江攀枝花段水系沉积物中重金属的分布特征 及污染评价[J].物探化探计算技术,2004,26(3):252-255.
    [90]M.Singh,A.A.Ansari,G.Muller et al.Heavy Metals in Freshly Deposited Sediments of the Gomati River(a Tributary of the Ganges River):Effects of Human Activities[J].Environmental Geology,1997,29(3/4):246-252.
    [91]M.Singh.Heavy Metal Pollution in Freshly Deposited Sediments of the Yamuna River(the Ganges River tributary):a Case Study from Delhi and Agra Urban Centers,India[J].Environmental Geology,2001,40(6):664-671.
    [92]F.A.Adekola,O.A.A.Eletta.A Study of Heavy Metal Pollution of Asa River,Ilorin.Nigeria:Trace Metal Monitoring and Geochemisty[J].Environmental Monitoring and Assessment,2007,125:157-163.
    [93]H.T.T.Thuy,N.N.H.V,T.T.C.Loan.Anthropogenic Input of Selected Heavy Metal(Cu,Cr,Pb,Zn and Cd) in the Aquatic Sediments of Hochiminh City Vietnam[J].Water,Air,and Soil Pollution,2007,182:73-81.
    [94]C.Lin,M.C.He,Y.X.Zhou et al.Distribution and Contamination Assessment of Heavy Metals in Sediment of the Second Songhua River,China[J].Environmental Monitoring and Assessment,2008,137:329-342.
    [95]王立军,张潮生.珠江广州江段水体沉积物和悬浮物中27种元素的含量与形态分布特征[J].应用基础与工程科技学报,1999,7(1):12-20.
    [96]牛红义,吴群河,陈新庚.珠江(广州河段)表层沉积物中重金属的分布特征及相关性研究[J].生态环境,2006,15(5):954-959.
    [97]朱兰保,盛蒂,周开胜等.淮河安徽段沉积物中重金属污染及其潜在生态风险评价[J].环境与健康杂志,2007,24(10):784-786.
    [98]刘芳文,颜文,黄小平,等.珠江口沉积物中重金属及其相态分布特征[J].热带海洋学报,2003,22(5):16-24.
    [99]孟翊,刘苍字,程江.长江口沉积物重金属元素地球化学特征及其底质环境评价[J].海洋地质与第四纪地质,2003,23(3):37-43.
    [100]ZHANG J,HUANG W W,MARTIN J M.Trace Metals Distribution in Huanghe (Yellow River) Estuarine Sediments[J].Estuarine,Coastal and Shelf Science,1988,26:499-516.
    [101]DAUVALTER V,ROGNERUD S.Heavy Metal Pollutionin Sediments of the Pasvik River Drainage[J].Chemo-Sphere,2001,42:9-18.
    [102]QU Wenchuan,KELDERMAN P.Heavy Metal Contents in the Delft Canal Sediments and Suspended Solids of the River Rhine:Multivariate Analysis for Source Tracing[J].Chemo-Sphere,2001,45:919-925.
    [103]WOITKE P,WELLMITZ J,HELM D,et al.Analysis and Assessment of Heavy Metal Pollution in Suspended Solids and Sediments of the River Danube[J].Chemosphere,2003,51:633-642.
    [104]陈振楼,许世远,柳林.上海滨岸潮滩沉积物重金属元素的空间分布与累积[J].地理学报,2000,55(6):641-652.
    [105]Balistrirei L S,Murry J W,Paul B.The Biogeochemical Cycling of Trace Metals in the Water Colum of Lake Sammamish,Washington:Response to Seasonally Anoxic Condition[J].Limnology and Oceanography,1992b,37(3):529-548.
    [106]Chen Z,Pu Y,Huang R et al.Seasonal Release of Iron and Manganese at the Sediment-Water Interface in Aha Lake[J].Chinese Science Bulletin,1996,41(16):1359-1363.
    [107]Birch G F,Evenden D,Teutsch M E.Dominance of Point Source in Heavy Metal Distribution in Sediments of a Major Sydney Estuary(Australian)[J].Environmental Geology,1996,28:169-174.
    [108]Matthiessen P,Reed J,Johnson M.Sources and Potential Effects of Copper and Zinc Concentrations in the Estuarine Waters of Essex and Suffolk,United Kingdom[J].Marine Pollution Bulletin,1999,38:908-920.
    [109]黄河.淮河中下游河道沉积物重金属元素分布特征研究[D].安徽理工大学,2005.
    [110]乔永民.粤东近岸海域沉积物重金属环境地球化学研究[D].暨南大学,2004.
    [111]杨永强.珠江河口及近海沉积物中重金属元素的分布、赋存形态及其潜在生态风险评价[D].中国科学院广州地球化学研究所,2007.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700